
Image Segmentation with Topological Priors
Shakir Showkat Sofi

CDISE,
Skolkovo Institute of Science and Technology

Moscow, Russia
Shakir.Sofi@skoltech.ru

Nadezhda Alsahanova
CDISE,

Skolkovo Institute of Science and Technology
Moscow, Russia

Nadezhda.Alsahanova@skoltech.ru

Abstract—Solving segmentation tasks with topological priors
proved to make fewer errors in fine-scale structures. In this work,
we use topological priors before and during the deep neural
network training procedure. We compared the results of the two
approaches on a simple segmentation task using various accuracy
metrics and the Betti number error metric, which is directly
related to topological correctness. It was found that incorporating
topological information into the classical U-Net model performed
significantly better. We conducted experiments on the ISBI EM
segmentation dataset to confirm the effectiveness of the proposed
approaches.

Index Terms—Segmentation, Topological loss, Persistent ho-
mology, U-Net.

I. INTRODUCTION

The important task in computer vision is to know the loca-
tion and shape of objects in the image or which pixel belongs
to which object. This task is accomplished through image
segmentation, which involves assigning labels to all input
image pixels. The use of an end-to-end trained deep network
to segment images aids in achieving acceptable per-pixel accu-
racy. However, when dealing with intricate structures, such as
thin connections in neurons and vessels, high accuracy is vital
to avoid catastrophic mistakes. For example, a segmentation
error in the thin cell membrane could result in the union of
two distinct cells. Such errors prevent segmentation algorithms
from making decisions on fine-scale structures. To address this
problem, we incorporate topological prior knowledge into the
segmentation model.

In this work, we investigate two approaches to introducing
topological priors. The first approach is adding topological loss
to cross-entropy loss, commonly used in segmentation tasks.
Topological loss measures the difference between persistence
diagrams for true and predicted masks. The second method is
to use topological image processing prior to training the neural
network. Both strategies improve segmentation performance
without sacrificing pixel-wise accuracy.

In Section II we present a short review of existing solutions
for the implementation of topological priors in segmentation
tasks. Then in section III we present a short theoretical
basis of persistence homology III-A, topological loss and its
differentiability III-B, and topological input image processing
III-C. Finally, we present details of the training process and
the results of the experiments in section IV.

II. RELATED WORK

Topologically aware networks have already shown a signif-
icant improvement in results, especially for segmentation and
classification problems. One such earlier attempt uses topo-
logical awareness in the loss function based on the response
of selected filters from a pre-trained VGG19 network [1]. It
was successful in capturing some topological features, such
as the connectedness of small components. It constructs the
topologically aware losses, but this approach is difficult to gen-
eralize for complex settings. The interpretation and relevance
of these captured features were even more difficult. The other
researchers proposed a similar scheme, where the output of the
second network was used to define a loss function to identify
global structural features to enforce anatomical constraints [2].
Topological regularizers were used for classification problems
with considerations of the stability of connected components
within imposed topological constraints on the shape of the
classification boundary [3]. Different ideas have been proposed
so far for capturing fine details, some based on deconvolution
and upsampling, some using Persistent Homology (PH), and
some have used topological processing of inputs for simple
geometries for unsupervised tasks [4] before applying the
Chan-Vese, ISODATA, Edge-detections, etc for segmenting the
processed image. For further information, see [5], [6], [7], [8],
and the references therein. Most of the methods are problem-
specific. Our method is closest to the one proposed in [9],
which also poses topological priors in the training phase. Apart
from that, our scheme looks at different stages of feeding
topological priors with their effectiveness and efficiency for
supervised learning tasks.

III. THEORY

We have witnessed in recent years that the volume of data
is increasing exponentially. However, it is also complex, noisy,
multidimensional, and sometimes incomplete, necessitating
the development of efficient and robust data analysis methods.
The existing methods, which are based on statistics, machine
learning, and uncertainty quantification, work well, but when
it comes to making sense of vast, multidimensional, and
noisy data, the analysis process becomes more challenging.
However, advances in computational mathematics have yielded
a wealth of insights into the study and application of data in
an entirely new set of directions. Topological Data Analysis
(TDA) is one such technique that combines computational



geometry, algebraic topology, data analysis, and statistics
to uncover intricate patterns and structures within complex
datasets. TDA is particularly effective at analyzing the ge-
ometric properties of data, such as topological features, and
revealing the underlying relationships between data points. By
harnessing the power of TDA, researchers and data analysts
can gain a more profound comprehension of complex systems
and make better-informed decisions based on their findings.
Furthermore, the prime focus is on Persistent Homology (PH).
We provide a brief overview of PH here, but the reader is
directed to [10], [11] for a more in-depth discussion.

A. Persistent homology and Persistent diagrams

Persistent homology is an important algebraic topological
tool used in TDA to analyze qualitative data features on
multiple scales. PH is robust, dimension- and coordinate-
independent, and provides compact summaries of the under-
lying data. To compute PH, we need two things: a simplicial
complex K and the filtration F defined on K. A simplicial
complex is a generalization of a graph that includes 0-
simplices (nodes), 1-simplices (edges), 2-simplices (triangles),
and so on up to k-simplices, where k ∈ N denotes the
dimensionality of the complex. It is formally a space that
is built from a union of these nodes, edges, triangles, and/or
higher-dimensional polytopes [11]. A simplicial complex K is
closed under inclusion, which means that if σ′ ⊆ σ ∈ K then
σ′ ∈ K. A nested sequence of K0 ⊆ K1 ⊆ . . . ⊆ KN = K
of subcomplexes of K is then defined as the filtration F on
K, please refer to [4] for details.

Due to the grid-like structure of images, it became easy to
use TDA techniques. Considering an image I of size M ×N ,
the simplicial complex can be obtained from pixel config-
urations of this image. Technically, the simplicial complex
(1-dim simplicial) is defined by connecting each pixel to 8
neighboring pixels. After that, by filling the triangular shapes
of this complex, a 2-dimensional simplicial complex can be
obtained. Assuming that images have a uniform grid structure,
we may prefer the cubical complex1

PH measures lifetimes of topological features through the
birth and death of holes across the filtration [4]. For example,
if any hole persists for long consecutive values of the varying
parameter(e.g., diameter τ of data point), then that depicts an
important object in an image, and small persistent components
are noise. For each complex Ki, we compute its topology
using Homology group Hn

2, the rank of which is kth Betti
number (βk), represents a k-dimensional hole. β0 is the
number of connected components, β1 is the number of loops,
β2 is the number of hallow-cavities, and so on. [6]. In the case
of image data sets, however, we go up to 1-dimensional holes.
There is a pretty good method for visualising and interpreting
births and deaths of these holes using Persistent Diagram
(PD). PD is simply a multiset that contains a point (b, d) for
every hole that was born at data point diameter τ = b and died

1Space formed by the union of vertex, edges, squares, cubes, and so on.
2We don’t need all details of computations of Homology groups, as it is

already implemented in Gudhi Library

at data point diameter τ = d. It is a plot between the birth
and death of these holes for different values of the diameter
of the data points τ .

B. Topological Loss and Differentiability

It has been demonstrated that training a deep neural net-
work, typically a TopoNet, according to the methodology
proposed in [9] can achieve both per-pixel accuracy and
topological correctness. Likewise, let’s define f , the likelihood
map predicted by the network, and g the ground truth. The
overall loss function can be expressed in mathematical terms as
the weighted sum of the cross-entropy loss and the topological
loss:

L(f ,g) = LBCE(f ,g) + λ · Ltopo(f ,g) (1)

A binary segmentation task is assumed. Consequently, there
is a single likelihood function f , whose value ranges from 0
to 1.

We use information from persistent diagrams of f and g, i.e.,
D(f),D(g), to formalize the topological loss, which measures
the topological similarity between the likelihood f and the
ground truth g. Mathematically we can write topological loss
as:

Ltopo(f ,g) =
∑

(p,p′)∈D(f),D(g)

[
(birth(p)− birth(p′))2+

+ (death(p)− death(p′))2
]

(2)

Where p and p′ are the points from persistence diagrams
D(f),D(g) sorted by their ’lifetimes’:

death(p)− birth(p)

So, the loss in equation (2) measures the difference between
persistent diagrams. It is dependent on the critical thresholds
at which topological changes take place, such as the birth and
death times of the various dots depicted in the diagram D(f)
[9]. And if f is differentiable, these vital thresholds are critical
points where the derivative of f equals zero. As a consequence
of this, it is possible to represent f as a piecewise-linear
function that has a gradient equal to zero on critical points.
Therefore, f is differentiable. The differentiability of the loss
function in equation (2) follows from the differentiability of
f . So, gradient of loss function ∇wLtopo(f ,g) can be written
as follows:

∑

(p,p′)∈D(f),D(g)

[
2(birth(p)− birth(p′))

∂f(cb(p))

∂w
+

+ 2(death(p)− death(p′))
∂f(cd(p))

∂w

]

(3)

Where, for each dot p ∈ D(f), we designate the birth and
death critical points of the related topological structure as cb(p)
and cd(p), respectively [9]. Using the chain rule, we can easily
compute this gradient.



C. Topological input image processing

As previously stated, topological priors can be fed into the
segmentation process at many stages, such as the input stage,
the training stage, or others. In the above section, we have seen
that when we are posing topological priors during the training
phase, the process becomes sluggish and computationally
expensive. To address this issue, we use a new technique (in U-
Net architecture) that processes the image using topological in-
formation before applying the actual segmentation algorithm,
removing irrelevant objects and noise, and ensuring that the
modified image has well-defined topological characteristics.
The primary benefit of utilizing this method is that it enables us
to perform training with a simple cross-entropy loss function,
and it also enables us to perform preprocessing on images
whenever we like, prior to solving the actual segmentation
problem. Therefore, it should come as no surprise that the
method is effective from a computational standpoint. In addi-
tion to this, it is simple to apply to unsupervised segmentation
problems such as those found in [4], which would not have
been achievable (at least easily) if we had used priors during
the training phase. The purpose of this work is to incorporate
topological image processing into supervised learning.

INPUT

Topological 
Image 

Processor
SegModel

PredictionModified 
Image

Fig. 1: Topological input image processing for segmentation

The first type of processing of the input image is image
smoothening since this method has previously shown the
advantages with persistent homology [12]. Smoothening can
be used to reduce noise, remove pixel-wise focus, to improve
quality. It can be performed by spatial or frequency filters, here
in our case, we use a uniform filter from the standard
scipy library, which moves the filter mask of size, say k×k,
and replaces each pixel value by the average of its neighbors,
including itself. We know the real-world images; some images
may or may not have borders or other irrelevant objects.
So, it becomes difficult to guarantee that most persistent
components are important features in the image. The idea of
border modification was proposed in [4], in which we suppose
that the objects of interest in many real-world images do not
link with borders, or, in a weaker sense, that most images have
objects of interest near the center. The border processing, in
technical terms, constructs an image Ib from an original image
by ensuring that each pixel within a distance d of the Ib border
reaches the minimum value, while the rest values remain fixed.

From elder rule3, this assures that every object that connects
to this border will be born through it. In the PD of Ib, all
irrelevant portions correspond to a single point with infinite
persistence, while features have finite persistence.

Topological input image processing is simply processing the
images using the geometric information we have. Here, we
will use these as processing steps, but there can be plenty of
such modifiers.

After the first step, which is to determine the number of
components shown by the input image, using lifetime distri-
bution. Border modification may restrict to finite lifetimes.
We may also use any outlier detector for threshold selections.
According to the method described in [13], pertinent peaks
can be retrieved from the persistence diagram if the diagram
includes a band of a certain width that does not include
any points. In this work, we apply this method. In a more
technical sense, it is the largest empty region parallel to the
diagonal. We are able to draw it into the persistence diagram
by simply iterating through lifetimes in decreasing order in
order to track the difference between consecutive lifetimes
[4]. Finally, that threshold is selected, which gives the largest
difference between two lifetimes. After selecting the threshold,
we increase the contrast between the objects in the image with
a lifetime above that threshold and background. For, marking
objects in image I , we use the below algorithm, for details
please see [13], [4].

Image segmentation with topological priors

Algorithm 1 Object marking in an image based on persis-
tence diagram
Input: Image I , Persistent diagram Dgm, and threshold α
Output: Binary Image J marking objects in I
J, ds = zeros-like(I), list()
Lifetimes = Dgm.death - Dgm.birth
Obj-idxs = where(α < Lifetimes <∞)
Obj-idxs = Obj-idxs

[
argsort(Dgm.death[Obj-idxs], ’desc’)

]

for idx in Obj-idxs do
b = birth-pixel(idx)
ds.append(death-pixel(idx))
C = component

(
I[I(b) ≤ Dgm.death[idx]], b

)

new-dval = min
(
I[Intersects(ds, C), Dgm.death[idx]]

)

C = component
(
I[I(b) ≤ new − dval], b

)

J[C] = 1
end for

Conceptually, After obtaining the lifetime of components
directly from the Persistent diagram, we identifying the dia-
gram point having a significant finite lifetime using thresh-
old, then sorting these identified points by decreasing death
times. For all sorted point, we first identify the image pixel
that corresponds to this diagram point and store the image
pixel corresponding to the death time of this diagram point,
then in ’C’ put all pixels connected to ’b’ before its death,
ensuring that ’C’ doesn’t have overlap with previous com-
ponents, finally mark the component for this diagram point
in output, and iterate for all points like-wise.

Finally, we apply multi-variate interpolation to fill back-
ground pixels to obtain a smooth transition between back-
ground and objects in the image.

4. Experiments
4.1. Dataset

The first challenge on 2D segmentation of neuronal pro-
cesses in EM images begun in May 2012. They have given
training data consisting of 30 images, these images represent
a set of consecutive slices within one 3D volume, basically
which contains a set of 30 sequential sections from a serial
section Transmission Electron Microscopy (ssTEM) data
set of the Drosophila first instar larva ventral nerve cord
(VNC). They have provided the ground-truth images as well.
Below there is the sample of the image and corresponding
mask. It can be easily seen the complexity of the geometry
of this dataset. Each training image is of size 512 × 512
in grayscale, with corresponding ground truth. The first
pre-processing was to divide the dataset into training and
evaluation sets into an 80:20 ratio. Then, we saved the final
dataset for which we did all our analysis. Choosing this
dataset was a great idea because of its complex geometry, so

it was challenging to use the topological priors in this data.

Figure 2. Image and corresponding Mask

4.2. Evaluation metrics

As the segmentation task is already well developed in deep
learning literature, it gave us much room for using already
proposed metrics as well; we use a variety of evaluating
metrics in our research expository, some of them follows
from (Heipke et al., 1998), where they were used for a
similar problem. In addition, average accuracy, correctness,
quality, dice, many more, we have used the topological
relevant metric, i.e., Betti number error, which is directly
comparing the topology of prediction and ground-truth.
Below we can see the basic definitions,

• Accuracy: This is the most used metric for binary seg-
mentation problems, which simply tells us the percent-
age of correctly classified pixels.

Accuracy =
TP + TN

TP + TN + FP + FN
,∈ [0; 1]

• Sørensen-Dice Coefficient: This metric is the statisti-
cal assessment for similarity of two given samples.

Dice =
2TP

2TP + FP + FN
,∈ [0; 1]

• Completeness/lnclusion score/Recall: Assessing how
well the predicted encompasses the ground-truth.

Completeness =
TP

TP + FN
,∈ [0; 1]

• Correctness/Precision: The correctness represents the
percentage of correctly extracted pixels

Correctness =
TP

TP + FP
,∈ [0; 1]

Conceptually, after obtaining the lifetime of components di-
rectly from the persistent diagram, we identifying the diagram
point having a significant finite lifetime using threshold, then
sorting these identified points by decreasing death times. For
all sorted points, we first find the image pixel that corresponds

3The elder rule asserts that when constructing a persistence diagram, if two
components or holes are merged, the youngest component or hole dies. This
rule is also known as the old survive rule [4]



to the sorted point and save the image pixel for the death time
of that point. Then, we add all pixels connected to ’b’ before
its death to ’C’ without overlapping with previous components.
Finally, we mark the component for that diagram point in the
output and repeat for all points.

In the end, we use multi-variate interpolation to fill in the
background pixels in order to get an image with a smooth
transition between the background and the objects in the
image, as proposed in [4], but here we have a supervised
mechanism for training.

IV. EXPERIMENTS

A. Dataset

The first challenge on the 2D segmentation of neuronal pro-
cesses in EM images began in May 2012. They have provided
training data consisting of 30 image stacks. These images
represent a set of consecutive slices within one 3D volume,
basically which contains a set of 30 sequential sections from
a serial section Transmission Electron Microscopy (ssTEM)
data set of the Drosophila first instar larva ventral nerve cord
(VNC). They have also provided ground-truth images. Below,
there is the sample of the image and corresponding mask.
We can easily observe the complexity of the geometry of this
dataset. Each training image is of size 512×512 in grayscale,
with corresponding ground truth. The first pre-processing was
to divide the dataset into training and evaluation sets in the
80:20 ratio. Then, we saved the final dataset for which we
did all our analyses. Choosing this dataset was a great idea
because of its complex geometry, so it was a challenge to use
the topological priors in this data.

Fig. 2: Image and corresponding Mask

B. Evaluation metrics

We have a lot of leeway to use previously provided
measures because the segmentation challenge has already
been extensively studied in deep learning research; in our
research expository, we employ a range of assessment criteria;
some of them are taken from [14], where they were applied
to a similar task. In addition, average accuracy, correctness,
quality, dice, and many more, we have used the topological
relevant metric, i.e., Betti number error, which is directly
comparing the topology of prediction and ground truth. Below

we can see the basic definitions,

• Accuracy: This is the most used metric for binary seg-
mentation problems, which simply tells us the percentage
of correctly classified pixels.

Accuracy =
TP + TN

TP + TN + FP + FN
,∈ [0; 1]

• Sørensen-Dice Coefficient: This metric is the statistical
assessment for the similarity of two given samples.

Dice =
2TP

2TP + FP + FN
,∈ [0; 1]

• Completeness/inclusion score/Recall: Assessing how
well the predicted encompasses the ground-truth.

Completeness =
TP

TP + FN
,∈ [0; 1]

• Correctness/Precision: The correctness represents the
percentage of correctly extracted pixels

Correctness =
TP

TP + FP
,∈ [0; 1]

• Quality : Quality combines completeness and correct-
ness into a single measure, so it is more general and is
defined as:

Quality =
TP

TP + FP + FN
,∈ [0; 1]

All the above metrics have optimal value 1
• Betti number-Error: This metric is more important in our

case as our main focus is on topological segmentation, the
betti-number error is more topology-relevant. In this, we
randomly sample the small patches of ground truth and
prediction, then compute the average absolute difference
of their betti-numbers βk (give us a measure of the
number of handles, closed loops, etc in that patch), this
reveals how much the geometry of prediction is different
from ground-truth. The smaller the betti-number error,
the better is segmentation, the ideal value is zero, which
means the prediction map has exactly the same topology
as that of ground truth, sometimes called topologically
correct.

C. Details of training procedure

Many deep neural networks are used for the segmentation
problem. However, for the task of biomedical segmentation,
the best results are shown by U-Net (Fig.3).



Fig. 3: Architecture of U-Net

We trained U-Net on augmented small patches from images
(64 × 64) as computing topological priors on small patches
is faster. Augmentation was used because we have a small
dataset, and random choice of patches and their random
flipping helps to enlarge the dataset for training. Because of
computational complexity, we also take batch size equal to 1.
On such a small batch size U-Net with and without topological
priors gave better results.

For the realization of topological loss, we used LevelSet-
Layer2D function from TopologyLayer 4, which calculates
persistence diagrams. We added topological loss to CrossEn-
tropy loss (1) with λ = 1

12000 to make these losses have the
same order. Also, for visualization of diagrams, we used the
Ripser library.

We trained U-Net with and without topological priors on
100 epochs using the Adam optimizer. Examples of chang-
ing persistence diagrams for prediction during training with
topological loss are on Fig. 4. We can see that the number of
points decreased.

Fig. 4: Persistence diagrams for 5 (left) and 95 (right) epochs

D. Results

After training on small patches, we plotted predictions on
all images. A sample for the comparison of predictions of U-

4TopologyLayer

Fig. 5: Predictions without topological priors (middle row) and
with topoloss (bottom row)

Net trained without any topological priors with those trained
with a topological loss is shown in Fig. 5.

Also, the comparison of predictions of U-Net trained with-
out any topological priors with trained with a topological input
image processing on Fig. 6. We can see that using topological
priors makes a prediction with a smaller amount of holes in
cells.

Fig. 6: Predictions without topological priors (middle row) and
with topological image processing (bottom row)



TABLE I: Results for different strategies.

Metric Simple U-Net
U-Net with
topological

priors in training

U-Net with
topological

image processing
Accuracy 0.899 0.910 0.909

Completeness 0.975 0.951 0.971
Correctness 0.907 0.938 0.92

Quality 0.886 0.894 0.895
Dice 0.939 0.944 0.945

Betti error 1.16 1.02 1.1

Finally, we compute all metrics for various techniques and
summarise the findings in table I. From metrics, it can be
seen that topological priors give better results than classical
segmentation (Simple U-Net) in terms of accuracy, quality,
and correctness, as well as topological metric (Betti-error).

V. CONCLUSION

We have shown that incorporating the topological priors into
deep neural networks (U-Net) is a worthwhile idea, especially
for problems whose solutions are primarily dependent upon
the geometry of the underlying data. We have also shown
the usefulness of posing topological information at different
stages in the architecture for supervised learning problems.
The results of the experiments demonstrate the superiority
of the concept that was presented and should be able to
discover a variety of applications in data analysis and other
prospective domains that are linked. Despite the fact that our
findings were encouraging, the training process is somewhat
slow, which limits its applicability to datasets that contain
multiple variables. So, the plan for the future is to improve
the computational efficiency of this method and apply it to
multi-dimensional datasets like 3D segmentation tasks. This
project’s source code is also accessible 5
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