

Machine Learning at the Edge Using Neural Network
Processor

Edwin Lee
Raytheon Technology

Hanover, MD, United States
edwin.lee@ rtx.com

Michael Parker
Raytheon Technology

El Segundo, CA, United States
michael.a.parker@ rtx.com

Michael Cervantes
Raytheon Technology

Tewksbury, MA, United States
macervantes@rtx.com

Ben Plotner
Raytheon Technology

Hanover, MD, United States
Benjamin.F.Plotner@rtx.com

Abstract—Increasingly, power, space, and cooling constrained
embedded computing assets need to run machine learning
applications to make autonomous, low latency decisions within
operational environments. Where GPUs, CPUs, and FPGAs aren’t
suitable for these constraints, custom ASICs with their non-
standard development processes and frameworks are the best
available option for bringing the power of machine learning to the
edge. This paper discusses a neural network processing
architecture and why it surpasses all size, power, throughput, and
weight requirements while maintaining performance and allowing
interoperability with commercial vendors license comprehensive
development environment and machine learning libraries. We
compare this neural network processor architecture with existing
AI and machine learning platforms that leverage common
architectures such as GPUs, CPUs, and FPGAs. The plug and play
nature of the neural network processor architecture is optimized
for applications such as EO-IR (Electro-optical/Infrared) Sensor
and Radar Systems without respinning the hardware, reducing
costs. This paper explores best practices for deploying common AI
and machine learning models for object detection, super resolution,
and natural language processing on a neural network processor at
the edge. The neural network processor offer an alternative for
deployment of autonomous machine learning at the edge that
brings the power of a robust development ecosystem together with
an architecture favorable for power and space constrained use
cases.

Keywords—Neural Network Processor, Small Form Factor,
ONNX, Natural Language Processing, RF Embedded Systems

I. INTRODUCTION
Machine learning, including deep learning, applications

have gained traction in both the military and commercial sectors
in recent years, enabling machine learning in tactical
environments. Models for these environments are trained on
large datasets, leveraging commodity computing environments
in preparation to be deployed on data closer to the sensor. To
apply models over data in real time in increasingly tactical
environments, the processor close to the sensor itself must be
small, light, and have a low power footprint. Standard CPU
(Central Processing Unit) and GPU (Graphics Processing Unit)
based-systems do not support these requirements. To get around
this FPGA (Field Programmable Gate Arrays) and ASIC
(Application-Specific Integrated Circuit) designers customize
processors to perform machine learning applications suited for
constrained power, space, and weight requirements. However,
long development and manufacturing time on these custom
hardware chips prevents companies from deploying algorithms
for many mission critical applications. ASIC and FPGA
developers are restricted to programming in RTL language

without the benefit of a comprehensive development
environment that provides well-tested and robust library support
for key aspects of algorithm implementation. This lack of
support dramatically increases development and compilation
time as well as the burden of proper validation and testing of
each custom component.

Employing neural network processors to support these
machine learning applications near the sensor combines a plug-
and-play architecture on an ASIC while supporting the small
form factor and power footprint constraints of these operational
settings. This brings the capability of demanding commercial
applications such as smart phones, smart cameras, and
autonomous driving systems to these processors running
machine learning models at the sensor. Several commercial
vendors license comprehensive development environments and
machine learning libraries as well as graph support, integrated
using standard interfaces all operable with the C programming
language.

In addition, the licensable, deployment-ready neural network
processor outputs dramatically more TOPS (Tera Operations
Per Second) processing power per clock cycle under 1W as
compared to standard CPU/GPU/FPGA systems by an order of
magnitude given the same semiconductor manufacturing
process. The advent of this technology streamlines development
cost when enabling machine learning applications at the edge
without materially impacting the power, space, and weight
burden.

II. COMPARE NEURAL NETWORK PROCESSORS TO KNOWN
PROCESSING UNITS

To optimize performance on a general-purpose CPU for
neural network processing, the SIMD (Single Instruction
Multiple Data) hardware design allows for a single instruction
to process multiple data inputs within one instruction clock
cycle. While the amount of data the SIMD hardware can process
per clock cycle is large, there is a limit, and standard neural
network applications require several instruction clock cycles.
This increases processing time since neural network applications
tend to ingest large amounts of noisy data.

General purpose GPUs enable massively parallel data
processing because the architecture leverages multiple
processing cores, thus solving the latency problems in sequential
processing in CPUs. In GPUs, a large portion of the processing
cores used in parallel computing applications are floating point
processing cores. This quickly escalates the space and power
consumption for standard neural network applications. Thus,

edge computing assets covered in this paper often cannot sustain
the size and power requirements for GPU-enabled neural
network applications.

Neural network processors use one instruction in parallel
across many simplified operation units, also known as MACs
(Multiple- Accumulates), to process high volumes of data with
a single instruction, bringing together the benefits of the parallel
processing of the GPU and the simplified single instruction
framework of the CPU. The neural network processor’s
operation units have closely coupled memory to evaluate the
neural network weights adjacent to lower the latency in
comparison to the centralized memory of the GPU and CPU. It
also optimizes the multiplication and addition operations,
reducing the need for floating point operations to reduce size and
power consumption.

Fig. 1. Domain-specific programmable integrated circuits performance and
flexibility compared to other microelectronics approach

Domain-specific programmable ASICs, such as the neural
network processing unit discussed here are able to process more
data per Watt than CPUs and GPUs. However, by definition,
ASICs have a less flexible architecture, restricting their usability
across use cases beyond neural network processing. This limited
flexibility can cause delayed development cycles due to the
high-customized nature of firmware design needed to tailor the
hardware to the use case. Neural network processors from
certain vendors enable firmware integration into widely
available machine learning development and deployment
frameworks.

III. COMPARE NEURAL NETWORK PROCESSOR ACROSS
VENDORS

As noted in the previous section, most neural network
processors have favorable processing performance as measured
in operations per Watt as compared to GPU and CPU processors.
Among neural network processors, there is variation in feature
integration and performance across vendors.

This research first suggests three common neural network
models against which to benchmark the performance of various
neural network processors, each testing different aspects of the
processor’s capability. The performance of these models can be
measured in frames per second. Object detection models such as
the Yolo-v3 (You Only Live Once) model test the capacity of
the processor against standard convolution neural network
problems– especially the ability of the processor to handle high

volumes of multiplication and addition operations as well as
contiguous memory burst transfers [7].

Testing various neural network processors against the BERT
large (Bidirectional Encoder Representations from
Transformers) natural language processing model demonstrates
the ability of the processor to efficiently compute complex
operations from the Scaled Dot-Product Attention shown in (1)
such as square root and matrix transpose operations [1] [6].
These operations are not leveraged in the conventional
convolution networks.

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝑠𝑠𝐴𝐴𝑠𝑠𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 �𝑄𝑄𝑄𝑄
𝑇𝑇

�𝑑𝑑𝑘𝑘
� 𝑉𝑉 (1)

 EDSR (Enhanced Deep Super-Resolution) models provide a
helpful benchmark because these models have much greater
computational and memory cost than the previous models
[5]. Moreover, super resolution networks have proven to aid
object detection model accuracy, making a good candidate to
test on the neural network processor.

The diversity of use cases helps determine if the neural
network processor performs consistently across the common
variation in neural network use cases for maximum
generalization. For example, if the processor does not have an
agile memory bus controller, we may see that a processor tends
to perform well in convolution neural network models but
poorly in transformer-intensive models such as those used in
natural language processing.

TABLE I. EXAMPLE NETWORKS TO BENCHMARK NEURAL NETWORK
PROCESSORS

Networks Type Image Size Reason to Use

Yolov3 Obj Detection 416x416x3 Normal
Capability

BERT Transformer 384x1x1
Processing

and Memory
Flexibility

EDSR Super Res 256x256x3
Computationa
l and Storage

Intense

The output accuracy of neural network processors across
model types is another component to consider when comparing
neural network processors. Most neural network processor
compilers will analyze the network model upon compilation and
optimize the network by erasing a layer in a network it deems
doesn’t affect the accuracy of the result significantly. This is also
known as pruning [3]. Pruning decreases the amount of
operations and weights needed in the neural network, decreasing
the amounts of memory and MACs required to run a model.
However, pruning a network degrades the accuracy of models.
A good neural network processor compiler will make a good
tradeoff, pruning the network while maintaining the network
model accuracy.

As mentioned before, floating point operations often
increase the size and power consumption of the processor.
Therefore, it is critical to convert weights, bias, and activations
values of a neural network from floating point into lower
precision fixed point [4]. This method is known as quantization,

and the processor’s ability to attempt these conversions without
jeopardizing the networks accuracy demonstrates how well a
neural network processor compiler performs.

Some processor also uses the Winograd Transform to
decrease the number of operations needed for the convolution
operation. Some compilers will replace convolution operations
with the Winograd Transform which creates a less accurate
solution when pruning the model. Because of these cases, one
should always look at the accuracy of the results and not just the
performance in frames per second or completion time of the
neural network processor.

A neural network processor should also support multiple
fixed-point precision and floating-point precision data
processing. The more data types that the processor supports, the
more range of performance and accuracy is available. For
instance, if a processor has eight-bit fixed point precision, fewer
operations are required, but the models have poorer accuracy
when compared to processors that allow for floating point
precision. Comparing neural network processors across
common model types, holding constant the compiler
optimizations for the test case, as well as ensuring floating point
precision capabilities, allows the system designers to ensure
maximum performance in neural network use cases.

IV. ROBUST DEVELOPMENT ECOSYSTEM
One key benefit of using a domain specific processor like a

neural network processor is that, because these processors are
integrated in consumer devices elsewhere in industry at massive
scale, there are robust development frameworks to integrate
machine learning model software with this optimized hardware.
The availability of these frameworks for some vendors can drive
down development, deployment, and maintenance costs of the
applications built on the processors.

Most machine learning algorithms are trained on a large
server environment using common machine learning
frameworks such as PyTorch and TensorFlow. Deployment of
these machine learning algorithms on embedded processors
require a developer to convert Python code to the C language
and assembly language because Python is not very optimized for
embedded platform applications. In present day, neural network
processor vendors translate libraries in common machine
learning frameworks such as Pytorch and Tensorflow into their
proprietary vendor’s assembly language. However, when new
functions are added to the learning framework, the vendor may
need to reoptimize their compiler to include this function.

To offload the work done to optimize new functions in
hardware by the vendor, the Open Neural Network Exchange
(ONNX) was formed to use an open standard to represent neural
network models [2]. Almost all machine learning frameworks
have a conversion from their framework to the ONNX standard
for hardware optimization. By using optimizing neural network
processor firmware based on the ONNX standard, the vendor
can offload compiler development effort associated with
evolving functionality in multiple common machine learning
frameworks. With the ONNX framework, data scientists can
focus more on algorithm development rather than hardware
optimization on the processor, speeding up development and
deployment of neural network processors and machine learning

models for embedded processing at the edge. In an ideal scenario
the ONNX framework middleware would bring the ease of
porting a functional neural network model from standard server
to the highly optimized embedded platforms.

V. ARCHITECTURE FAVORABLE FOR POWER AND SPACE
CONSTRAINED USE CASES

Traditional use cases for embedded processing on the edge
can center around RF processing for sensing the signal
environment. The power, space, and cooling requirements for
complex processing and decision making at the edge have
commonly constrained the capabilities of the sensor. Deploying
neural network processors at the edge has enabled new critical
capabilities like spoofing and jamming detection, object
tracking, and signal characterization. The advantages of neural
network processors for these uses cases as discussed above,
encourage the integration of these processors within the RF
processing architecture.

Typically, RF systems take in the signal environment with a
data converter that converts analog to the digital domains. These
data converters have throughput that exceeds the capacity of the
neural network processor. In FPGA and ASIC based designs,
there is feature aggregation and preprocessing of this high
throughput data. As discussed, these architectures are costly to
develop and maintain with low flexibility. This paper proposes
a COTS (Commercial Off The Shelf) vector processor to
perform this preprocessing.

As shown on the architecture below in Fig 2., the vector DSP
processors is placed between the data converter and the neural
network processor to perform important ore-processing
functions like AoA (Angle Of Arrival), beamforming, frequency
domain processing, and decimation. Then, the neural network
processor uses this processed signal from the vector DSP
processor to perform detection, classification, identification and
characterization functions on the edge.

Fig. 2. Domain Specific Programmable Integrated Circuits performance and
flexibility compared to other microelectronics approach

Vendors who provide neural network processors commonly
have compatible vector DSP processors which reduces the need
for additional trade studies on compatibility and capacity.

There are several major benefits to such an architecture. As
the system is highly programmable, the same ASIC may be used
for multiple programs and applications, allowing for rapid
development and amortization of ASIC costs across multiple
programs. The programmability also enables firmware upgrades
after system deployment. As the ASIC is largely composes of
licensable COTS processors and intellectual property, there is
considerable flexibility regarding ITAR (International Traffic in

Arms Regulations) on ASIC fabrication choice, which can allow
for the leading semiconductor processes to be used, maximizing
the throughput per Watt.

VI. CONCLUSION

Fig. 3. Scenarios like these require flexible processing units to cover multiple
tactical applications in a communication restricted environment

Moving processing power to the edge enables embedded
assets, such as those in tactical military environments, to achieve
higher degrees of autonomy, leveraging machine learning, in
tactical environments where the communications environment
is restricted. Further, military systems which are power and
space constrained face limitations in both the processing power
and the complexity of decision-making algorithms deployed in
operational settings where this latency in communication is a
factor, restricting the uses cases for autonomous systems in
tactical environments to only those that are on very large and
power intensive frameworks.

Various firmware-based architectures that are customized to
narrow use cases have emerged to fill one-off gaps across the
mission space, each with their own highly specialized staff
required to maintain and customize the applications. This drives
up the cost for implementing these capabilities in additional or
extended mission space.

In military applications, the demand for increased
complexity in algorithms processed on embedded assets at the
tactical edge is expanding. The rapid development cycle needed
to train and deploy models for new operational use cases doesn’t
fit inside the long, unique firmware development process
typically used for computing assets in power and space
constrained environments.

Neural network processors provide a unified and extensible
architecture that can extend scalable use of machine learning
models on constrained embedded platforms to accelerated
deployment on systems like autonomous unmanned vehicles
and guided missiles. This architecture enables faster high
processing units on the edge, as well as a more flexible and agile
design to rapidly deploy models on new assets.

REFERENCES
[1] K. Han et al., "A Survey on Vision Transformer," in IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 45, no. 1, pp. 87-110,
1 Jan. 2023, doi: 10.1109/TPAMI.2022.3152247.

[2] "Faster Scalable ML Model Deployment Using ONNX and Open Source
Tools," 2020 IEEE Infrastructure Conference, San Francisco, CA, USA,
2020, pp. i-i, doi: 10.1109/IEEECONF47748.2020.9377615.

[3] S. Kim, J. Lee, S. Kang, J. Lee, W. Jo and H. -J. Yoo, "PNPU: An Energy-
Efficient Deep-Neural-Network Learning Processor With Stochastic
Coarse–Fine Level Weight Pruning and Adaptive Input/Output/Weight
Zero Skipping," in IEEE Solid-State Circuits Letters, vol. 4, pp. 22-25,
2021, doi: 10.1109/LSSC.2020.3041497.

[4] K. Desappan, M. Mody, M. Mathew, P. Swami and P. Eppa, "CNN
Inference: Dynamic and Predictive Quantization," 2018 IEEE 8th
International Conference on Consumer Electronics - Berlin (ICCE-
Berlin), Berlin, Germany, 2018, pp. 1-4, doi: 10.1109/ICCE-
Berlin.2018.8576251.

[5] B. Lim, S. Son, H. Kim, S. Nah and K. M. Lee, "Enhanced Deep Residual
Networks for Single Image Super-Resolution," 2017 IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW),
Honolulu, HI, USA, 2017, pp. 1132-1140, doi:
10.1109/CVPRW.2017.151.

[6] J. He, L. Zhao, H. Yang, M. Zhang and W. Li, "HSI-BERT: Hyperspectral
Image Classification Using the Bidirectional Encoder Representation
From Transformers," in IEEE Transactions on Geoscience and Remote
Sensing, vol. 58, no. 1, pp. 165-178, Jan. 2020, doi:
10.1109/TGRS.2019.2934760.

[7] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You Only Look
Once: Unified, Real-Time Object Detection," 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA,
2016, pp. 779-788, doi: 10.1109/CVPR.2016.91.

