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Abstract—Increasingly, power, space, and cooling constrained 
embedded computing assets need to run machine learning 
applications to make autonomous, low latency decisions within 
operational environments. Where GPUs, CPUs, and FPGAs aren’t 
suitable for these constraints, custom ASICs with their non-
standard development processes and frameworks are the best 
available option for bringing the power of machine learning to the 
edge. This paper discusses a neural network processing 
architecture and why it surpasses all size, power, throughput, and 
weight requirements while maintaining performance and allowing 
interoperability with commercial vendors license comprehensive 
development environment and machine learning libraries. We 
compare this neural network processor architecture with existing 
AI and machine learning platforms that leverage common 
architectures such as GPUs, CPUs, and FPGAs. The plug and play 
nature of the neural network processor architecture is optimized 
for applications such as EO-IR (Electro-optical/Infrared) Sensor 
and Radar Systems without respinning the hardware, reducing 
costs. This paper explores best practices for deploying common AI 
and machine learning models for object detection, super resolution, 
and natural language processing on a neural network processor at 
the edge. The neural network processor offer an alternative for 
deployment of autonomous machine learning at the edge that 
brings the power of a robust development ecosystem together with 
an architecture favorable for power and space constrained use 
cases.   
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I. INTRODUCTION 
Machine learning, including deep learning, applications 

have gained traction in both the military and commercial sectors 
in recent years, enabling machine learning in tactical 
environments. Models for these environments are trained on 
large datasets, leveraging commodity computing environments 
in preparation to be deployed on data closer to the sensor. To 
apply models over data in real time in increasingly tactical 
environments, the processor close to the sensor itself must be 
small, light, and have a low power footprint. Standard CPU 
(Central Processing Unit) and GPU (Graphics Processing Unit) 
based-systems do not support these requirements. To get around 
this FPGA (Field Programmable Gate Arrays) and ASIC 
(Application-Specific Integrated Circuit) designers customize 
processors to perform machine learning applications suited for 
constrained power, space, and weight requirements. However, 
long development and manufacturing time on these custom 
hardware chips prevents companies from deploying algorithms 
for many mission critical applications. ASIC and FPGA 
developers are restricted to programming in RTL language 

without the benefit of a comprehensive development 
environment that provides well-tested and robust library support 
for key aspects of algorithm implementation. This lack of 
support dramatically increases development and compilation 
time as well as the burden of proper validation and testing of 
each custom component. 

Employing neural network processors to support these 
machine learning applications near the sensor combines a plug-
and-play architecture on an ASIC while supporting the small 
form factor and power footprint constraints of these operational 
settings. This brings the capability of demanding commercial 
applications such as smart phones, smart cameras, and 
autonomous driving systems to these processors running 
machine learning models at the sensor. Several commercial 
vendors license comprehensive development environments and 
machine learning libraries as well as graph support, integrated 
using standard interfaces all operable with the C programming 
language.  

In addition, the licensable, deployment-ready neural network 
processor outputs dramatically more TOPS (Tera Operations 
Per Second) processing power per clock cycle under 1W as 
compared to standard CPU/GPU/FPGA systems by an order of 
magnitude given the same semiconductor manufacturing 
process. The advent of this technology streamlines development 
cost when enabling machine learning applications at the edge 
without materially impacting the power, space, and weight 
burden.   

II. COMPARE NEURAL NETWORK PROCESSORS TO KNOWN 
PROCESSING UNITS 

To optimize performance on a general-purpose CPU for 
neural network processing, the SIMD (Single Instruction 
Multiple Data) hardware design allows for a single instruction 
to process multiple data inputs within one instruction clock 
cycle. While the amount of data the SIMD hardware can process 
per clock cycle is large, there is a limit, and standard neural 
network applications require several instruction clock cycles. 
This increases processing time since neural network applications 
tend to ingest large amounts of noisy data.  

General purpose GPUs enable massively parallel data 
processing because the architecture leverages multiple 
processing cores, thus solving the latency problems in sequential 
processing in CPUs. In GPUs, a large portion of the processing 
cores used in parallel computing applications are floating point 
processing cores. This quickly escalates the space and power 
consumption for standard neural network applications. Thus, 



edge computing assets covered in this paper often cannot sustain 
the size and power requirements for GPU-enabled neural 
network applications.  

Neural network processors use one instruction in parallel 
across many simplified operation units, also known as MACs 
(Multiple- Accumulates), to process high volumes of data with 
a single instruction, bringing together the benefits of the parallel 
processing of the GPU and the simplified single instruction 
framework of the CPU. The neural network processor’s 
operation units have closely coupled memory to evaluate the 
neural network weights adjacent to lower the latency in 
comparison to the centralized memory of the GPU and CPU.  It 
also optimizes the multiplication and addition operations, 
reducing the need for floating point operations to reduce size and 
power consumption. 

 

 
Fig. 1.  Domain-specific programmable integrated circuits performance and 
flexibility compared to other microelectronics approach 

Domain-specific programmable ASICs, such as the neural 
network processing unit discussed here are able to process more 
data per Watt than CPUs and GPUs. However, by definition, 
ASICs have a less flexible architecture, restricting their usability 
across use cases beyond neural network processing. This limited 
flexibility can cause delayed development cycles due to the 
high-customized nature of firmware design needed to tailor the 
hardware to the use case. Neural network processors from 
certain vendors enable firmware integration into widely 
available machine learning development and deployment 
frameworks.  

III. COMPARE NEURAL NETWORK PROCESSOR ACROSS 
VENDORS 

As noted in the previous section, most neural network 
processors have favorable processing performance as measured 
in operations per Watt as compared to GPU and CPU processors. 
Among neural network processors, there is variation in feature 
integration and performance across vendors.  

This research first suggests three common neural network 
models against which to benchmark the performance of various 
neural network processors, each testing different aspects of the 
processor’s capability. The performance of these models can be 
measured in frames per second. Object detection models such as 
the Yolo-v3 (You Only Live Once) model test the capacity of 
the processor against standard convolution neural network 
problems– especially the ability of the processor to handle high 

volumes of multiplication and addition operations as well as 
contiguous memory burst transfers [7]. 

Testing various neural network processors against the BERT 
large (Bidirectional Encoder Representations from 
Transformers)  natural language processing model demonstrates 
the ability of the processor to efficiently compute complex 
operations from the Scaled Dot-Product Attention shown in (1)  
such as square root and matrix transpose operations [1] [6]. 
These operations are not leveraged in the conventional 
convolution networks.  

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 �𝑄𝑄𝑄𝑄
𝑇𝑇
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 EDSR (Enhanced Deep Super-Resolution) models provide a 
helpful benchmark because these models have much greater 
computational and memory cost than the previous models 
[5].  Moreover, super resolution networks have proven to aid 
object detection model accuracy, making a good candidate to 
test on the neural network processor. 

The diversity of use cases helps determine if the neural 
network processor performs consistently across the common 
variation in neural network use cases for maximum 
generalization. For example, if the processor does not have an 
agile memory bus controller, we may see that a processor tends 
to perform well in convolution neural network models but 
poorly in transformer-intensive models such as those used in 
natural language processing.  

TABLE I.  EXAMPLE NETWORKS TO BENCHMARK NEURAL NETWORK 
PROCESSORS 

Networks Type Image Size Reason to Use 

Yolov3 Obj Detection 416x416x3 Normal 
Capability 

BERT Transformer 384x1x1 
Processing 

and Memory 
Flexibility 

EDSR Super Res 256x256x3 
Computationa
l and Storage 

Intense 
 

The output accuracy of neural network processors across 
model types is another component to consider when comparing 
neural network processors. Most neural network processor 
compilers will analyze the network model upon compilation and 
optimize the network by erasing a layer in a network it deems 
doesn’t affect the accuracy of the result significantly. This is also 
known as pruning [3]. Pruning decreases the amount of 
operations and weights needed in the neural network, decreasing 
the amounts of memory and MACs required to run a model. 
However, pruning a network degrades the accuracy of models. 
A good neural network processor compiler will make a good 
tradeoff, pruning the network while maintaining the network 
model accuracy. 

As mentioned before, floating point operations often 
increase the size and power consumption of the processor.  
Therefore, it is critical to convert weights, bias, and activations 
values of a neural network from floating point into lower 
precision fixed point [4]. This method is known as quantization, 



and the processor’s ability to attempt these conversions without 
jeopardizing the networks accuracy demonstrates how well a 
neural network processor compiler performs.   

Some processor also uses the Winograd Transform to 
decrease the number of operations needed for the convolution 
operation. Some compilers will replace convolution operations 
with the Winograd Transform which creates a less accurate 
solution when pruning the model. Because of these cases, one 
should always look at the accuracy of the results and not just the 
performance in frames per second or completion time of the 
neural network processor. 

A neural network processor should also support multiple 
fixed-point precision and floating-point precision data 
processing. The more data types that the processor supports, the 
more range of performance and accuracy is available. For 
instance, if a processor has eight-bit fixed point precision, fewer 
operations are required, but the models have poorer accuracy 
when compared to processors that allow for floating point 
precision. Comparing neural network processors across 
common model types, holding constant the compiler 
optimizations for the test case, as well as ensuring floating point 
precision capabilities, allows the system designers to ensure 
maximum performance in neural network use cases. 

IV. ROBUST DEVELOPMENT ECOSYSTEM 
One key benefit of using a domain specific processor like a 

neural network processor is that, because these processors are 
integrated in consumer devices elsewhere in industry at massive 
scale, there are robust development frameworks to integrate 
machine learning model software with this optimized hardware. 
The availability of these frameworks for some vendors can drive 
down development, deployment, and maintenance costs of the 
applications built on the processors.  

Most machine learning algorithms are trained on a large 
server environment using common machine learning 
frameworks such as PyTorch and TensorFlow. Deployment of 
these machine learning algorithms on embedded processors 
require a developer to convert Python code to the C language 
and assembly language because Python is not very optimized for 
embedded platform applications. In present day, neural network 
processor vendors translate libraries in common machine 
learning frameworks such as Pytorch and Tensorflow into their 
proprietary vendor’s assembly language. However, when new 
functions are added to the learning framework, the vendor may 
need to reoptimize their compiler to include this function.  

To offload the work done to optimize new functions in 
hardware by the vendor, the Open Neural Network Exchange 
(ONNX) was formed to use an open standard to represent neural 
network models [2]. Almost all machine learning frameworks 
have a conversion from their framework to the ONNX standard 
for hardware optimization. By using optimizing neural network 
processor firmware based on the ONNX standard, the vendor 
can offload compiler development effort associated with 
evolving functionality in multiple common machine learning 
frameworks. With the ONNX framework, data scientists can 
focus more on algorithm development rather than hardware 
optimization on the processor, speeding up development and 
deployment of neural network processors and machine learning 

models for embedded processing at the edge. In an ideal scenario 
the ONNX framework middleware would bring the ease of 
porting a functional neural network model from standard server 
to the highly optimized embedded platforms. 

V. ARCHITECTURE FAVORABLE FOR POWER AND SPACE 
CONSTRAINED USE CASES 

Traditional use cases for embedded processing on the edge 
can center around RF processing for sensing the signal 
environment. The power, space, and cooling requirements for 
complex processing and decision making at the edge have 
commonly constrained the capabilities of the sensor. Deploying 
neural network processors at the edge has enabled new critical 
capabilities like spoofing and jamming detection, object 
tracking, and signal characterization. The advantages of neural 
network processors for these uses cases as discussed above, 
encourage the integration of these processors within the RF 
processing architecture.  

Typically, RF systems take in the signal environment with a 
data converter that converts analog to the digital domains. These 
data converters have throughput that exceeds the capacity of the 
neural network processor. In FPGA and ASIC based designs, 
there is feature aggregation and preprocessing of this high 
throughput data. As discussed, these architectures are costly to 
develop and maintain with low flexibility. This paper proposes 
a COTS (Commercial Off The Shelf) vector processor to 
perform this preprocessing.  

As shown on the architecture below in Fig 2., the vector DSP 
processors is placed between the data converter and the neural 
network processor to perform important ore-processing 
functions like AoA (Angle Of Arrival), beamforming, frequency 
domain processing, and decimation. Then, the neural network 
processor uses this processed signal from the vector DSP 
processor to perform detection, classification, identification and 
characterization functions on the edge.  

 
Fig. 2. Domain Specific Programmable Integrated Circuits performance and 
flexibility compared to other microelectronics approach 

Vendors who provide neural network processors commonly 
have compatible vector DSP processors which reduces the need 
for additional trade studies on compatibility and capacity.  

There are several major benefits to such an architecture. As 
the system is highly programmable, the same ASIC may be used 
for multiple programs and applications, allowing for rapid 
development and amortization of ASIC costs across multiple 
programs. The programmability also enables firmware upgrades 
after system deployment. As the ASIC is largely composes of 
licensable COTS processors and intellectual property, there is 
considerable flexibility regarding ITAR (International Traffic in 



Arms Regulations) on ASIC fabrication choice, which can allow 
for the leading semiconductor processes to be used, maximizing 
the throughput per Watt. 

VI. CONCLUSION 

 
Fig. 3. Scenarios like these require flexible processing units to cover multiple 
tactical applications in a communication restricted environment 

Moving processing power to the edge enables embedded 
assets, such as those in tactical military environments, to achieve 
higher degrees of autonomy, leveraging machine learning, in 
tactical environments where the communications environment 
is restricted. Further, military systems which are power and 
space constrained face limitations in both the processing power 
and the complexity of decision-making algorithms deployed in 
operational settings where this latency in communication is a 
factor, restricting the uses cases for autonomous systems in 
tactical environments to only those that are on very large and 
power intensive frameworks.  

Various firmware-based architectures that are customized to 
narrow use cases have emerged to fill one-off gaps across the 
mission space, each with their own highly specialized staff 
required to maintain and customize the applications. This drives 
up the cost for implementing these capabilities in additional or 
extended mission space. 

In military applications, the demand for increased 
complexity in algorithms processed on embedded assets at the 
tactical edge is expanding. The rapid development cycle needed 
to train and deploy models for new operational use cases doesn’t 
fit inside the long, unique firmware development process 
typically used for computing assets in power and space 
constrained environments. 

Neural network processors provide a unified and extensible 
architecture that can extend scalable use of machine learning 
models on constrained embedded platforms to accelerated 
deployment on systems like autonomous unmanned vehicles 
and guided missiles. This architecture enables faster high 
processing units on the edge, as well as a more flexible and agile 
design to rapidly deploy models on new assets.  
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