High-Level Frameworks: Effect on Transformer

Inference Time and Power
on Embedded GPU Devices

Marika E. Schubert*, David Langerman', Alan D. George*
* Department Electrical and Computer Engineering
University of Pittsburgh
Pittsburgh, PA USA
{marika.schubert,alan.george } @pitt.edu
T NSF Center for Space, High-Performance, and Resilient Computing
Pittsburgh, PA USA
david.langerman @nsf-shrec.org

Abstract—Developing software for machine- and deep-learning
(ML and DL) workloads is often a daunting task to individuals
with minimal programming experience or to organizations with
limited engineering capacity. ML frameworks address these issues
by providing a high-level API able to perform otherwise complex
tasks with less engineering time. This high level of abstraction
can reduce and hide many of the challenges that are induced by
unclean datasets, complicated pre/postprocessing pipelines, and
low-level dependencies like CUDA. This high-level approach en-
courages model portability and can dramatically increase design
iteration speed, as well as providing model speedup in some cases.
This research demonstrates that these high-level ML frameworks
are also more performant out-of-the-box on embedded systems
than their pure PyTorch reference implementations likely due
to their myriad of optimizations related to data movement and
memory management. In this research, we benchmark a state-of-
the-art transcription model, wav2vec2, and compare performance
across different frameworks: the reference implementation from
the Fairseq framework and the two higher-level frameworks
HuggingFace and Lightning Flash. Overall, we observe that
both Lightning Flash and HuggingFace are substantially faster
than the original unoptimized PyTorch model. In general, these
models ran between 1.8 x and 2.0x faster than the base PyTorch
implementation on the embedded NVIDIA Jetson platforms
targeted. As a secondary result, we also observe the high-level
frameworks to be more power efficient for the same computation.

Index Terms—benchmarks, GPUs, software abstraction, ma-
chine learning, speech-to-text

I. INTRODUCTION

As deep-learning (DL) models become larger and more
computationally demanding, the task of running these models
on constrained embedded hardware becomes more challeng-
ing. For applications where inference latency is of special
concern, model processing is often done entirely on the
edge device to maximize service availability and remove the
communication overhead of network requests. This scheme of

This work was supported by SHREC industry and agency members and
by the IUCRC Program of the National Science Foundation under Grant No.
CNS-1738783.

edge-system processing is common with many speech-based
applications, including those using newer transformer-based
models.

Transformer-based models are favorable for text- and audio-
based tasks as their self-attention mechanisms can process an
arbitrarily-sized input sequence. However, the memory and
computational requirements for self-attention scale quadrati-
cally relative to the input sequence length. Often, this scaling
behavior necessitates an embedded GPU for a practical bal-
ance of computing and power characteristics. However, many
of these modern models are trained on server-class GPUs,
which do not suffer the same constraints as their embedded
counterparts. Therefore, after training, there is limited under-
standing of how these models will work on embedded systems.

In order to detail the characteristics of transformer-based
speech-to-text models on embedded hardware, this research
evaluates model inference performance with the wav2vec2
model [1], which has achieved state-of-the-art (SOTA) accu-
racy on many common speech-to-text datasets. In this paper,
wav2vec2’s inference latency and power is characterized with
three ML frameworks: a PyTorch-only reference implemen-
tation from the fairseq repository [2] and two higher-level
ML frameworks, HuggingFace [3] and Lightning Flash [4].
HuggingFace is a widely used high-level API for ML with
transformers. Lightning Flash is an object-oriented library
based on PyTorch that imposes a strict model format and
provides higher-level APIs to access the underlying model
structure. These model APIs allows the library to provide
better bridges to integrate novel software optimizations or
hardware support into existing code, like the Optimum op-
timization extension [5]. Both of these APIs access the Hug-
gingFace repository’s copy of the wav2vec2 model, meaning
that the primary difference being tested between these models
is pre- and post-processing and data-loading. To make sure
that the performance of these models scales as expected with
increased hardware resources, these tests are executed on three
embedded GPUs: the NVIDIA Jetson TX2, the Xavier NX,

and the AGX Xavier.

This study overall aims to aid in the design of a speech-
to-text algorithm amenable to operation in a remote or offline
systems with constrained hardware. This is beneficial for appli-
cations in remote areas, environments with noisy or unreliable
wireless connections, and in situations where data must be
managed offline due to legal, privacy, or latency reasons.
Practically, these offline cases could include autonomous cars,
accessibility devices, voice assistants in factories, and even
human-spaceflight.

The main contributions of this paper are as follows. First,
we characterize these frameworks on embedded GPUs by
measuring latency and power consumption under various loads
and hardware configuration. Second, we show derived metrics
describing the realtime latency and performance (throughput-
per-watt) values of these frameworks in the tested conditions.
Finally, we provide recommendations for best use of these
frameworks for inference on embedded systems.

II. BACKGROUND

This section is broken into two parts. First, the high-
level practical methods for accelerating transformers will be
discussed. Second, the embedded GPUs that are used in this
research will be summarized.

A. Accelerating Transformers

Short of developing a custom accelerator or attempting to
integrate research software into their code, most DL developers
have three options for increasing throughput or decreasing la-
tency of transformer inference. The first of these is to increase
the batch size performed with each inference. This method
takes advantage of efficient tensor operations on GPUs, but
may not be practical in situations where data is sporadic or
latency is a strong constraint. Additionally, batched inputs all
need to be padded to the same length, meaning that systems
with a high variability in the input length will process data
less efficiently. In all cases, system memory may also quickly
become a factor limiting maximum batch sizes.

Another common method for combating slow inference
times is to export the model to a format supported by a runtime
such as ONNX runtime [6] or TensorRT [7]. Depending on the
particular model being exported, the support for conversion
to the ONNX model format may not be available due to
incompatibilities with specific operations. New versions of the
PyTorch to ONNX converter support transformer operations,
but this feature was not available at the time of data collection
for the models in this research. It is also worth noting that
many runtimes, including TensorRT, use the ONNX as a com-
mon intermediate data format, meaning that without support
for ONNX it is difficult to use the model with any runtimes
other than the one it was developed with (i.e. Tensorflow or
PyTorch). There are some additional options that do not rely
on the ONNX model format, such as TVM [8], but these
frameworks have their own limitations as well. TensorRT,
if available, is a strong option for acceleration on embed-
ded GPUs, as some researchers have reported substantial

speedup with these frameworks. However, researchers have
also observed non-deterministic execution time and memory
behaviors with TensorRT [9].

The third option, which is explored in this research, is using
a high-level framework like HuggingFace or Lightning Flash
with built-in optimizations for data movement and loading.
Unlike the aforementioned runtime frameworks, the high-level
frameworks tested run the exact same underlying PyTorch
model without modification. For this reason, one might as-
sumed that the execution time across these frameworks should
be roughly the same. However, the frameworks take differ-
ent approaches to memory management and data movement,
which can lead to overall faster or slower inference speed.
These frameworks are also more likely to provide support
or extensions for newer optimizations through community
contributors rather than a single, isolated model designer
would be able to keep up with on their own. HuggingFace
in particular has been very quick to include emerging models,
which allows engineers to migrate and test newer models with
few code changes on their end system. Huggingface has also
maintained extensions for optimizations like Optimum [5] and
hardware-specific support.

B. NVIDIA Embedded GPUs

NVIDIA, known for its high-performance consumer- and
server-grade GPUs, has an additional line of system-on-
module (SoM) GPU platforms. These heterogeneous archi-
tectures combine an ARM CPU with an NVIDIA GPU on
the same die and packaged in an embedded form factor. The
entire system can be constrained to meet the requirements of
severe and remote environments. Compared to their server-
grade counterparts, these boards attain only a fraction of
the memory bandwidth (~50GB/s vs ~900GB/s) but also
operate at significantly lower power (~10-30W vs ~300W)
[10], [11]. For these reasons, embedded GPUs are able to
provide acceleration for sufficiently small or optimized models
in remote or limited-power scenarios. This research leveraged
the NVIDIA development kits, but these chipsets can be found
in a wide variety of third-party single board computers.

While embedded GPUs exhibit desirable size and power
properties, they are also less capable than their consumer-
or server-grade counterparts. As most transcription models
are trained on high-performance hardware, there is minimal
benchmarking performance data for these edge devices. Em-
bedded GPUs have a shared memory path between the CPU
and GPU, which limits their performance for memory-bound
applications, but also improves access speed for the GPU.
The most important characteristics of embedded GPUs for the
purpose of this research is the feasibility of deployment in
scenarios ranging from remote-sensing to robotics.

The three devices examined in this research are the Jetson
TX2, the Xavier NX, and the AGX Xavier. Each of these
boards has roughly twice as many CUDA cores than its
predecessor. The GPU on the Jetson TX2 is comprised of the
older Pascal architecture while the NX and AGX are running
feature the newer Volta architecture. These devices are all

widely used in remote ML applications as they are all portable,
self-contained, and have strong performance characteristics.
The full descriptions of these devices and their power modes
are located in Appendix A.

III. RELATED RESEARCH

Much of the value of ML in speech-processing domains
is in the ability to train a single model to serve in place of
previously hand-tuned or large, empirically derived statistical
models. Following early recurrent neural network models [12],
[13], the creation and application of the transformer with its
unique self-attention mechanism [14] led to the development
of a large number of transcription models using this back-
bone [1], [15]-[18].

Wav2vec2 is an improvement on both wav2vec [19] and
wav2vec-vq [20]. As a whole, these models represent iterations
on an open-source acoustic model for speech-to-text tasks.
Wav2vec2 has a SOTA accuracy with a word error rate
(WER) of 0.08. It uses Mel-Frequency cepstrums (frequency
bands weighted by the sensitivity of the human ear) as inputs
to a convolutional neural network (CNN) which generates
feature vectors. These feature vectors are then provided to
the transformer, which performs the bulk of the acoustic
processing. Typically, these models are trained and used with
a connectionist temporal classifier (CTC) [21], but have also
been demonstrated outside of literature to be compatible with
KenLLM language models [22]. At the time of this writing
there are now newer augmentations of wav2vec2 with slightly
improved accuracy. These augmentations include integrat-
ing lessons and code from BERT-models for semisupervised
learning [17], [23], the inclusion of SpecAugment to aid in
pre-training [24], and generating a language model in an
unsupervised fashion using text-based datasets [16].

Previous work in wav2vec2 benchmarking on embedded
systems has been explored [25]. This previous research looked
at a single device (Xavier NX) and compared the performance
of the transformer-based model with and without clustering
optimizations, as well as with respect to the device power
mode and the input sequence length. It was concluded that
these optimizations, which were originally intended for ac-
celerating transformer training, had a measurable effect on
performance and this effect was generally detrimental if input
sequence lengths were short and beneficial if sequences were
long. It was also shown that the clustering augmentation
“improved-clustering” which increased the accuracy of the
model, always resulted in a slow-down of the model inference.
The supporting repository can be shared upon request.

IV. APPROACH

Benchmarking is accomplished primarily through a con-
tainerized application (targeting JetPack v4) which maintains
the software environment for the test across devices and runs.
This application must execute for latency measurements and
a separate time for power measurements. This separation is
required because the system calls that are used to poll the
system power observably slow down the execution time. The

frameworks tested are HuggingFace v4.18.0 and Lightning
Flash v0.5.1. A pure, un-optimized PyTorch implementation is
used as a baseline of comparison. The PyTorch benchmarking
module [26] is used to control the number of iterations
adaptively power measurements are averaged over 10-samples
taken at 1 second intervals while the model is run repeatedly.
The power rails sampled for each device can be referenced in

In addition to varying the inference framework, two pa-
rameter sweeps are performed in order to better understand
the library operation on the device. The first sweep is input
sequence length from 2 to 28 seconds and a batch size of 1.
Wav2vec? is trained on 32-bit floating-point data sampled at
16kHz, so data is generated at the same bit depth and and
is described in terms of real-time representation (number of
seconds that would be represented by this audio). 28-second
inputs were the largest supportable by the Jetson TX2, and
were therefore used as the maximum across the test. The other
parameter that is varied in this study is the power mode of the
device, which can be referenced in Appendix A. These modes
vary the clock speeds of memory, CPU, and processors as well
as the number of active cores.

At the time of development of this benchmark, it was
observed that Lightning Flash was recreating the underly-
ing PyTorch data loader with each prediction, substantially
slowing down inference because of the significant setup and
teardown time of the data-loader object. Since this behavior
is more implementation or system-specific, a small patch was
added by overriding the default predict call using a single re-
used data loader. HuggingFace was observed to have instability
with repeated executions over long periods of time. Since this
was not the focus of the study, manual garbage collection and
cache clearing was necessary to limit the effect of these leaks.

Despite performing the complete parameter sweep, many
data points are excluded for the sake of brevity. For instance,
the value from studying every power mode on every device
is minimal, as many power modes differ primarily in number
of active CPU cores which has a minimal effect on relative
performance. In cases where trends are similar across all
devices, the AGX will be the only device presented. The
correlated data for all tests in this parameter sweep can be
produced upon request to support other studies.

There are three metrics presented in the results. The first
is the realtime factor, which describes the performance of
the model relative to the speed at which data is generated
with regards to temporal units. Note that some other literature
presents realtime factor as a ratio of execution time to input
length where lower values are preferred, but this value can drift
into small decimal values. For the sake of clarity in regards
to later performance metrics, realtime factor is shown here as
the input sequence length in seconds divided by the execution
time of the algorithm. For example, a realtime factor of 20
indicates that the model is processing data 20x faster than it
can be generated. Higher is better for these values.

The second metric is throughput per watt. This metric
divides the throughput of the model, in this case the realtime
factor, by the average power used during that inference. While

this unit is difficult to intuitively relate to real quantities, it is
able to convey both performance and power considerations
into a single value expressing the efficiency of a particular
input size. Again, higher values are better.

The final metric is speedup. This metric is used as it is
a succinct way to describe how much faster an algorithm is
than its reference counterpart by dividing the execution time
of the reference algorithm by that of the new algorithm. If
the algorithm became faster, the metric is above 1 and if the
algorithm experienced slow-down then the result will be below
1. Speedup is used in the results to highlight some specific
behaviors of the frameworks presented.

V. RESULTS

This section details results of benchmarking wav2vec2 in
the HuggingFace and Lightning Flash frameworks as com-
pared to a base-PyTorch implementation provided by fairseq.
This includes primarily derived metrics, namely realtime fac-
tor, throughput per watt, and speedup. While this data was
collected over all three devices in their default power modes,
notable results are selected for brevity. The full dataset, with
execution time and average power at each combination of
parameters, is available upon request.

A. Execution Time

AGX - HuggingFace -#AGX - Lightning Flash -#AGX - Reference
NX - Lightning Flash

TX2 - Lightning Flash

#NX - Reference
-#-TX2 - Reference

NX - HuggingFace
TX2 - HuggingFace
5.0

45 A

—3.5
2,

2 4 6 8 10 12 14 16 18 20 22 24 26 28
Input Sequence Length [s]

Fig. 1: Execution time of all devices in MAXN.

The overall measured latency of the tested devices is shown
in Figure 1. The TX2 is the slowest device, with its worst
execution time of 4.58 seconds. The AGX is the fastest
device with 0.54 second execution times for the largest sizes.
These execution times are approximately linear (R > 0.9),
which echos similar results from previous research [25]. This
approximate linearity helps predict execution times for these
models at intermediate input sizes.

As expected from device specifications and previous litera-
ture, the AGX performs better than the NX, which performs
better than the TX2. What is unexpected is how much worse

the original PyTorch model performs relative to the infer-
ence frameworks. The difference between the Lightning Flash
model and the reference model on the AGX is roughly twice
the latency.

B. Realtime Factors Per Device

The realtime factors of each device for the tested frame-
works can be seen in Figure 2. At 10-second input lengths,
Lightning Flash has a realtime factor of 63.7, while Hugging-
Face has 59.0 and the reference model only achieves 32.1,
which is similar to the measurements of the Xavier NX.

These frameworks are able to process data roughly twice
as quickly as their base-PyTorch counterparts. While some
discrepancy was expected, the degree of the improvement is
substantial, especially for systems where execution times are
particularly long. In this case when input lengths are around
30 seconds and inference times are on the order of seconds.
From the perspective of latency and throughput, it is always
preferable to use the higher-level frameworks over the bare-
PyTorch reference implementation.

C. Performance by Device

The throughput per watt of each device in its MAXN power
mode can be see in in Figure 3. Each device is displayed with a
reduced set of power modes that represent the different power
budgets associated with the device. Looking first at the AGX
in Figure 3a, the higher power modes (2: 15W and 4: 30W) are
shown to have the best performance for this metric. This result
means that despite the higher average power, the hardware is
utilized more efficiently. This trend does not hold for the other
two devices, which are more efficient in lower power modes.
Regardless of the power mode, the high-level frameworks were
more performant than the base-PyTorch model.

% AGX - Reference
-#-NX - Reference

AGX - HuggingFace -+AGX - Lightning Flash
NX - Lightning Flash

TX2 - Lightning Flash

NX - HuggingFace

TX2 - HuggingFace -#TX2 - Reference

700
60.0 /___(/‘\‘A __\/\-\——‘
7 500
2 /
2 400
(T
w
£ 300 — = ='—-7"7..‘<I\._.__.
= 200 M
10.0
0.0

2 4 6 8 10 12 14 16 18 20 22 24
Input Sequence Length [s]

26 28

Fig. 2: Realtime factors of all devices across input space.
Devices are shown in mode 0, which is the MAXN or
equivalent mode for all devices. Errors are negligible. Higher
values are better.

i HuggingFace #Lightning Flash = Reference

3.0E-03
25E-03 ;
S .
2 7 2
2. 2.0E-03 7— ? —
= 2 U 7
s ‘. o
& 15E-03 /- Z
e n .
5 2 2
2 4 o
= 7 %
S 1.0E-03 ;Y. 7 170 17
3 7 7
2 i Z
< 2 2
= 2 2
5.0E-04 — 71— 7 — — 7 — — g — -
2 a
0 Z
0 ’
0.0E+00 / Z 2
2 14 28 14 28| 2 14 28| 2 14 28
Max Power (0) 10W (1) 15W (2) 30W (6)
Input Sequence Length [s]
Device Power Mode
(a) AGX Xavier.
rHuggingFace #Lightning Flash Reference
1.8E-03
1.6E-03
£ 1.4E-03
o
2. 1.2E-03 -
< 1.0E-03 i
) 2
o
= 8.0E-04
o
£] |
S 6.0E-04 / a— e
o g
2) g
£aoe0s 7RV R—IVR—IVR VR 1R8I R-
) Z 2
20e04 78 R IR 18 IR 8 'R 'R 'R
/ Z \Z
0.0E+00
2 14 28 2 14 28 2 14 28
15W (0) 15W; all cores (1) 10W (3)
Input Sequence Length [s]
Device Power Mode
(b) Xavier NX.
i HuggingFace #Lightning Flash Reference
1.2E-03
1.0E-03
5
2. 8 0E-04
©
< .
5 6.0E-04 %
5 2
5 %
2 I I .
S 4.0E-04 4 7
|Z \Z
g 1 U
£ - .
20E-04 — - el i m imi imimw
1 .
0.0E+00 % Z iz
2 14 28 2 14 28 2 14 28
30W (0) 15W (1) 20W (2)

Input Sequence Length [s]
Device Power Mode

(c) Jetson TX2.

Fig. 3: Throughput per watt of each device across representa-
tive power modes.

Between HuggingFace and Lightning Flash, the perfor-
mance trends are less definitive. On the AGX, they perform
similarly. However, for the NX, there are several instances
where one framework dramatically outperforms the other. In
power mode O on the NX, Lightning Flash performed better
by this metric than HuggingFace, and slightly outperforms
HuggingFace in most other points except for the largest size
in the lowest power modes.

—-AGX - HuggingFace
NX - HuggingFace
—TX2 - HuggingFace

AGX - PyTorch Lightning Flash

NX - PyTorch Lightning Flash
——TX2 - PyTorch Lightning Flash
2.2

'\\/\/\/‘\>V\—
\

g
o

-
)

-
(2]

Speedup [s/s]

-
'

-
N

2 4 6 8 10 12 14 16 18 20 22 24 26 28
Input Sequence Length [s]

Fig. 4: Speedup of all devices in power mode O.

D. Framework Speedup

The speedup derived from using these high-level frame-
works can be seen in Figure 4. These speedup figures are
calculated with respect to the reference model on the tested
device with that input. Even in the worst case performance,
these inference frameworks were all able to provide some
speedup.

The worst-case behavior, however, does indicate an un-
desirable trend. HuggingFace experiences substantial speed
losses for higher input sizes. This trend was also observed
in Figures 3b and 3c. This loss is the least impactful for
the AGX, and it most significant on the NX. The source of
this issue is not immediately apparent and implementation-
specific, and thus warrants further investigation. A possible
source of high memory overhead could be the data loading
mechanism used by the framework. HuggingFace’s preferred
method of performing inference is to construct an end-to-end
data pipeline, which bundles together tokenization, model in-
ference, and post-processing. This benchmark was constructed
using HuggingFace’s sample code for interacting with this
model, which involves distinct calls to the tokenizers and
model.

E. Discussion of Framework Drawbacks

While it seems to be a straightforward decision to use one
of these high-level frameworks as they are able to outperform
a manually-crafted model, it is also important to be mindful
of the engineering difficulties associated with using these
frameworks. Aside from additional dependencies which may
not have the same long-term support as core frameworks like
PyTorch will, there are two clear downsides. In this research,
HuggingFace experienced slowdown at higher input sequence
lengths, making HuggingFace less amenable for usecases
where this is expected. Lightning Flash, on the other hand,
is a newer framework that is still subject to growth and re-
factoring that is less common in more stable frameworks like
PyTorch.

VI. CONCLUSION

This research examined the utility of high-level inference
frameworks to speed up the performance and increase the
power efficiency of inference with the wav2vec2 model. It
was found that these frameworks, specifically Huggingface
and Lightning Flash, are roughly 2x faster than reference
PyTorch model on most tested inputs running on selected
embedded GPU platforms. This speedup additionally enabled
better throughput per watt for the system than the reference
model, which equates to improved power efficiency of the
entire system. These results indicate that optimizations built
into the HuggingFace and Lightning Flash frameworks are ob-
servable and non-obvious from the base-PyTorch perspective.
Moreover, despite calling the same underlying PyTorch model,
HuggingFace and Lightning Flash have different performance
characteristics due to the differences in their data loaders.
HuggingFace was also shown to have undesirable scaling
behavior at large input sizes and is not recommended for long
audio sequences or repeated iterations.

Future work in this domain includes comparing these high-
level training frameworks to runtime-specific frameworks,
such as ONNX Runtime and TensorRT. At the time of data
collection, this evaluation was not possible as many of the
transformer operations in these models were not supported
for PyTorch to ONNX converter, although could have been
manually implemented through a stub. This barrier has been
overcome, enabling benchmarking with ONNX and all of the
runtimes that depend on ONNX or an intermediate data for-
mat. Another future direction could be examining the behavior
of HuggingFace’s slowdown to identify a solution to prevent
this issue in out-of-the-box implementations of the model.

REFERENCES

[1]1 A. Baevski, H. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A
Framework for Self-Supervised Learning of Speech Representations,”
2020. Publisher: arXiv Version Number: 3.

[2] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng, D. Grangier, and
M. Auli, “fairseq: A Fast, Extensible Toolkit for Sequence Modeling,”
in Proceedings of NAACL-HLT 2019: Demonstrations, 2019.

[3] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi,
P. Cistac, T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer,
P. von Platen, C. Ma, Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger,
M. Drame, Q. Lhoest, and A. M. Rush, “Transformers: State-of-the-art
natural language processing,” in Proceedings of the 2020 conference on
empirical methods in natural language processing: System demonstra-
tions, (Online), pp. 3845, Association for Computational Linguistics,
Oct. 2020.

[4] “Lightning-Universe/lightning-flash,” June 2023. original-date: 2021-01-
28T18:47:16Z.

[5] “HuggingFace Optimum,” June 2023.

[6] Microsoft, “Onnxruntime,” June 2023.

[7]1 NVIDIA, “TensorRT,” June 2023.

[8] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “TVM:
An Automated End-to-End Optimizing Compiler for Deep Learning,”
Oct. 2018. arXiv:1802.04799 [cs].

[9] O. Shafi, C. Rai, R. Sen, and G. Ananthanarayanan, ‘“Demystifying

TensorRT: Characterizing Neural Network Inference Engine on Nvidia

Edge Devices,” in 2021 IEEE International Symposium on Workload

Characterization (IISWC), pp. 226-237, Nov. 2021.

NVIDIA, “Whitepaper: NVIDIA Telsa V100 GPU Architecture: The

World’s Most Advanced Data Center GPU,” Tech. Rep. August,

NVIDIA, 2017.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
(28]

NVIDIA, “NVIDIA Jetson AGX Xavier Series System-on-Module,”
Aug. 2022.

A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates, and A. Y. Ng, “Deep
Speech: Scaling up end-to-end speech recognition,” Dec. 2014.

D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro,
J. Chen, M. Chrzanowski, A. Coates, G. Diamos, E. Elsen, J. Engel,
L. Fan, C. Fougner, T. Han, A. Hannun, B. Jun, P. LeGresley, L. Lin,
S. Narang, A. Ng, S. Ozair, R. Prenger, J. Raiman, S. Satheesh,
D. Seetapun, S. Sengupta, Y. Wang, Z. Wang, C. Wang, B. Xiao,
D. Yogatama, J. Zhan, and Z. Zhu, “Deep Speech 2 : End-to-End Speech
Recognition in English and Mandarin,” International Conference on
Machine Learning, vol. 48, pp. 173-182, 2016.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is All you Need,” Advances in
Neural Information Processing Systems, vol. 30, pp. 5999-6009, 2017.
_eprint: 1706.03762v5.

A. Baevski, W.-N. Hsu, Q. Xu, A. Babu, J. Gu, and M. Auli, “data2vec:
A General Framework for Self-supervised Learning in Speech, Vision
and Language,” 2022.

A. Baevski, W.-N. Hsu, A. CONNEAU, and M. Auli, “Unsupervised
speech recognition,” in Advances in neural information processing
systems (M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W.
Vaughan, eds.), vol. 34, pp. 2782627839, Curran Associates, Inc., 2021.
W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdinov,
and A. Mohamed, “HuBERT: Self-Supervised Speech Representation
Learning by Masked Prediction of Hidden Units,” tech. rep., June 2021.
eprint: 2106.07447v1.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A robustly optimized
BERT pretraining approach,” arXiv, 2019. Publisher: arXiv _eprint:
1907.11692.

S. Schneider, A. Baevski, R. Collobert, and M. Auli, “wav2vec:
Unsupervised pre-training for speech recognition,” in Proceedings of
the Annual Conference of the International Speech Communication
Association, INTERSPEECH, vol. 2019-September, pp. 3465-3469, In-
ternational Speech Communication Association, 2019. ISSN: 19909772
_eprint: 1904.05862.

A. Baevski, S. Schneider, and M. Auli, “Vqg-wav2vec: Self-Supervised
Learning of Discrete Speech Representations,” tech. rep., 2019. _eprint:
1910.05453v3.

A. Graves, S. Fernandez, and F. Gomez, “Connectionist temporal
classification: Labelling unsegmented sequence data with recurrent neu-
ral networks,” in In Proceedings of the International Conference on
Machine Learning, ICML 2006, pp. 369-376, 2006.

L. V. Burchell, A. Birch, N. Bogoychev, and K. Heafield, “An open
model and dataset for language identification,” in Proceedings of the
the 61st annual meeting of the association for computational linguistics:
ACL 2023, (Toronto, Canada), July 2023. tex.month_numeric: 7.

Y.-A. Chung, Y. Zhang, W. Han, C.-C. Chiu, J. Qin, R. Pang, and
Y. Wu, “W2v-BERT: Combining Contrastive Learning and Masked
Language Modeling for Self-Supervised Speech Pre-Training,” Sept.
2021. arXiv:2108.06209 [cs, eess].

Y. Zhang, J. Qin, D. S. Park, W. Han, C.-C. Chiu, R. Pang, Q. V. Le, and
Y. Wu, “Pushing the Limits of Semi-Supervised Learning for Automatic
Speech Recognition,” July 2022. arXiv:2010.10504 [cs, eess].

M. E. Schubert and A. D. George, “Benchmarking Transformer-Based
Transcription on Embedded GPUs for Space Applications,” in 2021
IEEE International Conference on Electronics, Computing and Com-
munication Technologies (CONECCT), (Bangalore, India), pp. 01-06,
IEEE, July 2021.

H. Schueroff and B. Johnson, “PyTorch Benchmark,” Oct. 2020.
NVIDIA, “Power Management for Jetson TX2 Series Devices,” 2022.
NVIDIA, “Hardware Architectural Specification — NVDLA Documen-
tation,” 2021.

APPENDIX A
DEVICES

A. Jetson TX2

The Jetson TX2 is the oldest SoM in this research and utilizes the NVIDIA Tegra chip. This device is included because of
its wide-spread integration in 3rd-party Jetson boards and legacy in other projects. It is a less capable device than others in
this research, but may be more reflective of hardware already in existing systems.

The properties of this mode can be seen in Table I. The SoC CPU is comprised of a quad-core ARM A57 and two NVIDIA
Denver cores. The GPU runs on the older Pascal architecture with 256 CUDA cores. Additionally, this architecture does not
contain Tensor Cores and was expected to perform much slower than its successors. The board used was equipped with 8GB
of LPDDR4 memory and was running Ubuntu 18.04.

TABLE I: Summary of Jetson TX2 Power Modes [27]. Note that mode 4 is referenced in documentation, but was not present
on the version of the TX2 used.

Mode Estimated Online | Online | AS57 Max D15 Max | GPU Max
D Power A57 D15 Frequency | Frequency | Frequency
Budget (W) Count Count (MHz) (MHz) (MHz)
MAXN (0) 30W 4 2 2000 2000 1300
1 15W 4 0 1200 2000 850
2 20W 4 2 1400 1400 1120
3 20W 4 0 2000 1400 1120
4 N/A 0 2 2000 2000 1120

B. Xavier NX

This system has 6 Carmel ARM-based cores with an NVIDIA Volta GPU and 8GB of LPDDR4 memory. The GPU portion
contains 384 CUDA cores, 48 Tensor Cores, and two Deep Learning Accelerators (DLAs). Tensor Cores are designed to
accelerate tensor operations, specifically matrix multiplication [10]. DLAs are a structure that accelerate other deep-learning
operations like convolution [28]. This board was running Ubuntu 18.04.

The GPU supports five standard power modes. The configurations of these power modes are summarized in Table II in
Appendix A. There are two operational power budgets: 10W and 15W. Within each power budget, the main difference between
power modes is number of available CPU cores and their operating frequency. This should not have an effect on the GPU
operation as the function in question should be taking place exclusively on the GPU. For all modes, it is assumed that if fewer
CPU cores are active, a smaller percentage of the power budget is used for the CPU, and the GPU may run at a higher power.
All modes were considered as the CPU idle power was assumed to impact the maximum power available to the GPU.

TABLE II: Summary of Xavier NX Power Modes.

Mode Power | Online | CPU Max | GPU Max | Memory Max
D Budget CPU Frequency | Frequency Frequency
(W) Count (MHz) (MHz) (MHz)
0 15 2 1900 1100 1600
1 15 4 1400 1100 1600
2 15 6 1400 1100 1600
3 10 2 1500 800 1600
4 10 4 1200 800 1600

C. AGX Xavier

The AGX Xavier is the largest of the embedded GPUs in the NVIDIA Jetson line. While it can be limited to run at 10W, it
has a maximum power of 30W. The AGX device used was 32 GB. This board was also running Ubuntu 18.04. The summary
of the power modes can be seen in Table III. It is important to note that to switch in or out of MAXN on this device, the

board must be power-cycled. This board also runs the Volta architecture with 512 CUDA cores. Instead of the 6 Carmel cores
of the NX, this board contains 8. Additionally, the AGX makes use of 64 Tensor cores and 2 DLAs.

TABLE III: Summary of AGX Xavier Power Modes.

Power | Online | CPU Max | GPU Max | Memory Max

MI(I))de Budget CPU Frequency | Frequency Frequency

(W) Count (MHz) (MHz) (MHz)

0 (MAXN) n/a 8 2265.6 1377 2133
1 10 2 1200 520 1066

2 15 4 1200 670 1333

3 30 8 1200 900 1600

4 30 6 1450 900 1600

5 30 4 1780 900 1600

6 30 2 2100 900 1600

7 30 4 2188 670 1333

APPENDIX B

POWER RAILS USED

TABLE IV: Power rails used for device power estimation.

Device Rail Name Description
Jetson TX2 VDD_SYS_GPU GPU
VDD_SYS_CPU CPU
VDD_SYS_DDR DDR
VDD_IN Power regulator
VDD_4V0_WIFI Wifi
VDD_SYS_SOC SOC Fabric
Xavier NX VDD_CPU_GPU_CV | CPU, GPU, Tensor Cores and DLAs
VDD_SOC SOC Fabric
VDD_IN Power Regulator
AGX Xavier | VDDRQ DDR
Cv Tensor Cores and DLASs
GPU GPU
CPU CPU
SYS5V System 5V
SOC SOC

