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Abstract—Convolutional neural networks (CNNs), well-known
for their translational invariance property on translational man-
ifolds, are not guaranteed to generalize to images on other
types of manifolds. Existing works extending CNNs’ translational
invariance property are limited to linear transformations such as
rotation. We propose a novel framework, the Manifold Transfer
Network, with an embedded inductive bias for any specified
nonlinear manifold. Our model maps a nonlinear transformation
to a linear translation on a translational manifold, making it
suitable for a CNN to learn and predict. We design such a map
through the solutions of a particular class of partial differential
equations. We empirically apply our method to the domain of
radial lens distortion rectification. In our experiments on the
CelebA dataset we demonstrate superior performance of our
model compared to conventional baselines.

Index Terms—convolutional neural networks, image rectifica-
tion, manifold learning

Convolutional neural networks (CNNs) have been consid-
ered the default toolbox for a wide range of computer vision
applications [21, 13, 12, 27, 14]. This is due to their intrinsic
inductive bias matching the nature of 2D vision. However,
CNNs only guarantee generalization ability within the dataset
with translational invariance. This is not a good match for
other types of transformations such as rotation or distortion.

Many works traditionally have tried to extend such abilities
to other types of transformations. Group equivariant convo-
lutional networks [4, 7] extend CNNs to tolerate rotation
and mirror transformation. Spherical CNNs [5, 9, 20] achieve
SO(3) symmetry on CNNs and hence generalize to spherical
images. Another approach following the Spatial Transformer
Networks [18, 19] uses an intermediate transformation to map
images to a new coordinate system so that they gain trans-
lational symmetry. Furthermore, [8] use polar coordinates to
map rotations into translations and [32] extends this approach
to general linear transformations.

In this work, we develop a theory that finds the transfer
manifold for a general transformation. This transformation will
map a specified transformation to a simple shift with distances
proportional to the transformation coefficient elements, which
Figure 1 demonstrates. As a result, the output feature map
will be suitable for CNNs to learn and predict. Coming from
another line of work, self-supervised learning [1] is the state-
of-the-art method for pertaining feature maps on synthetically
modified data using automatically generated tasks and large
quantities of unlabeled data. Instead, the goal of our theory is
to propose a parallel line of methods that can learn useful

Fig. 1: An image and its corresponding distorted images with
different distortion coefficient form a manifold in the high
dimensional data space. Under manifold transfer, each point
on this distortion manifold is mapped to a new point on a
translational manifold. Each image represented by a point on
this manifold can be derived from another by a simple shift.
Hence, the transformed manifold will be suitable for a CNN
to learn and predict due to its translational invariance.

feature maps based on physics-inspired manifold transfer.
More specifically, we propose a method to find such transfer
through partial differential equations. This transfer only needs
to be performed on the data before it is fed into the network.
Hence no gradient step is required and approximation can be
applied to simplify the solution.

We apply our model to lens distortion rectification. Real-
world images captured by cameras with wide angles or under
short distances violate pinhole camera assumptions and suf-
fer from lens distortions. To automatically rectify distorted
images that apply to general physical environments remains
an important problem for the computer vision community
[26, 34, 22]. Traditional methods applying prior knowledge
to design special features are widely implemented in real-
world applications. They typically use sharp edges [24] and
other human-designed features [17] to develop a rectification
transformation. For instance, [11] detect key points on faces
to find the corresponding transformation. Applying CNNs to
directly predict distortion coefficients has become a state-of-



the-art approach. The authors of [37] develop a CNN model
based on large scale synthesized images; [35] utilize semantic
segmentation as extra information to guide rectification pro-
cess. These models are easy to build and deploy and achieve
better performance compared to human-designed methods.
However, these models do not generalize outside the scope
of the training data due to the limitation of regular CNNs
as discussed above. Here, we solve this problem through
a manifold transfer network. We use synthetically distorted
images from the large scale CelebA dataset [23] to train our
model and test its performance. We compare our model to two
baseline models: a standard CNN and an ablation model, and
demonstrate its superior performance.

Our contributions are summarized as follows:
1) We develop a general theory to assist CNNs to go be-

yond translational invariance through manifold transfer.
2) We propose an approach to find such a manifold transfer

method by solving a class of partial differential equa-
tions.

3) We apply our method to lens distortion rectification and
demonstrate performance superior to state of the art.

I. RELATED WORK

A. Group Equivariant Networks

Group equivariant models [4, 7] use embedded group equiv-
ariant convolutions to tolerate rotation transformations without
the need of data augmentation. Spherical CNNs [5, 9, 20]
extend such ability to SO(3) transformations and hence are
suitable to spherical images. There are two major limitations
of these approaches. First, limited types of operations can
be developed to be embedded into networks. Second, high
memory and latency overhead are required to support these
models.

B. Spatial Transformation Networks

Standardizing images before feeding them into standard
CNNs is another popular approach to tackle various distorted
or transformed images. Spatial transformer networks [18] use
an extra network to learn pose parameters for transforming
distorted images back to standard. The standard image is then
sent to a standard CNN, which yields higher accuracy and
lower data requirements. Several follow up works, e.g. polar
[8] and equivariant [32] transformer networks, apply specific
transformations before applying pose predictors. Equivariant
transformer networks learn general linear transformation pa-
rameters and are pipe-lined to rectify each of the distortions.

Our work is similar to this approach but we do not rely
on classification targets to provide training guidance. Instead,
we directly apply the spatial transformer framework to predict
corresponding parameters following self-supervised learning
approaches[15, 3, 25, 6]. As a result, our model can general-
ize to other downstream tasks. Furthermore, existing models
are restricted to linear transformations or well-studied group
transformations, while to the best of our knowledge, we are
the first to extend it to general nonlinear transformations.

C. Distortion Rectification
Rectifying lens distorted images have a long history in

image processing, yielding numerous applications. Traditional
methods [17, 36, 37] detect handcrafted features from images
based on prior knowledge. The authors of [16] detect horizons
from images and calculate corresponding camera parameters.
The authors of [11] propose to search key points for face
image rectification. These methods are limited to specific data
domains and are not robust against complicated environments.

Methods based on machine learning [28, 35] utilize large
scale synthesized data to embed prior knowledge into models.
They synthetically distort large amounts of images and train
a deep learning model to reveal the corresponding distortion
coefficient. In [35] the authors use semantic information as
extra information to help detect distortion. They train the
model in an end to end style with the distortion coefficient
as intermediate supervision. In [39] the authors use spatial
transformer frameworks [18] to learn and predict rectification
mapping on face images. These methods are only robust within
domains of images with sharp lines due to the translational
invariance property of CNNs. However, no evidence exists to
show these models can generalize to domains without such
patterns, such as the CelebA dataset.

II. MANIFOLD TRANSFER THEORY

A. Manifold Transfer Operation
We assume all our N datapoints {xj}Nj=1 are on a manifold

in the data space, i.e. xj ∈ RH×W×3, where H is the height
and W is the width of the image in pixels, while 3 is the
dimension of colors. We define a manifold operator T such
that for each datapoint x on this manifold, the new datapoint
x′ defined by satisfying the manifold invariance condition

x′(T (r)) = x(r) (1)

for all r ∈ [0,W ]× [0, H] is still on this manifold.
Our assumption is that our input dataset relies on a manifold

with operator Ti (“i” stands for input), which is parametrized
by a vector ϕ = [ϕ1, ϕ2] ∈ R2. We want to transfer our
dataset onto a new manifold with operator To (“o” stands
for output) that satisfies equation 1. This transfer procedure
can be represented by another transformation Tc (“c” for
composition). In order to keep the transformations consistent,
we requires Tc to satisfy the following requirement: for every
data point in the input space, and for every pixel r on
its feature space, the effect of going through transformation
Tc after the original transformation Ti is identical as going
through the transformation To after Tc. That is,

Tc ◦ Ti[ϕ](r) = To[ϕ] ◦ Tc(r) (2)

for every r ∈ [0,W ] × [0, H]. Here, transformations Ti and
To are parameterized by the same vector parameter ϕ.

Specifically, we are interested in having the output as a
linear translation which matches the inductive bias of CNNs,
i.e.

To[ϕ](r) = r+
∑
j

ϕjej (3)



where {ej} are the unit bases in the space of To (in theory
we can consider a space of an arbitrary dimension M , i.e.
ϕ = [ϕ1, . . . , ϕM ], even though in this paper we focus on two
dimensions).

An intuitive example is that for a rotation Ti[ϕ] ≡
Ti[ϕ] parametrized by ϕ = [0, ϕ], where ϕ is a scalar.
Its corresponding manifold transfer is in polar coordinates.
In this case, Ti[ϕ](x, y) = (x cosϕ − y sinϕ, y cosϕ +
x sinϕ), To[ϕ](x, y) = (x, y + ϕ) and hence Tc(x, y) =
(
√

x2 + y2, arg(y/x)). Here, we propose a method to find
the solution for general Ti[ϕ].

B. Deriving the Transfer

It is difficult to derive an analytic solution of Tc for arbitrary
Ti, unless Ti is linear. Similar to [32], we propose a solution
to this problem using partial differential equations to solve the
nonlinear cases.

Given equation 3, we want for every dimension k in the
output space,

∂

∂ϕj
(Tc ◦ Ti[ϕ](r))k = δkj (4)

where δkj is the Kronecker operator. More specifically,∑
l

∂rl
∂ϕj

∂

∂rl
Tc(r

′)k = δkj , (5)

where

r′ = Ti[ϕ](r). (6)

In the following section, we will apply our theory to an
application and solve equation 5 through an approximation.

III. APPLICATION TO LENS DISTORTION

A. Lens Distortion

Images are usually represented as (2+1)D tensors with their
coordinates represented by an index. In contrast, lens distorted
images are spherically represented images projected onto a
flat plane with coordinates mapping as projection [2, 10, 31,
33, 38]. That is Ti(r) = tan(r/d)r. For image sizes that are
larger than the lens radius d, it is appropriate to use first-
order approximation, i.e. we only keep the lowest degree radial
term, which is O(r2). Moreover, here we only consider radial
distortion which means the angle to the origin remains constant
during such a transformation.

Thus, setting ϕ = [ϕ, 0], the formula of the above lens
transformation becomes approximately as follows

Ti[ϕ](r) ≡ Ti[ϕ](r) = (1 + ϕr2)r, (7)

where r = (x, y) ∈ [−1, 1]× [−1, 1] is the relative coordinate
of the original image with center at [0, 0], r = (x2 + y2)1/2

is the absolute value of r and ϕ = (1/d2) ∈ [0,∞) is the
distortion coefficient.

B. Manifold Transfer Solution

Here, we derive an approximate solution for lens distortion
transformation. Combining Equations 7, 2 and 3, we obtain

Tc

(
(1 + ϕr2)r

)
= Tc(r) + ϕe1. (8)

Since there are multiple solutions to 8, we choose the simplest
one in which Tc is independent of the direction of r. We can
isolate the variables in the equation by r = |r| and the angle
to the origin. Therefore there exists a solution where the first
element of Tc(r) only depends on r and the second element
only depends on the angle to the origin, i.e. we consider the
following ansatz

Tc(r) = [X(r), Y (θ)], (9)

where r is the absolute value of r and θ is the angle to the
origin. We have that

X
(
r + ϕr3

)
= X(r) + ϕ (10)

for any r. Note that Y can be an arbitrary function, since we
do have constraints from equation 8, given equation 9.

Now, we take the Taylor expansion of the LHS of equa-
tion 10

X(r + ϕr3) = X(r) +
dX

dr
(ϕr3) +O(ϕr3)2

and with this substitution, in equation 10 the term X(r)
cancels out, and thus after diving by ϕ on both sides we obtain
that

dX

dr
r3 +

O(ϕr3)2

ϕ
= 1. (11)

To solve equation 11 we assume that r is small enough,
so that the term O(ϕr3)2/ϕ vanishes. This is a reasonable
assumption in our experiments, since the sizes of the images
that we consider are small. With this assumption we derive an
approximate solution of equation 11 as follows

X(r) = C − 1/(2r2) (12)

for any constant C.
In practice, we need to sample transformed images through

Tc(r) instead of sampling through r′. i.e. when sampling an
output pixel value r, we are looking for the corresponding
coordinate r′ in the original input image. Therefore, we need
to find the solution of r = T−1

c (r′) where r′ represents
pixels in the output feature map. Hence, we obtain the final
transformation formula as follows

T−1
c (x, y) =

[√
1

2(C − x)
sin(y),

√
1

2(C − x)
cos(y)

]
(13)

where C is arbitrary and we will tune it as a hyperparameter.
It it straightforward to confirm that X(T−1

c (x, y)) = x and
since we can choose Y freely, we set Y (θ) := y, hence
using equation 9 we obtain that

Tc

(
T−1
c (x, y)

)
= (x, y),

as desired.



We demonstrate the effectiveness of the manifold transfer
networks in Figure 2. The first row demonstrates one input
image and its corresponding distorted heatmap. The second
row demonstrates the corresponding feature maps after the
transformation Tc. The feature maps become a linear shift
along the x-axis. This property is suitable for CNNs to learn
and share certain features within every layer of feature maps.

Fig. 2: The heatmap of a standard image and its corresponding
lens distorted one. After a manifold transfer, the new heatmap
becomes a simple shift of the original, which reflects equa-
tion 2.

C. Centroid Prediction

In order to assist CNNs to predict coefficients and take
advantage of the linear translational property, we use the
centroid layer proposed in [8]. The definition of the centroid
layer is shown in Algorithm 1. It multiplies a softmax of the
input and a positional encoding value along the last dimension.
Compared to simple softmax (used by [28]), the centroid layer
takes advantage of the relative spatial information of different
slots and fully utilizes input information. Furthermore, a
centroid layer is differentiable and more stable in practice.

Input : A Tensor x with last dimension representing
the coefficient shift.

Output: A Tensor y with same dimension as x
without last dimension

d← x.shape[−1]
x← softmax(x, axis = −1)
rg← [1/d, 2/d, ..., 1]
y← x ∗ rg
y← average(y, axis = −1)

Algorithm 1: Centroid Layer

D. Rectification Transformation

Once we get the distortion coefficient, the last step is to
apply the inverse lens distortion transformation: the rectifica-
tion transformation T−1[ϕ]. We derive this analytically after
solving the cubic equation equation 7 and obtain the following

T−1[ϕ](r) =
(q +

√
q2 + p3)

1
3 + (q −

√
q2 + p3)

1
3

r
r (14)

where p = 1/(3ϕ), q = r/(2ϕ). Similar to the original lens
distortion, this rectification transformation only acts on the
radial dimension.

E. Rectification Networks

In this section, we demonstrate the architecture of manifold
transfer networks. During training, we directly supervise the
network to predict the distortion coefficient from a distorted
image. During the rectification runtime, as shown in Figure 3,
the coefficient from the network is used to generate a sampling
grid. Then the rectified image is sampled from the original
distorted image on this grid.

Fig. 3: The runtime model for image rectification. A manifold
transfer network predicts the distortion coefficient which is
used to generate a mapping grid. Then the distorted image is
sampled onto this grid to generate the rectified image.

The prediction network contains three parts: a manifold
transfer, a CNN and a centroid prediction layer. See Table I.
The original distorted image is sampled onto the new grid
using a transformation based on equation 13. It is then
followed by five blocks of Conv-BatchNorm-ReLU similar
to the VGG architecture [30]. Each convolution uses a 3x3
kernel with a 2x2 stride except the last layer with stride 1x2.
The linear layer is then used to mix up the y-axis which
corresponds to the radial dimension in the original image.
Lastly, the centroid layer followed by a linear layer is used
to predict the final coefficient.

We use two baseline models in our experiments. First,
a standard CNN model without the manifold transfer layer
or the centroid prediction layer. Second, a polar transformer
model similar to [8] that uses a simple polar coordinate
transformation instead of our manifold transfer. This polar
transformation also maps lens distortion onto the x-axis of the
output, but not to a linear translation, which yields complicated
distortion dynamics.



Layer Output Dimension

Transfer 224x224x3

Conv2d 112x112x3
Conv2d 56x56x32
Conv2d 28x28x32
Conv2d 14x14x32
Conv2d 7x14x32
Linear 14x32

Centroid 1x32
Linear 1

TABLE I: Manifold transfer network architecture. The Trans-
fer layer is the non-parametric mapping discussed above. The
middle part of the architecture is a standard CNN with groups
of convolution and batch normalization. The last Centroid
layer is a replacement of softmax which helps predicting the
coefficient.

IV. EXPERIMENTAL RESULTS

We first show our data preparation and training procedures.
Then qualitatively and quantitatively we evaluate a manifold
transfer network versus a standard CNN and an ablation
model.

Our model is implemented using the PyTorch framework1.
All images are formalized into a resolution of 224x224. The
experiments are carried out on two Nvidia 1080 GPUs.

A. Data Preparation

We built our training dataset based on the large-scale Celeb-
Faces Attributes (CelebA) Dataset [23]. CelebA contains more
than 200K celebrity images covering large pose variations and
background clutter. We synthetically distort each image based
on Equation 7 with a randomly sampled distortion coefficient.
Specifically, each distortion coefficient is uniformly sampled
within the range [0, 1.0]. We build a distortion grid with respect
to each distortion coefficient. Each distortion grid has a size
224x224. Then the distorted images are sampled by these grids
using bilinear interpolation. In order to solve the edge issue,
we mask out the pixels outside the circle of r = 1.

In our training process, we use 100k images for training,
20k images for validation and 20k images for testing.

Each image is also associated with its corresponding dis-
tortion coefficient. In addition, for the test set, the original
images are sampled to 224x224 without distortion as ground
truth, which is used for rectification evaluation quantitatively
and qualitatively.

B. Training the Coefficient Predictor

We use the Mean Squared Error (MSE) as a loss function to
supervise the distortion coefficient prediction directly. In the
training process, we use an Adam optimizer with a learning
rate 0.001 and a batch size 32. Each model is trained for 200
epochs with early stopping based on the error on the validation
set.

1https://github.com/jingli9111/manifold-transfer-networks

MSE scores on the test set show that compared to standard
CNNs and the ablation model, our manifold transfer network
achieves significantly higher prediction accuracy.

Model MSE (10−3)

Standard CNN 1.85
Polar Transformer 1.77
Manifold Transfer 0.09

TABLE II: The MSE score on the test set measures the
prediction accuracy of the distortion coefficient of a) a standard
CNN b) a polar transformer network c) a manifold transfer
network. The manifold transfer network achieves significantly
higher prediction accuracy.

C. Images Rectification

We show rectified face images using our manifold transfer
and the input images and ground truths. All images are
sampled with 224x224 pixels and masked on r > 1 to avoid
the manifold transfer model taking advantage of just learning
the edge.

Figure 4 contains both severely and barely distorted images.
The manifold transfer network is able to accurately predict the
distortion coefficient and hence rectify the image successfully.

D. Quantitative Evaluation

We quantitatively evaluate the rectification performance of
each model by comparing the output images to the ground
truth using synthesized test dataset. We use Peak Signal-to-
Noise Ratio (PSNR) 2 to measure the difference of the gener-
ated images to the corresponding ground truth images. We also
use non-rectified images as a baseline. Table III shows that the
manifold transfer network model significantly outperforms the
standard CNN model and the polar transformer model.

Model PSNR

No Rectification 16.53
Standard CNN 18.28
Polar Transformer 18.55
Manifold Transfer 19.59

TABLE III: Quantitative evaluation of rectification perfor-
mances of a) a standard CNN model b) a polar transformation
model c) a manifold transfer network. The PSNR measures the
difference of the rectified images compared the corresponding
ground truth. The manifold transfer network significantly
outperforms standard CNN model and the polar transformation
model.

V. DISCUSSION

In this work, we restrict the discussion to a single parameter,
e.g. radial lens distortion. We believe that rectification for other
types of distortion will also benefit from our corresponding

2The definition is PSNR = 20 log10(MAX) − 10 log10(MSE) where
MSE = 1

mn

∑m−1
i=0

∑n−1
j=0 [I(i, j)− T (i, j)]2



Fig. 4: The rectification performance on synthesized images. The three images in each group represent a) input distorted
images b) rectified images from the manifold transfer model c) ground truths. The input are a mixture of images with different
distortion coefficients. For example, the last input images are weakly distorted. Manifold transfer network accurately predicts
the corresponding coefficient from raw input. Apart from a small scaling differences, the manifold transfer network generates
rectified images with satisfactory quality.

manifold transfer networks. For other types of transformation,
the theoretical derivation is significantly harder and numerical
errors may have stronger influences. Also, pipe-lined rectifi-
cation modules can be helpful to combine different types of
distortion rectification [32].

Our model has superior performance on face images. How-
ever, we did not reach robust performance on a general
dataset, e.g. ImageNet [29]. We suspect that face images
have similar patterns and may store good information under
transformations, while general features in ImageNet may be
clasped within the manifold transfer. To extend our model to
general images remains our future work.

VI. CONCLUSION

In this paper, we proposed manifold transfer networks that
extend CNNs’ translational invariance property to nonlinear
transformations. The embedded prior knowledge helps CNNs
to learn and predict on any nonlinear manifold. We theoreti-
cally derived the transformation formula and an approach to
find such transfer through partial differential equations. We
applied our model to lens distorted face image rectification and
achieved superior performance compared to several baseline
models. Finally, we claimed that computer vision models
embedded with task-specific inductive bias may be a general
path to boost CNNs to real-world applications.
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