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Abstract—Synthetic Aperture Radar (SAR) automatic target
recognition (ATR) is a key technique for remote-sensing image
recognition. In real-world applications, massive SAR images are
captured by airplanes or satellites, requiring high-throughput
and low-latency processing. Recently, Graph Neural Networks
(GNNs) have shown superior performance for SAR ATR in terms
of accuracy and computational complexity. In this paper, we
accelerate GNN-based SAR ATR on an FPGA. In the proposed
design, we develop a customized data path and memory organi-
zation to execute various computation kernels of GNNs, including
feature aggregation and feature transformation. We exploit the
high bandwidth memory (HBM) of the FPGA to speed up data
loading and store intermediate results. We employ the splitting
kernel technique to improve the routability and frequency of
the design on FPGA. We implement the proposed design using
High-level Synthesis (HLS) on a state-of-the-art data-center
FPGA board, the AMD/Xilinx Alveo U280. Compared with
implementations on state-of-the-art CPUs (GPUs), our FPGA
implementation achieves a 5.2× (1.57×) lower latency, a 10×
(3.3×) higher throughput, and is 36.2× (7.35×) more energy
efficient.

Index Terms—Synthetic Aperture Radar, Automatic Target
Recognition, Graph Neural Network, High Bandwidth Memory

I. INTRODUCTION

Synthetic Aperture Radar (SAR) is capable of acquiring
remote-sensing images in all-weather conditions, allowing for
observations of targets on the Earth’s surface. SAR has found
many applications in various fields, such as agriculture [1],
[2] and civilization [3], [4]. SAR automatic target recognition
(ATR) is a key technique for classifying targets in SAR
images. Figure 1 illustrates the end-to-end workflow of SAR
ATR in real-world applications. It comprises four steps: (1)
data acquisition: SAR raw data is acquired from satellite-
based or airborne SAR sensors, which emit microwave signals
towards the target area and record the backscattered signals.
(2) preprocessing: The acquired SAR raw data is preprocessed
to generate SAR images and reduce noise. This step may
involve radiometric calibration, geometric correction, speckle
filtering, and more. (3) target recognition: SAR images are
processed by machine learning (ML) models, such as Convo-
lutional Neural Networks (CNNs) or Graph Neural Networks
(GNNs), for target recognition. (4) decision making: The
classification results are sent to the decision maker for analysis.
Among the four steps, the preprocessing and target recognition
steps are typically executed on a data center. Additionally, the
target recognition step can become a performance bottleneck
due to the high computational complexity of ML models.

Many applications, including defense and military scenarios,
require high-throughput and low-latency SAR ATR for real-
time decision making. Therefore, achieving high performance
SAR ATR on the data center is crucial.
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SAR Automatic Target Recognition (SAR ATR)

• SAR: Synthetic Aperture Radar; ATR: Automatic Target Recognition
• SAR ATR: One of the most crucial and challenging issues in SAR application technology
• End-to-end SAR ATR workflow:

• Step 1: Data Acquisition on Satellite/airplane, and data is sent to data center
• Step 2: Preprocessing SAR raw data using signal processing techniques
• Step 3: Target classification on SAR images using machine learning (ML) models 
• Step 4: Decision making based on the results of ATR
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Fig. 1: SAR automatic target recognition (ATR) in data center

Graph Neural Networks (GNNs) [5], [6] have recently been
developed for SAR automatic target recognition (ATR). When
compared with state-of-the-art CNNs [7]–[11] for SAR ATR,
GNN-based approaches [5], [6] achieve comparable classifica-
tion accuracy while exhibiting lower computational complex-
ity. This reduced complexity of GNN-based approaches holds
the potential for high-performance and energy-efficient SAR
ATR.

In this paper, we focus on accelerating GNN-based SAR
ATR in a data center environment. However, GNN-based
approaches involve graph message passing, which exhibits
irregular computation and memory access patterns. Executing
these approaches on general-purpose processors (e.g., CPUs,
GPGPUs) in data centers, which typically have complex cache
hierarchies, is not efficient. We use a data-center FPGA (e.g.,
AMD/Xilinx Alveo U280) as our target platform. Utilizing
HBM-enabled FPGAs offers several benefits: (1) Data-center
FPGAs provide ample programmable computation resources
and on-chip resources, enabling significant computation paral-
lelism. (2) The programmability of FPGAs allows us to design
customized data paths and on-chip memory organizations
that efficiently handle the irregular computation pattern and
memory access pattern of GNNs. (3) HBM-enabled FPGAs
are equipped with High Bandwidth Memory (HBM), which
provides substantial external memory bandwidth. This is par-
ticularly advantageous for GNNs, which often exhibit poor
data locality in this computations. Our contributions can be
summarized as follows:

• We accelerate GNN-based SAR ATR on an HBM-enabled
data-center FPGA.



• We develop a customized data path and memory organi-
zation to efficiently execute various computation kernels
of GNN for low-latency inference.

• We exploit the High Bandwidth Memory (HBM) of the
FPGA to speed up data loading and storing intermediate
results.

• We utilize the splitting kernel technique to improve the
routability and frequency of the design.

• We implement our design on a state-of-the-art FPGA
board, AMD/Xilinx Alveo U280. Compared with imple-
mentations on state-of-the-art CPUs (GPUs), our FPGA
implementation achieves 5.2× (1.57×) lower latency,
10× (3.3×) higher throughput, and is 36.2× (7.35×)
more energy efficient.

II. BACKGROUND

A. GNN-based SAR Automatic Target Recognition
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Fig. 2: The graph construction approach and GNN model used
in [6]

Recently, Graph Neural Networks (GNNs) [5], [6] have
demonstrated superior performance in SAR automatic target
recognition, in terms of accuracy and computational complex-
ity. In [6], the authors propose constructing the input graph
from the SAR image based on the order of the pixel grayscale
values (See Figure 7 and Figure 8 of [6] for details). The
constructed graph is then fed into a graph neural network for
classification. However, the graph construction approach in [6]
disregards the structure of the target and is sensitive to vari-
ations in pixel values. In contrast, in [5], the authors propose
transforming the input SAR image into a 2-D mesh graph, as
shown in Figure 2. Each pixel in the original SAR image is
represented as a vertex, and edges are formed by connecting
each pixel to its eight neighboring pixels. The resulting graph

is then input into the GNN model for classification. Compared
with [6], the graph construction approach in [5] preserves
the structure of the target and exhibits greater robustness to
variations in pixel values. Therefore, we choose to accelerate
the GNN model proposed in [5].

The GNN model in [5] consists of three types of layers:
the GNN layer (GNNL), the Graph pooling layer (Pooling),
and the Attention layer (Attention). We represent the input
graph as G(V, E ,H0), where V denotes the set of vertices,
E denotes the set of edges, and H0 denotes the input feature
matrix. The ith row of H0 (denoted as h0

i ) represents the input
feature vector of vertex i (i ∈ V).
GNN layer: The GNN layer is the GraphSAGE layer [12] that
follows the aggregate-update paradigm:

aggregate:zl
i = Mean

(
hl−1
j : j ∈ N (i) ∪ {i}

)
update:hl

i = ReLU
(
zl
iW

l
neighbor + hl−1

i W l
self

) (1)

where hl−1
j denotes the feature vector of vertex j at layer

l− 1, N (i) denotes the set of neighbors of vertex i, W l
neighbor

and W l
self are the weight matrices. In aggregate phase, each

vertex aggregates vertex features from the neighbors, and the
aggregated feature vectors are reduced using the element-wise
Mean() function. In update phase, the feature vectors (zl

i, ) of
each vertex are transformed by the weight matrices (W l

neighbor
and W l

self) to generate the updated feature vector hl
i. The

update phase has two parts – neighbor update zl
iW

l
neighbor and

self update hl−1
i W l

self.
Graph pooling layer: It downscales the input graph Vl−1 into
a smaller output graph Vl. The pooling operaton is similar to
the pooling in the 2-D images:

hl
p(i,j) = max(hl−1

p(2i,2j),h
l−1
p(2i+1,2j),

hl−1
p(2i,2j+1),h

l−1
p(2i+1,2j+1))

(2)

where vli,j ∈ Vl, v
l−1
p(2i,2j), v

l−1
p(2i+1,2j), v

l−1
p(2i,2j+1), v

l−1
p(2i+1,2j+1) ∈

Vl−1, and p(i, j) denotes the index of the vertex locating at
the coordinate (i, j) in the 2-D mesh graph.
Attention layer: The attention layer consists of feature atten-
tion that calculates the attention scores for each vertex feature,
and vertex attention that calculates the attention scores for each
vertex. The feature attention is calculated by:

Ffa = sigmoid(mean({hi,j : vi,j ∈ V})Wmean
fa +

sum({hi,j : vi,j ∈ V})W sum
fa )

(3)

where hi,j ,Ffa ∈ Rc, Wmean
fa ,W sum

fa ∈ Rc×c, and c denotes
the length of feature vector. fa[i] is the attention score for ith

feature. The vertex attention score is calculated using a GNN
layer:

{αi,j : vi,j ∈ Vl} = sigmoid(GNNL({hi,j : vi,j ∈ Vl−1})),
(4)

Where αi,j is the attention score for vertex vi,j . Then, the
output of the attention layer is calculated by:

{hout
i,j : h

out
i,j = (1 + αi,j)h

in
i,j + hin

i,j ⊗ Ffa} (5)

where ⊗ is element-wise multiplication.
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B. HBM-enabled FPGA

Data-center Field Programmable Gate Arrays (FPGAs) have
emerged as promising platforms widely used in data cen-
ters, such as Amazon AWS [13] and Intel Developer Cloud
[14]. Data-center FPGAs offer a plethora of programmable
resources, including Look-up Tables (LUTs), Digital Signal
Processing (DSP) units, Block RAMs (BRAMs), and more.
These abundant computational resources enable massive par-
allelism for computationally intensive workloads, such as
machine learning inference [15]–[35]. Additionally, FPGA
vendors, such as AMD/Xilinx and Intel, have integrated High
Bandwidth Memory (HBM) into their FPGA chips, such as
Xilinx Alveo U280 [36] and Intel Stratix 10 MX FPGA
[37]. The diagram of the HBM in Xilinx Alveo U280 [36]
is shown in Figure 3. HBM comprises multiple parallel and
independent Pseudo Channels (PCs), with memory controllers
(MCs) directly interacting with these Pseudo Channels for
data read/write operations. For every four PCs, there is a
crossbar switch network (SW) of size 4 × 4, enabling all-
to-all data communication between the four AXI channels
[38] and four PCs. The parallel PCs of HBM provide massive
memory bandwidth (up to 460 GB/s with 32 HBM PCs) and
substantial memory capacity (up to 8GB with 32 HBM PCs).
Consequently, HBM holds great potential for accelerating
memory-bound applications, such as GNN inference.

PC PC PC PC PC PC PC PC…

MC MC MC MC

SW 4 × 4 SW 4 × 4

…

…

Memory
Controllers

Switch
Network

32 AXI channels

32 HBM Pseudo Channels (2Gb each)

Fig. 3: High Bandwidth Memroy (HBM) in AMD/Xilinx
Alveo U280.

III. OVERVIEW

We accelerate the GNN-based SAR ATR approach proposed
in [5]. The structure of the GNN model is introduced in
Section II-A.

Figure 4 provides an overview of the proposed FPGA accel-
erator. The accelerator consists of multiple parallel processing
elements (PEs). Each PE includes a Feature Aggregation (FA)
Module, a Feature Update (FU) Module, and a Multi-layer
Perceptron (MLP) Module. Each PE is capable of executing
the inference of a SAR image. During runtime, the SAR
images are transferred from the host processor to the High
Bandwidth Memory (HBM) via PCIe interconnection. Subse-
quently, the PEs perform the inference of the SAR images, and
the inference results are sent back to the host processor through
PCIe. The algorithm for executing SAR ATR using multiple
PEs is shown in Algorithm 1. When a PE is idle, a SAR image
is assigned to this PE for inference until the predicted label

for this SAR image generated. It enables parallel processing
of multiple SAR images.

HBM

MLP MLP

FA FU FA FU

FPGA
PCIe

PCIe

PCIe

…

PCIe

PE

Fig. 4: Proposed accelerator architecture.

Algorithm 1 Inference using multiple PEs

Input: A set of input SAR images X ;
Output: The predicted labels for each SAR image in X ;

1: for each SAR image X ∈ X Parallel do
2: if there is an idle PE: PEi then
3: PEi executes the inference for image X

IV. ARCHITECTURE DESIGN

Figure 5 illustrates the components of a Processing Element
(PE), which includes a Feature Aggregation (FA) module, a
Feature Update module, and an MLP module.

A. Feature Aggregation Module

The Feature Aggregation (FA) module executes the aggre-
gate phase (Section II-A) of the GNN layer and the graph
pooling layer. The FA module comprises a Feature Buffer,
an Edge Buffer, a Result Buffer, a Shuffling Network, and
multiple computation pipelines. The Feature Buffer and the
Edge Buffer are responsible for storing the input feature matrix
and edges, respectively.

Algorithm 2 Scatter-Gather paradigm

1: while not done do
2: ======= Shuffling Network ========
3: for each edge e⟨src, dst, weight⟩ do
4: Fetch src.fvector from Edge Buffer
5: Send (src.vector, e.weight) to pipeline dst%p

6: ======= Pipelines ========
7: for each (src.vector, e.weight) do
8: Produce update u←Scatter(src.vector, e.weight)
9: Update vertex vdst ← Gather(u.vector)

Executing the aggregate phase: The FA module executes the
aggregate phase using the Scatter-Gather paradigm [39], as
shown in Algorithm 2. Suppose there are p parallel pipelines.
Each pipeline has q multipliers for executing the Scatter()
function and q accumulators for executing the Gather() func-
tion. The execution of the aggregate phase is edge-centric [39].
For each edge denoted as a three-tuple e⟨src, dst, weight⟩,
the src index is routed to the Feature Buffer to fetch the
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Fig. 5: Architecture of the Processing Element (PE).

feature vector of vertex src denoted as src.vector. Then, the
input pair (src.vector, e.weight) is sent to pipeline dst%p
for processing. The Shuffling Network can handle the irregular
memory access of the aggregate phase. p pipelines can execute
pq multiply-accumulate (MAC) operations per clock cycle.

Executing the graph pooling layer: The Graph pooling layer
can also be executed using the Scatter-Gather paradigm. The
calculation of Equation 2 can be represented as a message-
passing process where vertices vp(2i+1,2j), vp(2i,2j+1), and
vp(2i+1,2j+1) propagate their feature vectors to vp(2i,2j). Then,
vp(2i,2j) reduces the feature vectors using element-wise Max()
as the Gather() function (See Algorithm 2).

B. Feature Update Module

The Feature Update (FU) module executes the update phase
of the GNN layer. FU consists of a Feature Buffer, a Weight
Buffer, a Result Buffer, and a 2-D array of Computation Units
(CUs). Each CU serves as a multiply-accumulate unit. The 2-
D array is organized as a 2-D systolic array to perform the
multiplication of the feature matrix H and the weight matrix
W . Suppose the 2-D CU array has a size of m×m. The 2-D
CU array can execute m2 multiply-accumulate operations per
clock cycle.

C. MLP Module

The Multi-layer Perceptron module executes the final MLP
of the model (See Figure 2). The primary computation in
the last MLP involves multiplying a weight matrix W with

a vector. To perform this operation efficiently, we employ
an adder tree-based design. Suppose there are s1 (s1 > 0)
adder trees, and each adder tree has s2 (s2 > 0) input ports.
Therefore, each adder tree can perform s2 multiply-accumulate
operations per cycle, and with s1 adder trees, a total of s1×s2
multiply-accumulate operations can be executed per cycle.

V. OPTIMIZATIONS

We introduce optimizations for increasing the scalability of
the design and optimizing the inference latency.

A. Exploiting High-Bandwidth Memory

In the proposed design, High-bandwidth Memory (HBM)
is utilized to store the input SAR image and the intermediate
results of each layer. HBM is chosen for storing the inter-
mediate results due to the following reasons: (1) FPGA on-
chip memory has limited capacity (e.g., AMD/Xilinx Alveo
U280 FPGA board only provides 41 MB on-chip memory).
Utilizing on-chip memory to store all the intermediate results
imposes restrictions on the size of SAR image that the
accelerator can process. On the other hand, HBM offers a
significantly larger capacity (e.g., up to 8 GB) compared to
on-chip memory. (2) HBM provides a considerably higher
memory bandwidth (460 GB/s) compared to DDR memory
(19-77 GB/s) , which is sufficient to supply input data to the
computation units within the hardware modules. (3) All the
data loading operations from HBM to the hardware modules
follow a sequential data access pattern. This sequential data
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access effectively utilizes the bandwidth of HBM. (4) FPGA
vendors (e.g., AMD/Xilinx) offer built-in crossbar switches
that can be employed for efficient data communication among
hardware modules through HBM.
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Fig. 6: The diagram of Task scheduling.

Figure 5 illustrates the connectivity details between HBM
and the hardware modules. As loading feature vectors demands
the majority of the memory bandwidth, each Feature Buffer
(in FA and FU) and each Result Buffer (in FA and FU) is
connected to three Pseudo Channels (PCs) within HBM. With
the assistance of the built-in crossbar, the intermediate results
stored by one hardware module can be directly loaded by
another hardware module (FA or FU or MLP) without any
additional overhead. Consequently, the use of HBM simplifies
the task scheduling process, as depicted in Figure 6.

B. Splitting Kernel Technique

The data-center FPGA commonly incorporates multiple
Super Logic Regions (SLRs) with limited interconnection
capabilities across SLRs. Furthermore, the HBM interfaces are
typically connected to a single SLR. These factors can result
in challenges during the Place & Route process and can poten-
tially lead to routing failures. Additionally, utilizing cross-SLR
interconnections may introduce long wire connections, which
can negatively impact the design’s frequency. To overcome
these issues, we employ the splitting kernel technique [40]. In
our illustration using the AMD/Xilinx Alveo U280 platform,
we take the following steps: (1) We split a single Processing
Element (PE) into multiple hardware modules, including FA,
FU, and MLP, and distribute these modules across different
SLRs. (2) To address the long wire connections across SLRs,
we insert registers into these connections, thereby improving
the design’s frequency. (3) For the input data to the MLP, we
establish a direct connection from the FU to the MLP without
the need to load the data from the HBM. This approach
eliminates the requirement for long wire connections across
three SLRs. The approach outlined above is depicted in Figure
7.

VI. EVALUATION

A. Implementation details

We implement the proposed design on AMD/Xilinx Alveo
U280, which is a state-of-the-art HBM-enabled data-center

HBM
PCIe
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FU

MLP

FA

FU

MLP

Registers

SL
R0

SL
R1

SL
R2

Fig. 7: Kernel placement using splitting kernel technique on
AMD/Xilinx Alveo U280.

FPGA board. Alveo U280 offers 8 GB HBM with total
memory bandwidth of 460 GB/s. The HBM has 32 pseudo
channels (PCs). Alveo U280 has three Super Logic Regions
(SLRs) – SLR0, SLR1, and SLR2. The HBM is directly
connected to SLR0. We implement the design using Xilinx
High-level Synthesis (HLS). We implement two Processing
Elements (PEs) on Alveo U280 as shown in Figure 8. Each
PE utilizes 11 PCs as shown in Figure 5. For the Feature
Aggregation module, p = 4 and q = 16. For the Feature
Update module, m = 16. For the MLP module, s1 = 4 and
s2 = 16. The resource utilization of the proposed design on
AMD/Xilinx Alveo U280.

cc

PE0:
MLP

FU

FA

cc

PE1:
MLP

FU

FASL
R0

SL
R1

SL
R2

Fig. 8: Device map on AMD/Xilinx Alveo U280. Different
hardware modules are highlighted using different colors.

Baseline: We compare our design with state-of-the-art CPU
(Intel® Core™ i9-13900K Processor) and GPU (Nvidia RTX
A5000). The platform specifications are shown in Table II.
Dataset: The evaluated GNN model in [6] performs inference
on the widely used MSTAR [41] dataset.
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TABLE I: The resource utilization of the proposed design on
AMD/Xilinx Alveo U280

Resource Used Available Utilization (%)

LUT 512520 1303680 39.31%
LUTRAM 76160 600960 12.67%

FF 817142 2607360 31.34%
BRAM 760.5 2016 37.72%
URAM 416 960 43.33%

DPS 3919 9024 43.43%

Performance metrics: We consider the following performance
metrics:

• Latency: The hardware execution latency of performing
inference for a SAR image using the GNN model in [6].

• Throughput: The number of SAR images that can be
processed per Second.

• Energy Efficiency: The energy consumption of perform-
ing inference for a SAR image. It includes the energy
consumption of entire FPGA board, including the energy
consumption of FPGA chip and the energy consumption
of FPGA DDR memory.

TABLE II: Specifications of platforms

CPU GPU Our Design

Platform Intel® Core™
i9-13900K

Nvidia
A5000

Alveo
U280

Technology Intel
7 nm

Samsung
8 nm

TSMC
16 nm

Frequency 5.80 GHz 1.7 GHz 260 MHz
Peak Performance

(TFLOPS) 0.78 27.7 0.4

On-chip Memory 32 MB 6 MB 45 MB
Memory Bandwidth 107 GB/s 768 GB/s 460 GB/s

B. Comparison with the State-of-the-art

TABLE III: Comparison of performance

CPU GPU Our Design

Latency (ms) 14.1 (1×) 4.2 (3.3×) 2.7 (5.2×)
Throughput

(image/second) 76 (1×) 248 (3.3×) 759 (10×)

Average power (W) 138 61 38
Energy Efficiency

(J/image) 1.81 (1×) 0.246 (7.35×) 0.05 (36.2×)

Table III shows the comparison with the state-of-the-art
CPU (Intel® Core™ i9-13900K Processor) and GPU (Nvidia
RTX A5000). Our implementation on FPGA achieves 5.2×
and 1.57× lower latency compared with the implementations
on CPU and GPU. In terms of throughput, our implemen-
tation on FPGA achieves 10× and 3.3× speedup compared
with the implementation on CPU and GPU. Moreover, our
implementation on FPGA is 36.2× and 4.9× more energy-
efficient that the implementation CPU and GPU. The speedup
over CPU and GPU platforms is due to: The computation ker-
nels in GNN have irregular computation and memory access

patterns and low data reuse. We optimizes the data path and
memory organization for various GNN computation kernels.
The processors in CPU or GPU have limited cache sizes (e.g.,
32 KB L1 cache and 1 MB L2 cache). The data exchange (due
to low data reuse) among L1, L2, and L3 caches becomes
the performance bottleneck and results in reduced sustained
performance. On the CPU platform, loading data from the L3
cache incurs latency of 32 ns, and loading data from L2 cache
incurs latency of 5−12 ns. Compared with the CPU-only/CPU-
GPU, the computation units can access data in one clock
cycle from the on-chip Feature/Edge/Weigth/Result buffers.
Therefore, although the baseline CPU and GPU platforms
have higher (1.95×) peak performance than the state-of-the-
art FPGAs, our implementation on FPGA still outperforms the
baselines.

VII. CONCLUSION AND FUTURE WORK

In this work, we accelerated the GNN-based SAR automatic
target recognition on HBM-enabled FPGA. We developed the
customized data path and memory organization to efficiently
execute various computation kernels of GNN. We exploited
the High Bandwidth Memory (HBM) of FPGA to speedup
the data loading and store the intermediate results. We utilized
the splitting kernel technique to improve the routability and
frequency of the design. Our implementation on a state-of-
the-art HBM-enabled FPGA achieves 5.2× and 1.57× lower
latency compared with the implementations on CPU and GPU,
achieves 10× and 3.3× higher throughput compared with
the implementation on CPU and GPU, and are 36.2× and
4.9× more energy-efficient that the implementation CPU and
GPU. In the future, we plan to develop a design automation
framework to automatically generate the hardware design
given a FPGA platform.
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