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Abstract—The ubiquity and flexibility of 5G networks make it 

an attractive technology to customize for particular needs. In this 

work, we highlight some of the challenges associated with 

implementing custom 5G applications in hardware and the 

growing trend of utilizing high-level synthesis tools to relieve these 

issues. We present an overview of the 5G resource grid and the 

MATLAB-Simulink-HDL Coder workflow. We then demonstrate 

the workflow through an example 5G resource grid transmitter 

design.    
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I. INTRODUCTION 

As the rollout and adoption of 5G networks is currently 
underway around the world [1], many are beginning to look at 
what is next in the realm of wireless communications. This 
includes the development of custom applications and research 
into the next generation of wireless communications.  

A resource grid of subcarriers and OFDM symbols is defined 
for each numerology and carrier. There is one set of resource 
grids per transmission direction (uplink or downlink) [2]. The 
5G architecture introduced a much more flexible numerology 
than its predecessor, LTE. This flexibility enables 5G to 
accommodate users with differing quality of service constraints 
with greater ease. In order to exploit 5G’s flexibility to its fullest 
potential, custom applications/algorithms are developed to make 
the most of a communication’s allotted carrier bandwidth. One 
such example of a 5G customization, is an optimization of 
resource allocation for heterogenous services, done by the 
authors in [3]. In this 5G application, greater total throughput 
was achieved by cleverly scheduling users in need of low 
latency and users in need of high data rates within the same 
bandwidth. 

When a custom wireless application transitions from ideas 
and simulations into hardware, the options an engineer has have 
their own costs and benefits. One option is that they acquire 
dedicated base stations and user equipment. This additional 
hardware carries with it the support and tools of the 
manufacturer, but with a relatively steep financial cost. For 
prototyping, this extra cost may be out of budget. An alternative 
to acquiring this dedicated hardware is programming FPGAs to 
stand in as the transmitters and receivers. This has been an active 
area of research, for example [4]. 

FPGAs are able to provide flexibility and reusability at a 
relatively small price point, but have their own drawbacks. One 
major issue plaguing FPGAs is the time and expense required to 
program them. Hardware description languages (HDLs), such as 
VHDL and Verilog, have a steep learning curve and can be 
strenuous to debug and optimize. Additionally, synthesis and 
implementation steps are required before the hardware can be 
programmed, which can often take several hours to complete 
[5]. 

In an effort to alleviate some of these FPGA programming 
challenges there has been a growing rise in the use of high-level 
synthesis (HLS) tools over the past decade. These tools aim to 
accelerate the hardware implementation process by allowing an 
engineer to build their design on a higher layer of abstraction. 
This often takes the form of a graphical interface, such as in the 
case of MathWorks’ Simulink and HDL Coder, or a general-
purpose programming language, such as C/C++ in the case of 
Vivado HLS [6]. These tools save time and resources by 
automating and simplifying HDL development.  

In this paper, we start by presenting a brief background of 
the 5G resource grid. Then, we discuss the workflow required to 
take a custom 5G design from a MATLAB algorithm to 
hardware through the use of Simulink and HDL Coder. Lastly, 
we present an example transmitter design that can be used to 
quickly prototype different grid configurations. 

II. THE 5G RESOURCE GRID 

5G, like its predecessor LTE, is what is known as a 
modulated multicarrier waveform [7]. These waveforms create 
a natural grid of their time and frequency components, often 
referred to as their resource grid. The frequency component of 
the waveform’s grid is made up of a number of adjacent 
subcarriers separated in frequency by a number known as the 
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subcarrier spacing (SCS). Every group of 12 subcarriers is 
known as a physical resource block (PRB). The time domain 
component of the grid is broken down into 10 ms frames, 1 ms 
subframes, and a variable number of slots. 

One key difference between LTE and 5G is the introduction 
of a flexible SCS. In LTE, the SCS was fixed at 15 kHz; 
however, in 5G this number can be either 15 kHz, 30 kHz, 60 
kHz, 120 kHz, or 240 kHz, with a few exceptions depending on 
the transmit signal. Based on the SCS of the waveform, the 
duration of each slot of the waveform changes. While each 
subframe remains 1 ms, the number of slots per subframe 
increase by powers of 2 as the SCS is increased. Each slot 
contains 14 symbols, except when using extended cyclic prefix 
with a SCS of 60 kHz, where the number of symbols is 12. 

For a waveform with a 15 kHz SCS there is only 1 slot per 
subframe, so the slot duration is also 1 ms. For a waveform with 
a 30 kHz SCS, there is then 2 slots per subframe, so the slot 
duration of each slot becomes 0.5 ms. The full breakdown of 
PRB bandwidths and slot durations as a function of the SCS can 
be found in Table I. 

 
Table I. PRB/Slot Grid Bandwidth and Duration as a Function of SCS 

 By having a flexible numerology, 5G seeks to meet the 
requirements of the three main development use cases: extreme 
mobile broadband (eMBB), ultra-reliable and low latency 
communications (URLLC), and massive machine type 
communications (mMTC). eMBB users prioritize high data 
rates, URLLC users prioritize low latency, and mMTC users 
prioritize having many connections [8].  

 Among the possible numerologies available for 5G 
waveforms, there exist limitations based on what frequency 
range the transmitted signal lies within. For 5G, there are two 
frequency ranges: ffrequency range 1 (FR1) lies between 410 
MHz and 7.125 GHz; and frequency range 2 (FR2) lies between 
24.25 GHz and 52.6 GHz [7]. 

 For signals within FR1, available SCS include 15KHz, 30 
kHz and 60 kHz. For signals within FR2, available SCS include 
60 kHz, 120 kHz and 240 kHz. However, a SCS of 240 kHz is 
only allowed for the downlink synchronization signal block 
(SSB) and 60 kHz SCS signals cannot be used for SSBs [7].  

 5G communications are split into downlink and uplink 
messages and the contents of the resource grid vary based on the 
signal being sent. Depending on the current step of the 
communication, the grid may contain control/synchronization 
information, transmit data, or both. Once an engineer is aware 
of the grid required for their custom application, they can move 
to simulation and hardware implementation. 

III. THE MATLAB-SIMULINK-HDL CODER WORKFLOW 

In order to quickly get a design working in hardware, it may 
be beneficial to develop the algorithms and structure in a high-
level language. MathWorks technology coupling Matlab, 
Simulink and HDL coder has proven successful at aiding the 
FPGA implementation of algorithms developed in Matlab for a 
large number of applications, for example [9][10][11][12]. In 
our research, MATLAB and Simulink are helpful because of the 
various 5G applications and toolboxes available. Additionally, 
these programs allow all of the required working environments, 
such as RF architecture, digital signal processing, and FPGA 
design, to all be bundled up in one location [9], and have been 
successful at several hardware demonstrations for multiple 
applications.  

To begin this design process, an algorithm for the custom 
design should first be developed in MATLAB. The process can 
be expedited using an example design from the 5G Toolbox and 
the pre-built functions from either the 5G Toolbox or the 
Communications Toolbox [9]. This floating-point MATLAB 
algorithm will serve as the “golden reference” to which one can 
compare the Simulink and Hardware results [9]. 

In addition to the pre-built functions, the 5G toolbox offers 
a 5G waveform generator application which can be used to 
quickly visualize and generate both uplink and downlink 
resource grids of various configurations. A snapshot of the 
waveform generator application for a custom downlink signal is 
shown in Fig. 1. 

 

Fig. 1. 5G Waveform Generator Interface from the 5G Toolbox App for a 

Custom Downlink Waveform. 

After the algorithm is designed, the custom MATLAB 
application is then implemented in Simulink to include 
information on data flow, resource usage, and timing to enable 
porting the algorithm into hardware [9]. Simulink is able to 
better model the behavior of hardware due to its built-in concept 
of sample time. 



  

 

  

 

To implement an algorithm in hardware using the 
MathWorks methodology, one must first partition the algorithm 
into its individual components [9]. These components may 
include the memory, processing, control, or interface portions of 
the design. Another key decision to make is what operations can 
be done in parallel, since both Simulink and the hardware allow 
for parallelization. 

Once the Simulink design is planned out, one can begin 
building the individual blocks. For applications targeted at 
hardware, note that only a subset of the Simulink blocks are 
compatible for HDL code generation. A full list of compatible 
blocks can be found by entering “hdllib” into the MATLAB 
command window. Delay blocks, which map to flip-flops in 
hardware, may need to be added between combinational 
components in order to meet timing constraints. The locations 
of required delay blocks can usually be found by analyzing path 
of worst negative slack (WNS) following the implementation of 
the HDL Code in a synthesis tool such as Vivado.  

After laying out the components of the design in Simulink, 
the Simulink blocks can be organized into groups, referred to as 
subsystems. Masked subsystems and variant subsystems can be 
used to have alternate configurations of the same subsystems 
throughout a design. Once the desired subsystems are formed, 
the individual blocks and their subsystems must be connected 
together and the data types for the signals should be assigned. In 
hardware, operating on floating point numbers can be very 
resource intensive so it is good practice to convert any fractional 
numbers into fixed-point values. The required bit widths and 
fraction lengths for each signal depend on the application, the 
hardware resource utilization, and how much quantization error 
is acceptable. 

Once one’s blocks and subsystems are laid out and they have 
been assigned hardware-friendly data types, they should be 
packaged into a single subsystem that will serve as the design-
under-test (DUT). The DUT subsystem will serve as the top-
level module, and HDL code will be generated for all the blocks 
within it. The exact shape of the DUT subsystem depends on the 
application and the desired interfaces. The in-ports and out-ports 
of the DUT will become the interfaces to which external signals 
will be connected during code generation. 

To interface with the DUT once it’s in hardware there are a 
few options that can be used. An AXI-Lite interface can be used 
to read and write single words. This can be useful for setting 
control registers, reset signals, and/or enable signals. For reading 
and writing streams of data AXI-Stream interfaces can be added. 
For both AXI-Lite and AXI-Stream interfaces, additional 
hardware and ports will need to be added to the DUT. For the 
stream interfaces this includes data, valid, and ready signals. In 
addition, a FIFO may need to be added to buffer up sequential 
valid data read by the DUT or prior to performing a write out of 
the DUT. 

As shown in Fig. 2, additional blocks and subsystems may 
be added outside of the DUT to provide stimulus to and aid in 
Simulink simulation. The Simulink data inspector or To 
Workspace blocks can be used to verify that the Simulink model 
behaves as intended. If constructed with HDL compatible 

blocks, the DUT should behave similarly in hardware as it does 
in the Simulink simulator. 

 

Fig. 2. Example DUT and External Blocks used for Simulink Simulation. 

 After verifying that the Simulink model behaves as intended, 
HDL code and an IP Core for the DUT can be generated using 
the HDL Workflow Advisor in Simulink. It is within this 
workflow advisor tool that one selects their target FPGA, the 
interfaces for the DUT ports, and the target frequency. 
Additionally, HDL Coder offers a number of HDL options that 
can be used to optimize the generated code, such as adaptive 
pipelining and various clock/reset settings. Through the 
workflow advisor, HDL code can be generated and a project for 
the specified synthesis tool can be created. From there synthesis, 
implementation, and bitstream generation can either be done 
through the advisor or by opening up the generated project for 
the synthesis tool and running the tasks there. After generating 
the bitstream file, the target FPGA can be programed a number 
of ways including using a MATLAB script, the workflow 
advisor, or the synthesis tool. 

With the FPGA programed, there are a limited number of 
ways to debug issues with the design. Debugging the design 
while in Simulink is recommended. If needed, collecting a 
stream of data from the FPGA via the AXI interface is one way 
to debug the design while in hardware. Another hardware 
debugging method available is the use of FPGA Data Capture 
via HDL Verifier. This allows the designer to add test points to 
the Simulink design which will automatically create capture 
logic within the DUT at the time of code generation. Given a 
trigger condition, these test points can be read into MATLAB 
for debugging. One note on test points however is that can cause 
significant block RAM utilization because the captured data 
needs to be collected and stored prior to the connected host 
computer reading the data. 

IV. CUSTOM 5G RESOURCE GRID TRANSMITTER  

To demonstrate the MATLAB-Simulink-HDL Coder Workflow 
and to aid the prototyping of custom grid configurations, a 
hardware compatible resource grid transmitter was developed. 
In the following sections we outline the design workflow, 
operation, and test results of the transmitter.   



  

 

  

 

A. Implementing the HDL Coder Workflow 

To host our custom 5G resource grid transmitter we chose a 
ZCU102 eval board with a FMCOMMS 3 RF transceiver. This 
was chosen because it is one of several target layouts supported 
by the HDL Coder Support Package for Xilinx Zynq Platform. 
With this in mind, we determined that our transmit waveforms 
would need to be within FR1 and at most 50MHz in bandwidth. 
This is because the FMCOMMS 3 transceiver can only handle a 
sampling rate up to 61.44 MHz.  

After laying out some constraints, we began to determine 
what main components our transmitter design would need. First, 
we would need memory to hold both the resource grid and the 
list of cyclic prefix lengths. For the memory, we would also need 
control logic to handle addressing. In addition to memory, the 
other main piece of the transmitter design would be the OFDM 
modulator to take the grid from the frequency domain to the time 
domain. Lastly, we would need AXI interface logic to set control 
registers, read data from MATLAB, and to write data to 
MATLAB. 

To serve as the “golden reference” for the design, resource 
grids from the 5G waveform generator application were created. 
The OFDM demodulation function from the 5G toolbox was 
used to translate the application’s time-domain waveform into 
its associated grid.  

For the Simulink model, in order to facilitate prototyping of 
different grid configurations more quickly, we decided that 
using random-access memory (RAM) would be a better choice 
than look-up tables (LUT). This is because LUTs are static and 
can only contain the values specified at the time of code 
generation. Therefore, in order to swap resource grids, the code 
would have to be regenerated and the synthesis, implementation, 
and bitstream generations steps would need to be repeated. By 
instead using RAM, the stored resource grid can be swapped by 
reading in a new configuration from MATLAB via the AXI-
Stream interface.  

There are a few limitations as to what grids can be loaded 
into the implemented design. At the time of code generation, a 
clock speed must be specified, therefore while SCS can be 
swapped on the fly, the sampling rate of the 5G waveform must 
remain the same. The sampling rate for the various supported 
5G waveform configurations range from 1.92 MHz up to 61.44 
MHz by powers of 2. These sample rate values are equivalent to 
the SCS times the OFDM modulator’s FFT size. The supported 
FFT sizes rage from 128 to 4096, also by powers of 2. 

In order to enable swapping resource grids, the array of 
cyclic prefix lengths fed in to the OFDM modulator had to also 
be configurable. This is because the number of cyclic prefix 
array elements is equivalent to the number of symbols per 
subframe and therefore changes with SCS. 

To configure this array of lengths, a small additional RAM 
was used which is also loaded by the AXI-Stream interface. To 
arbitrate whether the grid RAM or the cyclic prefix RAM 
receives the input write data, a control flag was added which can 
be set with the AXI-Lite interface.  

A number of other AXI-Lite control signals were added 
including the number of total elements and number of 
subcarriers in the loaded resource grid, the size of the of the 
OFDM modulator’s Fast Fourier Transform (FFT), the number 
of cyclic prefix lengths in the array, a reset signal for the input 
FIFO, a write cyclic prefix flag, and a start transmitter signal.  

To aid in debugging, an AXI-Stream interface was also used 
to write data from the FPGA to MATLAB. Additional control 
signals for this interface include a capture start flag, a capture 
length, and a select signal to choose what data to be written to 
MATLAB. 

B. 5G Resource Grid Transmitter Operation 

The operation of the transmitter begins by setting the control 
registers for the grid that needs to be loaded. Written grid and 
cyclic prefix data arrive from the AXI-Stream interface and 
passes through an input FIFO. Based on the status of the 
writeCyclicPrefix flag, that data either makes its way to the grid 
RAM or the cyclic prefix RAM. Counters and control logic set 
the address to which the data is written in the respective RAM.  

Once both RAMs have their values populated, transmission 
can be enabled. With transmission enabled, another counter 
addresses the grid RAM and the IQ data for each grid element is 
read out sequentially. The valid flag for the grid data is 
monitored and a counter for the cyclic prefix watches for the 
transition from grid symbol to grid symbol. Based on the grid 
symbol corresponding to the current data from the grid RAM a 
cyclic prefix length is generated. This first half of the design is 
shown in Fig. 3. 

 
Fig. 3. First half of 5G Resource Grid Transmitter Design. 

The grid data is then passed through another FIFO before 
entering the OFDM modulator Simulink block. This Simulink 
block is made up of three independent OFDM modulators, one 
for each possible SCS at the specified sample rate, each with a 
different value for their max FFT size parameter. Of the three 
OFDM modulators, only one is used at a time. This was done 
because it was found that if the max FFT size parameter of the 
OFDM modulator block differed from the actual FFT size, the 
OFDM modulator would produce cycles of invalid data to make 
up the difference in size. To ensure valid data is constantly 
streamed without interruption, the design swaps the active 
OFDM modulator based on the SCS of the loaded grid.  



  

 

  

 

Following OFDM modulation, the waveform gets scaled by 
the square-root of the FFT size to undo the butterfly divisions 
during the OFDM computations. After scaling, the waveform’s 
bit widths are adjusted and the signal is sent to the FMCOMMS 
3 transceiver for transmission. This second half of the design is 
shown in Fig. 4. 

 

 
Fig. 4. Second Half of the 5G Resource Grid Transmitter Design. 

C. Testing of the 5G Resource Grid Transmitter 

After constructing all of the blocks and control logic, testing 
was done in Simulink. As was shown in Fig. 2, additional blocks 
were added outside the DUT to play the role of the AXI 
interfaces. To test the accuracy of the design, a 30 kHz SCS 
downlink waveform was produced using the 5G Toolbox’s 
Waveform Generator application. This waveform was then 
configured to act as stimulus for the DUT Simulink model, fed 
in through the AXI-Stream write interface. The produced 
Simulink time domain waveform was then compared to the 
waveform produced by the application. A comparison plot of the 
results is shown in Fig. 5. Due to quantization caused by the 
fixed-point data types, there was a maximum error of 8.12e-3 
between the Simulink result and the “golden reference.”  

 

Fig. 5. Comparison between Simulink Waveform and 5G Toolbox Waveform. 

Once the Simulink version of the design showed the desired 
behavior, the DUT was ran through the HDL Coder’s workflow 
advisor and code was generated, synthesized, implemented, and 
a bitstream for the FPGA was generated. Following bitstream 

generation, the FPGA was programmed and the hardware was 
tested with the design. Using the AXI-Stream read interface for 
debugging, result waveforms were pulled directly from the 
FPGA and again compared to the 5G waveform generator 
“golden reference,” shown in Fig. 6. Similar to the Simulink 
results, a small error between the hardware results and the 5G 
toolbox results was present.  

 

Fig. 6. Comparison between FPGA Waveform and 5G Toolbox Waveform. 

 
Finally, through the use of the FMCOMMS 3 board, the 

waveform was modulated to a carrier frequency of 2.4 GHz and 
then transmitted. A secondary FMCOMMS 3 board was used to 
receive the transmit waveform. A comparison of the received 
waveform’s resource grid to the original 5G toolbox waveform’s 
resource grid can be seen in Fig. 7. Distortion due to channel 
effects can be seen, however the general timing and shape of the 
waveform remained the same.  

 

 

Fig. 7. Comparison between Received Waveform's Grid and the Original 

Waveform's Grid. 

Although error existed in the Simulink, FPGA, and received 
waveform we determined that this was within acceptable levels 
for the continued use of this design. In the future, additional 
receive processing such as filtering, channel estimation, and 



  

 

  

 

carrier offset estimation may be added to further refine the 
received waveform.  

V. CONCLUSION 

In this work, we explored MATLAB, Simulink, and HDL 
Coder as solutions to some of the challenges faced while trying 
to implement custom 5G applications in hardware. The 
capabilities of these tools were demonstrated using a custom 5G 
resource grid transmitter design. By exploiting the pre-built 
MATLAB functions and Simulink blocks, in conjunction with 
the HDL Coder, we experienced significant improvement in 
productivity and a speedup of the design timeline. In the future, 
we plan on experimenting with these tools further both in 5G 
and in other applications.   
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