
The Aggressive Oversubscribing Scheduling for
Interactive Jobs on a Supercomputing System

Shohei Minami
Prometech Softwere Inc. and
Tokyo Institute of Technology

Email: minami@prometech.co.jp

Toshio Endo
Tokyo Institute of Technology

Email: endo@is.titech.ac.jp

Akihiro Nomura
Tokyo Institute of Technology

Email: nomura@gsic.titech.ac.jp

Abstract—As interactive usages of supercomputing systems
become popular, especially in the AI and machine learning (ML)
fields, the systems are expected to provide resources in real time.
As interactive jobs have different features from traditional batch
jobs, the systems should be designed to accept both types of jobs
efficiently. This paper shows that the aggressive oversubscribing
scheduling, in which multiple jobs share computational resources
regardless of job types, can effectively process hybrid jobs.
This paper investigates behaviors of the real interactive jobs
with fluctuating CPU utilization. And a simulation method is
described, which combines existing workload trace data and data
on CPU utilization. Through the evaluation, we demonstrate
oversubscribing scheduling achieves a short response time for
interactive jobs. Also our solution eliminates the necessity of con-
figuring dedicated queues for job types and achieves robustness
towards the change of demand of interactive jobs.

Index Terms—Job scheduling, Simulator, Oversubscribing,
Interactive Jobs, Supercomputing systems

I. INTRODUCTION

Due to the widespread use of the AI and machine learning
on supercomputing systems, providing computing resources to
users in interactive fashions is more important. Thus modern
supercomputing systems are expected to accommodate both
traditional batch jobs, which tend to have longer running
times, and interactive jobs, which may have shorter running
times but interact with users in real time. However, satisfying
these diverse demands is difficult on systems with traditional
scheduling methods since job requests are queued and blocked
until resources become available, even for interactive jobs.

To support hybrid types of jobs, some production systems
assign several dedicated nodes for interactive jobs [1], [2].
Those nodes compose an interactive queue, separated from
the normal batch queue. However, it is not trivial for admin-
istrators to configure the proper size of the interactive queue,
since amounts of user demand change over time. Systems with
a single queue that accept both types of jobs can avoid such
a configuration, however, interactive users suffer from longer
waiting time for other existing jobs.

From the above discussion, we focus on a method that
we call aggressive oversubscribing (AO) scheduling, in which
multiple jobs coexist on the same node and CPU cores. All
jobs are submitted to a single queue and each of them is started
on the assigned nodes and cores immediately with conditions
described in Section III. Then the new job shares nodes and

cores with the coexisting jobs. This approach is expected to
reduce waiting time and improve responsiveness compared
with the above-mentioned methods. This oversubscribing or
time-sharing of CPU cores can be achieved with mechanisms
of the conventional OS.

This paper demonstrates the feasibility of the AO scheduling
through simulation. To make the simulation to be realistic, we
conduct an analysis of the behaviors of interactive jobs by
collecting data on a production supercomputer (Section II).
Based on the analysis, we conduct the simulation to show
the following results. First, responsiveness and waiting time
are largely improved especially for interactive jobs. Also,
slowdowns of jobs are mitigated not only for interactive jobs
but batch jobs. Then we show that AO with the single queue
configuration is robust to the change of user demands.

II. UNDERSTANDING INTERACTIVE JOBS

A. Characteristics of Interactive Jobs

Interactive jobs include visualization, debugging of soft-
ware, development loop of the AI/ML applications, and so
on. Some usages can be via web browsers [3]–[6]. We view
their characteristics and requirements are different from those
of batch jobs as follows.

(1) Interactive jobs should be started immediately when
users request them. Also the frequency of requests can be more
frequent on weekdays and less on weekends, which shows the
burstiness.

(2) During the execution, the actual utilization of resources,
including CPU cores, tends to fluctuate. This is because users
often interact with resources by executing some processes,
seeing their results, and determining what to do next.

(3) Traditionally, interactive jobs like visualization tend
to occupy only small resources. This tendency is, however,
changing as interactive AI/ML usage becomes popular, where
processes invoked interactively may require multiple cores and
nodes. Thus fluctuation of actual resource utilization described
in (2) becomes even larger.

B. Observation of Interactive Jobs

In order to confirm the characteristics described above,
we analyze the behavior of actual interactive jobs. For this
purpose, we collected time series data of CPU utilization
during interactive jobs on the TSUBAME3.0 supercomputer

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700

C
P

U
 U
�

liz
a�

o
n

�me[s]

(a) Single-core usage

0

200

400

600

800

1000

1200

1400

1600

0 20 40 60 80 100

C
P

U
 U

til
iz

at
io

n

time[s]

(b) Multi-core usage

0

50

100

150

200

250

300

350

0 100 200 300 400 500 600 700 800

C
P

U
 U
�

liz
a�

o
n

�me[s]

(c) Single- and multi-core usage

0

100

200

300

400

500

600

700

800

900

0 2000 4000 6000 8000

C
P

U
 U
�

liz
a�

o
n

�me[s]

(d) Batch-like usage

Fig. 1. Instances of typical interactive job usages on TSUBAME3.0.

from 9th September 2022 to 1st November 2022. In this
system, each interactive job is allowed to use up to 14 logical
cores on a node, thus values of CPU utilization are from 0%
to 1,400%. The sampling frequency of CPU utilization is five
seconds. Excluding data with measurement failure, data of 193
jobs are collected.

Out of the collected data of 193 jobs, we pick up four
jobs with different behaviors, and show their time series of
CPU utilization in Figure 1. In Figures 1 (a), (b), and (c), we
observe the characteristics (2) in the previous section; the CPU
utilization fluctuates largely by repeating idle periods and busy
periods. We consider that idle periods correspond to ”users’
thinking time”. On the other hand, the utilization ratio in busy
periods are different among jobs. While job (a) uses about
100% CPU (a single core), job (b) uses around 1400% (14
cores). The job (c) includes both single-core usages and multi-
core usages. These observations support the characteristics
(3); even interactive jobs require multiple cores for higher
performance. Figure 1 (d) shows a different behavior from
others; the CPU utilization is constantly kept high, although
this job is invoked on an interactive node. We call such a case
a batch-like usage.

In summary, while the actual interactive jobs basically obey
characteristics described in the previous section, the utilization
in busy periods or lengths of periods is largely different among
jobs. Also, some interactive jobs behave like batch jobs.

C. Modeling Interactive jobs
In Figure 1, we have seen the divergent behaviors of

interactive jobs. In order to understand jobs more generally,
this section introduces a model, whose purposes are two-fold.
One is to observe the statistics of collected data. The other
is to process the collected time series data on TSUBAME3.0
based on this model and then embed them in the input of the
simulation as described in Section IV.

In our model, an interactive job includes repeated busy
periods and idle periods during its execution time as illustrated
in Figure 2. During idle periods, CPU utilization ratio is almost
zero and we consider they correspond to users’ thinking time.
During busy periods, CPU utilization ratio is higher for some
computational processes.

Since CPU cores may be slightly used to react to users’
commands or for OS jitters, we use a threshold to distinguish
the two periods, which is 20% in our experiment. If the CPU
utilization during each sampling period of five seconds is

higher than this value, the period is regarded as a part of a
busy period.

This model can express batch-like usage like in Figure 1 (d),
which is modeled as a job with a single long busy period. On
the other hand, it does not consider the difference in CPU
utilization among busy periods in a job. Thus it does not
distinguish multi-core usage and single-core usage in Figure
1 (c). In the future, the model could be more sophisticated to
capture CPU utilization more in detail. This paper, however,
uses this simple model for our purposes.

Time

…

CP
U

Ut
ili

za
tio

n
Ra

tio

100%

0% Idle period

Busy period

Fig. 2. A simplified behavior of resource utilization during an interactive job.
Busy periods and idle periods are repeated.

D. Statistics of Measured Jobs
Based on our model, we have processed all collected data

of 193 jobs and taken statistics as shown in Figure 3. In each
histogram, the bar heights represent the number of jobs.

1) Job execution time: In Figure 3 (a), we see that short
jobs less than 2 hours are popular. Also, there are peaks at
1, 2, 4, 6, and 12 hours and so on. We consider that this is
because of users’ requested time. While some users close the
interactive sessions explicitly, others may leave them without
closing, and the system forcibly terminates them. In total, the
90th percentile value is 5.2 hours.

2) Average CPU utilization: Figure 3 (b) corresponds to
the average CPU utilization that counts both busy and idle
periods in each job. In most jobs, it is quite small; for 71%
of jobs, it is less than 10% (0.1 core). Also for 37% of jobs,
it is less than 0.01 (it is too small and does not appear in
the histogram). These observations reinforce our assertion that
dedicating computing resources for interactive jobs degrade
efficiency of system usage and the aggressive oversubscribing
scheduling is important. On the other hand, we see several jobs
with higher CPU utilization, which are considered batch-like
jobs.

0

5

10

15

20

25

30

0
1

8
0

0
3

6
0

0
5

4
0

0
7

2
0

0
9

0
0

0
1

0
8

0
0

1
2

6
0

0
1

4
4

0
0

1
6

2
0

0
1

8
0

0
0

1
9

8
0

0
2

1
6

0
0

2
3

4
0

0
2

5
2

0
0

2
7

0
0

0
2

8
8

0
0

3
0

6
0

0
3

2
4

0
0

3
4

2
0

0
3

6
0

0
0

3
7

8
0

0
3

9
6

0
0

4
1

4
0

0
4

3
2

0
0

4
5

0
0

0
4

6
8

0
0

o

f
Jo

b
s

Execu�on �me [s]

1 hour jobs 2 hour jobs

4 hour jobs

6 hour jobs 12 hour jobs

(a) Job execution time

0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o

f
Jo

b
s

Average CPU U�liza�on [-]

(b) Average CPU utilization

0

5

10

15

20

25

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72

o

f
Jo

b
s

Repea��on count

(c) Repetition count (≤ 99th per-
centile)

0

5

10

15

20

25

30

0 2
5

5
0

7
5

1
0

0

1
2

5

1
5

0

1
7

5

2
0

0

2
2

5

2
5

0

2
7

5

3
0

0

3
2

5

3
5

0

3
7

5

4
0

0

4
2

5

4
5

0

4
7

5

5
0

0

5
2

5

5
5

0

5
7

5

6
0

0

o

f
Jo

b
s

Maximum ac�va�on �me [s]

(d) Longest busy period (≤ 85th per-
centile)

Fig. 3. The primary statistics of interactive jobs collected on TSUBAME3.0. The sample size is 193 (jobs).

3) Repetition count and longest busy period: Figure 3
(c) shows the statistics of repetition counts of busy periods.
Jobs with less than 10 busy periods are common, while the
maximum count is 94. Figure 3 (d) summarizes the longest
busy periods. While the 54th percentile is 30 seconds, the
longest busy period in all the data is exceptionally long as
46,715 seconds.

From these observations, we can consider typical behaviors
of interactive jobs, each of which repeats busy periods about
10 times and each length is less than 30 seconds. Also, there
are jobs with batch-like usage. Our simulation method is
designed so that we can reflect these characteristics.

III. AGGRESSIVE OVERSUBSCRIBING SCHEDULING

This section discusses scheduling methods that accept both
interactive jobs and batch jobs, and describes aggressive
oversubscribing (AO) scheduling, whose basic idea has been
described in authors’ previous paper [7] 1.

Supercomputers that support interactive jobs should con-
sider their characteristics described in SectionII-A; the in-
teractive users require computing resources immediately, and
the actual CPU utilization ratio during such jobs fluctuate
largely. Preparing a single job queue with a traditional batch
scheduling cannot satisfy users’ demand since it introduces
longer waiting time. Also, it degrades CPU utilization of the
entire system.

To support two job types, some systems provide a dedicated
job queue for interactive jobs in addition to a job queue
for batch jobs [1], [2]. We call it multiple queue (MQ)
method. With the separated queue, interactive jobs do not
wait for the end of the running batch jobs, while they can
wait for other interactive jobs. As a variant, systems may
enable oversubscribing only for the interactive queue; multiple
interactive jobs can share the same cores, which is adopted in
TSUBAME3.0.

With the above method, the system administrators have to
configure the number of interactive nodes statically. Hereafter
R means the ratio of interactive nodes in the system 2. While
this approach is expected to reduce waiting times of interactive
jobs, it is still conservative since it is hard to adapt to sudden

1The previous paper has evaluated oversubscribing only with batch jobs,
not considering interactive jobs with fluctuating CPU utilization

2For instance, TSUBAME3.0 supercomputer prepares four interactive nodes
out of 540 nodes, thus R = 0.74% [1]

changes in the amount of interactive jobs. Administrators
can change R during the operation, however, it is hard to
modify frequent changes, like changes between daytime and
nighttime.

From the above discussion, we focus on AO method with
a single queue (SQ), which accepts both interactive and
batch jobs. To reduce the waiting time drastically, we adopt
oversubscribing on all the nodes. Thus nodes and cores can be
shared by jobs, regardless of job types. The job processes on
the same core are executed on top of preemption mechanism
of the OS, in a fine-grained fashion.

While the basic idea of this method is very simple, there
are several issues caused by oversubscribing and thus we have
proposed several strategies to mitigate them [7].

First, since jobs share CPU cores regardless of job types,
even batch jobs may suffer from performance degradation by
coexisting jobs. Especially, the performance of a parallel job
can be largely degraded by a small single-core job, due to
the effects of the synchronization among parallel processes or
threads. To mitigate the degradation, the scheduler considers
load balancing among nodes/cores as follows. The scheduler
dynamically maintains multiplicity for each core, which is the
number of processes assigned to that core. Here both busy
processes and idle processes are counted. When the scheduler
accepts a new job submission, it determines nodes/cores for
that job so that the multiplicities of cores are kept fair.

Secondly, since the physical resource amount of a node is
limited, we cannot invoke infinite processes on a node. Instead,
the AO scheduler maintains memory amount allocated by the
running jobs on each node. If the remaining memory amount
is insufficient, new jobs cannot be executed on that node.
Also, we introduce another system-level parameter, named
maximum multiplicity M . Jobs are scheduled so that the
multiplicity of any core does not exceed M , in order to
mitigate overhead by OS preemption. From the above two
mechanisms, a newly submitted job may experience waiting
time even with AO method.

There are other ways to reduce waiting times. For exam-
ple, gang scheduling supported by the Slurm scheduler [8]
enables oversubscribing of nodes and cores, but it is based on
coarse-grained timeslices unlike in AO. The timeslice length
is configured by administrators, whose default value is 30
seconds. While it is expected to keep the performance of
parallel jobs higher, in our context, the resource usage of the

system tends to be degraded since timeslices are given even
when processes are idle, which is common for interactive jobs.
In AO method, when some processes become idle, OS can
immediately activate other processes.

In Section V, we evaluate the AO method with the SQ
configuration by simulation, focusing on the waiting times and
performance overhead on jobs of both types. Simulation of job
scheduling algorithms is common in the literature. However,
it is not trivial when we consider interactive jobs whose CPU
utilization fluctuates. Thus we discuss the simulation method
in Section IV.

IV. SIMULATION METHOD WITH INTERACTIVE JOBS

The paper aims to demonstrate the effectiveness of ag-
gressive oversubscribing (AO) scheduling considering both
interactive jobs and batch jobs. In order to carry out a
simulation of scheduling methods with oversubscribing, we
have developed a simulator of job scheduling, named node
conscious oversubscribing scheduler simulator (NCS) [9].

As the input of simulation, we use the standard work format
(SWF), a well-known job trace format [10]. An SWF file
consists of records of job information, each of which includes
the submitted time point, the requested time, the (actual)
execution time, the number of request cores, the request
memory amount, and so on.

NCS takes an SWF file as input, and simulates the behavior
of each job considering the overhead of oversubscribing. The
original NCS, however, assumed the CPU cores are always
kept busy during job execution; in other words, it considered
only batch jobs [7]. In order to simulate interactive jobs, there
are two issues to be solved.

• The SWF file does not include information on the changes
of actual CPU utilization during each job.

• The overhead of oversubscribing in the simulation needs
to be revised to reflect the fluctuation of CPU utilization.

A. Data Processing To Embed CPU Utilization

In our simulation, we use a workload trace named UniLu-
Gaia-2014-1 [11] (UniLu hereafter) from Parallel Workloads
Archive [12]. This data set contains three months data from
the Gaia cluster at the University of Luxemburg. We choose
it since the cluster consists of two queues, one of which is
interactive queue (MQ configuration) and each job data has a
flag of job type. As shown in Table I, 1,762 jobs (3.4%) are
interactive jobs out of 51,871 jobs.

Unfortunately, the SWF format file has no information on
CPU utilization. Instead, we embed information collected on
TSUBAME3.0 (Section II-B) into data of interactive jobs in
UniLu as follows. For each of UniLu interactive job (JU), we
see the execution time of it. And we pick one record from data
set generated from TSUBAME interactive jobs (JT), whose
execution time is close to that of JU . Then we embed data
patterns of JT that consist of busy and idle periods into JU .
To avoid using the same pattern too frequently, we also use
randomness in choosing JT . With this method, the generated
behaviors include various types of interactive jobs as shown

in Figure 3. For batch jobs, we assume CPU cores are always
fully utilized.

TABLE I
THE INFORMATION OF UNILU-GAIA-2014-1 TRACE

System Configuration
of Nodes 150
of Cores per Node 12

Workload Characteristic
of Jobs 51,871

Interactive Jobs 1,762(3.4%)
Maximum Degree of Parallelism 516

Interactive Jobs 12
Maximum Execution Time[s] 1,800,012

Interactive Jobs[s] 43,507
of Users 82

B. Simulated Overhead of Oversubscribing

In NCS simulator, we use the following assumptions on
overhead of oversubscribing. (1) We consider slow down of
each process depending on the number of coexisting processes
on the same CPU core. (2) In a parallel job, the slowest
process or threads in the job determines the progress of all
the processes or threads in the job. More details are in [7].

In order to support idle jobs, we implemented the behavior
of NCS simulation as follows. When a process is idle, it does
not affect the progress of other coexisting processes. Also its
progress is not affected by other coexisting processes. The
latter rule is set since the lengths of idle periods are mainly
determined by interactive users’ behaviors, not by other jobs.

Here we mention the slow down of coexisting processes in
(1) further. We use an assumption that the speed of each busy
process is divided by (m′ × Co), where m′ is the number of
coexisting busy processes and Co is a constant = 1.2. Co is
introduced considering overhead of OS preemption. However,
we have observed the actual behavior is more complex due to
cache pollution, synchronization methods, and so on [13]. Our
future work includes evaluation with a variation of overhead.

V. EVALUATION RESULTS

This section shows results of the simulation that evaluate
the effectiveness of the AO scheduling. The simulation used
processed job data based on UniLu workload trace as in
Section IV-A 3. The size of the simulated system is the same
as UniLu Gaia in Table I.

We compare the several scheduling methods and configura-
tions described in Section III. First, in the SQ configuration, a
single queue accepts both job types. Here a system parameter,
the maximum multiplicity M , is configured. SQ with M = 1
is the simplest system, which does not allow oversubscribing,
and is considered to impose long waiting times on jobs. SQ
with M > 1 uses our proposed AO scheduling. As the
comparison targets, we evaluate the MQ configuration that
prepares a queue for batch jobs and one for interactive jobs.

3To evaluate the generality of our method, we also conducted a simulation
using several modified data set, to achieve a similar tendency. They are omitted
for page limitation

The ratio of interactive nodes is configured by the ratio R.
Also, we allow oversubscribing on the interactive queue, with
the maximum multiplicity of MI .

A. Experiment 1: Effectiveness of Aggressive Oversubscribing

This experiment evaluates performance of job scheduling
policies. To see effects of oversubscribing, we compare SQ
configurations with M = 1, 2, 3, 4. M = 1 does not use
oversubscribing. Also, we evaluate MQ configurations with
R = 1%, 2%, 3%, that correspond to different numbers of
interactive nodes. On the interactive nodes in MQ, MI is fixed
at 4.

1) The responsiveness of interactive jobs: The purpose of
the AO scheduling is to satisfy more interactive users’ de-
mand immediately, while restricting the number of coexisting
processes. Table II shows the ratio of interactive jobs that
suffer from waiting time. SQ configuration with M = 1
(no oversubscribing) imposes waiting time on 6.2% of jobs,
while the rest (93.8% of jobs) are started immediately. With
larger M using AO, the ratio is decreasing as expected, and
when M = 4, all interactive jobs can be started immediately.
We see MQ configuration also eliminates waiting times with
R ≥ 2%. On the other hand, when R = 1%, 8.3% experiences
waiting time, which is larger than with ”SQ, M = 1”. In MQ,
misconfiguration of the system (R value here) can have a large
impact. Figure 4 (a) shows the longest waiting time among
interactive jobs. We see as ratio in the Table II increases, the
longest waiting time becomes worse.

TABLE II
RATIO OF INTERACTIVE JOBS THAT SUFFER FROM WAITING TIME.

Case Ratio Case Raio
SQ, M=4 0% MQ, R=3% 0%
SQ, M=3 0.7% MQ, R=2% 0%
SQ, M=2 1.2% MQ, R=1% 8.3%
SQ, M=1 6.2%

2) Slowdown of jobs: With oversubscribing, the executions
of both interactive jobs and batch jobs get slower. Also
the waiting time extends the turnaround time visible to the
users. To investigate these effects, we evaluate the ”slowdown”
metric, defined as S = (Tw + Tr)/Ta for each job, where
Tw is the waiting time. Tr and Ta are the execution time
of the job; while Ta is the execution time if job were run
alone (in our simulation, it is described in trace data), Tr

includes overhead caused by oversubscribing (obtained from
our simulator). S = 1 represents the ideal case.

Figure 4 (b) shows the largest slowdown among batch jobs
and interactive jobs. With MQ, the largest slowdown of batch
jobs is significantly larger than that of interactive jobs. Also,
we see MQ,R = 3% rises 18,652x slowdown while it is
12,697x with R = 2%, while the impact on interactive jobs
is minor. Again we observe the sensitivity of configuration in
MQ. In SQ, larger M contributes to a smaller slowdown both
for batch jobs and interactive jobs. This property is expected
to be helpful even for batch job users since it offers a shorter
turnaround time.

In order to observe the tendency among all jobs, Figure
4 (c) shows the distribution of slowdown values among jobs.
The X-axis is the cumulative ratio of jobs and the Y-axis is the
slowdown value. Here interactive and batch jobs are mixed. We
see ”SQ, M=1” and MQ configurations show similar curves;
while the slowdown of around 92% of jobs is one, the curve
rises sharply. It means minor parts of jobs suffer from a very
large slowdown. With SQ (M ≥ 2), around 30% of jobs suffer
from a slowdown, however, the slowdown ratio is smaller than
3 for most of such jobs. When M = 4, the largest slowdown
is 4.8 among both job types. From this observation, we can
say that SQ with AO scheduling can achieve fairer scheduling.

3) Efficiency of the system: Finally, we show the overall
system efficiency. Table III shows makespan, the time until all
the jobs are completed. SQ with M ≥ 3 exhibits around 2.5%
longer makespan, however, we observed this is due to a few
jobs scheduled lastly in the duration. When we observe interim
progresses, the time until 90% or 95% of jobs are completed,
the results are similar among all the configurations.

TABLE III
SYSTEM EFFICIENCIES IN EXPERIMENT 1. MAKESPAN IS THE ENDING

TIME OF THE LAST COMPLETED JOB. IT ALSO SHOWS THE TIMES WHEN
90% AND 95% OF JOBS ARE COMPLETED.

Case Makespan [hour] Finished time [hour]
90th 95th

SQ, M=4 2194 1859 2004
SQ, M=3 2192 1870 2016
SQ, M=2 2154 1883 2013
SQ, M=1 2138 1852 2015

MQ, R = 3% 2138 1851 2015
MQ, R = 2% 2138 1851 2015
MQ, R = 1% 2138 1850 2015

B. Experiment 2: Robustness to the ratio of interactive jobs

While the previous section used the fixed job data set, we
consider that AO scheduling will have more advantages when
interactive jobs are more dominant in HPC workloads. In order
to confirm this expectation, we conduct the evaluation with
artificial data sets with more interactive jobs. For this purpose,
we simply modified the UniLu (original) trace; we pick some
batch jobs with smaller execution time and convert them into
interactive jobs to generate several sets, as shown in Table IV.
Data set 6 includes 39,473 (76%) interactive jobs.

With SQ configuration, we fixed the maximum multiplicity
M = 4, allowing oversubscribing. On the other hand, through
the preliminary measurement with MQ, we observed it cannot
follow the change of interactive jobs ratio at all. To give an
advantage to MQ, we conducted an intensive parameter survey
to determine the optimal system parameters for each data
set. The parameters include R and MI . Also now we allow
oversubscribing even on the batch queue, with the maximum
multiplicity of MB . The found optimal parameters are shown
in Table IV. For data set 6, the system needs to prepare 18%
of dedicated nodes in the system for the interactive jobs for
better performance.

Figure 5 shows the maximum slowdown for each case.
Apparently, SQ (M = 4) achieves stable performance and

46,174

0

0

84,347

40,385

5,664

0

0 20000 40000 60000 80000 100000

MQ, R=1%

MQ, R=2%

MQ, R=3%

SQ, M=1

SQ, M=2

SQ, M=3

SQ, M=4

Maximum wai�ng �me of interac�ve jobs [s]

(a) Maximum waiting time

11313
215.7

12697.4
3.73

18652
3.02

11447.4
4939.78

8384
651.18

767
20.06

4.82
4.18

1 10 100 1000 10000

MQ, R=1%

MQ, R=2%

MQ, R=3%

SQ, M=1

SQ, M=2

SQ, M=3

SQ, M=4

Maximum Slowdown [-]

■ SO, batch job ▧ SO, int. job

■MQ, batch job ▧MQ, int. job

(b) Maximum slowdown

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1

Sl
o

w
d

o
w

n

Cumula�ve Ra�o of Computed Jobs

MQ, R = 1% MQ, R = 2% MQ, R = 3%

SQ, M = 1 SQ, M = 2 SQ, M = 4

(c) Distribution of Slowdown

Fig. 4. The results of the experiment 1.

TABLE IV
THE GENERATED DATA SET AND OPTIMAL PARAMETERS IN MQ

CONFIGURATION

1. 2. 3. 4. 5. 6.
of interactive jobs 1762 6500 15913 25336 34772 39473

ratio 0.034 0.125 0.307 0.488 0.670 0.761
Well-configured values for MQ

R[%] 2 2 6 12 18 18
MI 4 4 4 4 4 4
MB 4 4 5 8 8 8

the slowdown values are less than 5 for all the jobs. With MQ
configuration, we observe interactive jobs have a modest slow-
down successfully, owing to optimized R for each data set.
On the other hand, batch jobs suffer from a larger slowdown.
These results are obtained even with the parameter survey. If
the ratio of interactive jobs changed dynamically (such as the
change between daytime and night), the performance with MQ
would be much worse.

4.82
3.73

4.82
3.73

6
3.38

8
3.89

9
3.23

8.44
4.02

4.82
4.18

4.82
4.65

4.83
4.67

4.81
4.67

4.81
4.63

4.8
4.53

0 2 4 6 8 10 12

MQ, 1762

MQ, 6500

MQ, 15913

MQ, 25336

MQ, 34772

MQ, 39473

SQ, 1762

SQ, 6500

SQ, 15913

SQ, 25336

SQ, 34772

SQ, 39473

Maximum Slowdown [-]

■ SQ, batch job
▧ SQ, int. job
■MQ, batch job

▧ MQ, int. job

Fig. 5. The results of experiment 2; maximum slowdown with different trace
data sets.

VI. RELATED WORK

Hofmeyr et al. have reported the performance of job sched-
uling with oversubscribing using their supercomputer’s job
data [14]. Their simulation assumes only batch jobs, with
which processes are always busy. Also Slurm [8], a famous
OSS job scheduler, already has the functions of oversubscrib-
ing and gang scheduling. As seen above cases, the idea of

oversubscribing is well known for a long time, however, it is
very rarely used in production supercomputers. We consider
that this is largely because batch job users do not prefer
preemption, which may incur unexpected issues. One of them
has been dealt with by our previous work [7]; when job
execution time gets longer, it may be killed by the system
for time limit. We described a method to adjust time limit
considering oversubscribing.

Interactive jobs have been well studied in system wide [15]–
[20]. They built a system that immediately allocates computing
resources to interactive jobs, after suspending batch jobs. Their
main focus is the evaluation of the productivity of interactive
users. On the other hand, this paper evaluates the impact of
different job scheduling policies onto both interactive jobs and
batch jobs.

VII. CONCLUSION AND FUTURE WORK

This paper evaluated the aggressive oversubscribing (AO)
scheduling for supercomputers that support both interactive
jobs and batch jobs. In order to conduct the evaluation with our
NCS simulator, we collected information on real interactive
jobs on a supercomputer and conducted an analysis. Also,
we developed a simulation method that combines existing
workload trace and CPU utilization data based on our collected
data. From the evaluation, we confirmed the AO method is
superior to the conservative (MQ) system configurations as
follows. (1) It achieves high responsiveness for interactive jobs
as a conservative system, (2) It alleviates the slowdown of
batch jobs, (3) It does not need to configure the number of
dedicated interactive nodes, and (4) It is more robust to the
change of amounts of interactive jobs.

The future work includes:

• Consideration of GPUs: Many modern supercomputers
have accelerators including GPUs. GPUs are important
especially for interactive usage, not only visualization,
but AI applications.

• Development of Oversubscribing Scheduler System:
While our technique is evaluated only in simulation, we
plan to develop system software. The current plan is to
improve the OSS such as Slurm [8] or Open PBS [21].

ACKNOWLEDGMENT

This study is carried out using the TSUBAME3.0 super-
computer at Tokyo Institute of Technology, and is supported
by Fujitsu Next Generation Computing Infrastructure Collab-
orative Research Cluster.

REFERENCES

[1] S. Matsuoka, T. Endo, A. Nukada, S. Miura, A. Nomura, H. Sato,
H. Jitsumoto, and A. Drozd, “Overview of TSUBAME3.0, green cloud
supercomputer for convergence of HPC, AI and big-data,” TSUBAME
e-Science Journal, vol. 16, pp. 2–9, 2017.

[2] M. Sato, Y. Ishikawa, H. Tomita, Y. Kodama, T. Odajima, M. Tsuji,
H. Yashiro, M. Aoki, N. Shida, I. Miyoshi, K. Hirai, A. Furuya,
A. Asato, K. Morita, and T. Shimizu, “Co-design for a64fx manycore
processor and ”fugaku”,” in SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, 2020, pp.
1–15.

[3] Jupyter Development Team, “Jupyter notebook,” http://jupyter.org/,
2015.

[4] Google, “Google colaboratory,” https://colab.research.google.com/,
2017.

[5] Amazon Web Services, “Amazon SageMaker,” https://aws.amazon.com/
sagemaker/, 2017.

[6] Microsoft, “Azure machine learning,” https://azure.microsoft.com/
services/machine-learning/, 2015.

[7] S. Minami, T. Endo, and A. Nomura, “Effectiveness of the oversub-
scribing scheduling on supercomputer systems,” in The International
Conference on High Performance Computing in Asia-Pacific Region,
2023.

[8] A. B. Yoo, M. A. Jette, and G. Mark, “Slurm: Simple linux utility for
resource management,” in Workshop on job scheduling strategies for
parallel processing. Springer, 2003, pp. 44–60.

[9] S. Minami, “Node conscious ovesubscribing scheduler
simulator.” [Online]. Available: https://github.com/iwturnedaiw/
NodeConsciousScheduler

[10] S. J. Chapin, W. Cirne, D. G. Feitelson, J. P. Jones, S. T. Leutenegger,
U. Schwiegelshohn, W. Smith, and D. Talby, “Benchmarks and standards
for the evaluation of parallel job schedulers,” in IPPS/SPDP ’99/JSSPP
’99, 1999, p. 67–90.

[11] The University of Luxemburg, “The university of Luxemburg Gaia clus-
ter log,” https://www.cs.huji.ac.il/labs/parallel/workload/l unilu gaia/
index.html.

[12] D. G. Feitelson, D. Tsafrir, and D. Krakov, “Experience with using
the parallel workloads archive,” Journal of Parallel and Distributed
Computing, vol. 74, no. 10, pp. 2967–2982, 2014. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731514001154

[13] S. Minami, T. Endo, and A. Nomura, “Measurement and modeling of
performance of HPC applications towards overcommitting scheduling
systems,” in Workshop on Job Scheduling Strategies for Parallel Pro-
cessing. Springer, 2021, pp. 59–79.

[14] S. Hofmeyr, C. Iancu, J. Colmenares, E. Roman, and B. Austin,
“Time-sharing redux for large-scale hpc systems,” in IEEE
HPCC/SmartCity/DSS 2016, 2016, pp. 301–308.

[15] A. Reuther, T. Currie, J. Kepner, H. Kim, A. McCabe, P. Michaleas,
and N. Travinin, “Technology requirements for supporting on-demand
interactive grid computing,” in 2005 Users Group Conference (DOD-
UGC’05), 2005, pp. 320–327.

[16] A. Reuther, J. Kepner, C. Byun, S. Samsi, W. Arcand, D. Bestor et al.,
“Interactive supercomputing on 40,000 cores for machine learning and
data analysis,” in 2018 IEEE High Performance extreme Computing
Conference (HPEC), 2018, pp. 1–6.

[17] A. Reuther, C. Byun, W. Arcand, D. Bestor, B. Bergeron, M. Hubbell,
M. Jones, P. Michaleas, A. Prout, A. Rosa, and J. Kepner, “Scalable
system scheduling for hpc and big data,” Journal of Parallel and
Distributed Computing, vol. 111, pp. 76–92, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731517301983

[18] A. Reuther, J. Kepner, A. McCabe, J. Mullen, N. Bliss, and H. Kim,
“Technical challenges of supporting interactive hpc,” in 2007 DoD
High Performance Computing Modernization Program Users Group
Conference, 2007, pp. 403–409.

[19] A. Reuther, C. Byun, W. Arcand, D. Bestor, B. Bergeron, M. Hubbell,
M. Jones, P. Michaleas, A. Prout, A. Rosa, and J. Kepner, “Scheduler
technologies in support of high performance data analysis,” in 2016
IEEE High Performance Extreme Computing Conference (HPEC), 2016,
pp. 1–6.

[20] C. Byun, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, V. Gadepally,
M. Houle, M. Hubbell, M. Jones, A. Kirby, A. Klein, P. Michaleas,
L. Milechin, J. Mullen, A. Prout, A. Rosa, S. Samsi, C. Yee, and
A. Reuther, “Best of both worlds: High performance interactive and
batch launching,” in 2020 IEEE High Performance Extreme Computing
Conference (HPEC), 2020, pp. 1–7.

[21] Altair Engineering, “OpenPBS Open Source Project.” [Online].
Available: https://www.openpbs.org/

