

Leveraging Mathworks Tools to Accelerate the

Prototyping of Custom 5G Applications in Hardware

Joshua Geyster

Open and Embedded Systems

MIT Lincoln Laboratory

Lexington, MA

joshua.geyster@ll.mit.edu

Dr. Karen Gettings

Open and Embedded Systems

MIT Lincoln Laboratory

Lexington, MA

karen.gettings@ll.mit.edu

Dr. Paul Monticciolo

Open and Embedded Systems

MIT Lincoln Laboratory

Lexington, MA

Paul.Monticciolo@ll.mit.edu

Matthew Rebholz

Advanced RF Techniques and

Systems

MIT Lincoln Laboratory

Lexington, MA
mjrebholz@ll.mit.edu

Abstract—The ubiquity and flexibility of 5G networks make it

an attractive technology to customize for particular needs. In this

work, we highlight some of the challenges associated with

implementing custom 5G applications in hardware and the

growing trend of utilizing high-level synthesis tools to relieve these

issues. We present an overview of the 5G resource grid and the

MATLAB-Simulink-HDL Coder workflow. We then demonstrate

the workflow through an example 5G resource grid transmitter

design.

Keywords—5G, Custom 5G, MATLAB, Simulink, HDL Coder,

HLS, Hardware Implementation, 5G Transmitter.

I. INTRODUCTION

As the rollout and adoption of 5G networks is currently
underway around the world [1], many are beginning to look at
what is next in the realm of wireless communications. This
includes the development of custom applications and research
into the next generation of wireless communications.

A resource grid of subcarriers and OFDM symbols is defined
for each numerology and carrier. There is one set of resource
grids per transmission direction (uplink or downlink) [2]. The
5G architecture introduced a much more flexible numerology
than its predecessor, LTE. This flexibility enables 5G to
accommodate users with differing quality of service constraints
with greater ease. In order to exploit 5G’s flexibility to its fullest
potential, custom applications/algorithms are developed to make
the most of a communication’s allotted carrier bandwidth. One
such example of a 5G customization, is an optimization of
resource allocation for heterogenous services, done by the
authors in [3]. In this 5G application, greater total throughput
was achieved by cleverly scheduling users in need of low
latency and users in need of high data rates within the same
bandwidth.

When a custom wireless application transitions from ideas
and simulations into hardware, the options an engineer has have
their own costs and benefits. One option is that they acquire
dedicated base stations and user equipment. This additional
hardware carries with it the support and tools of the
manufacturer, but with a relatively steep financial cost. For
prototyping, this extra cost may be out of budget. An alternative
to acquiring this dedicated hardware is programming FPGAs to
stand in as the transmitters and receivers. This has been an active
area of research, for example [4].

FPGAs are able to provide flexibility and reusability at a
relatively small price point, but have their own drawbacks. One
major issue plaguing FPGAs is the time and expense required to
program them. Hardware description languages (HDLs), such as
VHDL and Verilog, have a steep learning curve and can be
strenuous to debug and optimize. Additionally, synthesis and
implementation steps are required before the hardware can be
programmed, which can often take several hours to complete
[5].

In an effort to alleviate some of these FPGA programming
challenges there has been a growing rise in the use of high-level
synthesis (HLS) tools over the past decade. These tools aim to
accelerate the hardware implementation process by allowing an
engineer to build their design on a higher layer of abstraction.
This often takes the form of a graphical interface, such as in the
case of MathWorks’ Simulink and HDL Coder, or a general-
purpose programming language, such as C/C++ in the case of
Vivado HLS [6]. These tools save time and resources by
automating and simplifying HDL development.

In this paper, we start by presenting a brief background of
the 5G resource grid. Then, we discuss the workflow required to
take a custom 5G design from a MATLAB algorithm to
hardware through the use of Simulink and HDL Coder. Lastly,
we present an example transmitter design that can be used to
quickly prototype different grid configurations.

II. THE 5G RESOURCE GRID

5G, like its predecessor LTE, is what is known as a
modulated multicarrier waveform [7]. These waveforms create
a natural grid of their time and frequency components, often
referred to as their resource grid. The frequency component of
the waveform’s grid is made up of a number of adjacent
subcarriers separated in frequency by a number known as the

DISTRIBUTION STATEMENT A. Approved for public release. Distribution
is unlimited. This material is based upon work supported by the Under
Secretary of Defense for Research and Engineering’s FutureG Office under Air
Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions
or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the Under Secretary of Defense for Research
and Engineering. © 2023 Massachusetts Institute of Technology. Delivered to
the U.S. Government with Unlimited Rights, as defined in DFARS Part
252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S.
Government rights in this work are defined by DFARS 252.227-7013 or
DFARS 252.227-7014 as detailed above. Use of this work other than as
specifically authorized by the U.S. Government may violate any copyrights that
exist in this work.

subcarrier spacing (SCS). Every group of 12 subcarriers is
known as a physical resource block (PRB). The time domain
component of the grid is broken down into 10 ms frames, 1 ms
subframes, and a variable number of slots.

One key difference between LTE and 5G is the introduction
of a flexible SCS. In LTE, the SCS was fixed at 15 kHz;
however, in 5G this number can be either 15 kHz, 30 kHz, 60
kHz, 120 kHz, or 240 kHz, with a few exceptions depending on
the transmit signal. Based on the SCS of the waveform, the
duration of each slot of the waveform changes. While each
subframe remains 1 ms, the number of slots per subframe
increase by powers of 2 as the SCS is increased. Each slot
contains 14 symbols, except when using extended cyclic prefix
with a SCS of 60 kHz, where the number of symbols is 12.

For a waveform with a 15 kHz SCS there is only 1 slot per
subframe, so the slot duration is also 1 ms. For a waveform with
a 30 kHz SCS, there is then 2 slots per subframe, so the slot
duration of each slot becomes 0.5 ms. The full breakdown of
PRB bandwidths and slot durations as a function of the SCS can
be found in Table I.

Table I. PRB/Slot Grid Bandwidth and Duration as a Function of SCS

 By having a flexible numerology, 5G seeks to meet the
requirements of the three main development use cases: extreme
mobile broadband (eMBB), ultra-reliable and low latency
communications (URLLC), and massive machine type
communications (mMTC). eMBB users prioritize high data
rates, URLLC users prioritize low latency, and mMTC users
prioritize having many connections [8].

 Among the possible numerologies available for 5G
waveforms, there exist limitations based on what frequency
range the transmitted signal lies within. For 5G, there are two
frequency ranges: ffrequency range 1 (FR1) lies between 410
MHz and 7.125 GHz; and frequency range 2 (FR2) lies between
24.25 GHz and 52.6 GHz [7].

 For signals within FR1, available SCS include 15KHz, 30
kHz and 60 kHz. For signals within FR2, available SCS include
60 kHz, 120 kHz and 240 kHz. However, a SCS of 240 kHz is
only allowed for the downlink synchronization signal block
(SSB) and 60 kHz SCS signals cannot be used for SSBs [7].

 5G communications are split into downlink and uplink
messages and the contents of the resource grid vary based on the
signal being sent. Depending on the current step of the
communication, the grid may contain control/synchronization
information, transmit data, or both. Once an engineer is aware
of the grid required for their custom application, they can move
to simulation and hardware implementation.

III. THE MATLAB-SIMULINK-HDL CODER WORKFLOW

In order to quickly get a design working in hardware, it may
be beneficial to develop the algorithms and structure in a high-
level language. MathWorks technology coupling Matlab,
Simulink and HDL coder has proven successful at aiding the
FPGA implementation of algorithms developed in Matlab for a
large number of applications, for example [9][10][11][12]. In
our research, MATLAB and Simulink are helpful because of the
various 5G applications and toolboxes available. Additionally,
these programs allow all of the required working environments,
such as RF architecture, digital signal processing, and FPGA
design, to all be bundled up in one location [9], and have been
successful at several hardware demonstrations for multiple
applications.

To begin this design process, an algorithm for the custom
design should first be developed in MATLAB. The process can
be expedited using an example design from the 5G Toolbox and
the pre-built functions from either the 5G Toolbox or the
Communications Toolbox [9]. This floating-point MATLAB
algorithm will serve as the “golden reference” to which one can
compare the Simulink and Hardware results [9].

In addition to the pre-built functions, the 5G toolbox offers
a 5G waveform generator application which can be used to
quickly visualize and generate both uplink and downlink
resource grids of various configurations. A snapshot of the
waveform generator application for a custom downlink signal is
shown in Fig. 1.

Fig. 1. 5G Waveform Generator Interface from the 5G Toolbox App for a

Custom Downlink Waveform.

After the algorithm is designed, the custom MATLAB
application is then implemented in Simulink to include
information on data flow, resource usage, and timing to enable
porting the algorithm into hardware [9]. Simulink is able to
better model the behavior of hardware due to its built-in concept
of sample time.

To implement an algorithm in hardware using the
MathWorks methodology, one must first partition the algorithm
into its individual components [9]. These components may
include the memory, processing, control, or interface portions of
the design. Another key decision to make is what operations can
be done in parallel, since both Simulink and the hardware allow
for parallelization.

Once the Simulink design is planned out, one can begin
building the individual blocks. For applications targeted at
hardware, note that only a subset of the Simulink blocks are
compatible for HDL code generation. A full list of compatible
blocks can be found by entering “hdllib” into the MATLAB
command window. Delay blocks, which map to flip-flops in
hardware, may need to be added between combinational
components in order to meet timing constraints. The locations
of required delay blocks can usually be found by analyzing path
of worst negative slack (WNS) following the implementation of
the HDL Code in a synthesis tool such as Vivado.

After laying out the components of the design in Simulink,
the Simulink blocks can be organized into groups, referred to as
subsystems. Masked subsystems and variant subsystems can be
used to have alternate configurations of the same subsystems
throughout a design. Once the desired subsystems are formed,
the individual blocks and their subsystems must be connected
together and the data types for the signals should be assigned. In
hardware, operating on floating point numbers can be very
resource intensive so it is good practice to convert any fractional
numbers into fixed-point values. The required bit widths and
fraction lengths for each signal depend on the application, the
hardware resource utilization, and how much quantization error
is acceptable.

Once one’s blocks and subsystems are laid out and they have
been assigned hardware-friendly data types, they should be
packaged into a single subsystem that will serve as the design-
under-test (DUT). The DUT subsystem will serve as the top-
level module, and HDL code will be generated for all the blocks
within it. The exact shape of the DUT subsystem depends on the
application and the desired interfaces. The in-ports and out-ports
of the DUT will become the interfaces to which external signals
will be connected during code generation.

To interface with the DUT once it’s in hardware there are a
few options that can be used. An AXI-Lite interface can be used
to read and write single words. This can be useful for setting
control registers, reset signals, and/or enable signals. For reading
and writing streams of data AXI-Stream interfaces can be added.
For both AXI-Lite and AXI-Stream interfaces, additional
hardware and ports will need to be added to the DUT. For the
stream interfaces this includes data, valid, and ready signals. In
addition, a FIFO may need to be added to buffer up sequential
valid data read by the DUT or prior to performing a write out of
the DUT.

As shown in Fig. 2, additional blocks and subsystems may
be added outside of the DUT to provide stimulus to and aid in
Simulink simulation. The Simulink data inspector or To
Workspace blocks can be used to verify that the Simulink model
behaves as intended. If constructed with HDL compatible

blocks, the DUT should behave similarly in hardware as it does
in the Simulink simulator.

Fig. 2. Example DUT and External Blocks used for Simulink Simulation.

 After verifying that the Simulink model behaves as intended,
HDL code and an IP Core for the DUT can be generated using
the HDL Workflow Advisor in Simulink. It is within this
workflow advisor tool that one selects their target FPGA, the
interfaces for the DUT ports, and the target frequency.
Additionally, HDL Coder offers a number of HDL options that
can be used to optimize the generated code, such as adaptive
pipelining and various clock/reset settings. Through the
workflow advisor, HDL code can be generated and a project for
the specified synthesis tool can be created. From there synthesis,
implementation, and bitstream generation can either be done
through the advisor or by opening up the generated project for
the synthesis tool and running the tasks there. After generating
the bitstream file, the target FPGA can be programed a number
of ways including using a MATLAB script, the workflow
advisor, or the synthesis tool.

With the FPGA programed, there are a limited number of
ways to debug issues with the design. Debugging the design
while in Simulink is recommended. If needed, collecting a
stream of data from the FPGA via the AXI interface is one way
to debug the design while in hardware. Another hardware
debugging method available is the use of FPGA Data Capture
via HDL Verifier. This allows the designer to add test points to
the Simulink design which will automatically create capture
logic within the DUT at the time of code generation. Given a
trigger condition, these test points can be read into MATLAB
for debugging. One note on test points however is that can cause
significant block RAM utilization because the captured data
needs to be collected and stored prior to the connected host
computer reading the data.

IV. CUSTOM 5G RESOURCE GRID TRANSMITTER

To demonstrate the MATLAB-Simulink-HDL Coder Workflow
and to aid the prototyping of custom grid configurations, a
hardware compatible resource grid transmitter was developed.
In the following sections we outline the design workflow,
operation, and test results of the transmitter.

A. Implementing the HDL Coder Workflow

To host our custom 5G resource grid transmitter we chose a
ZCU102 eval board with a FMCOMMS 3 RF transceiver. This
was chosen because it is one of several target layouts supported
by the HDL Coder Support Package for Xilinx Zynq Platform.
With this in mind, we determined that our transmit waveforms
would need to be within FR1 and at most 50MHz in bandwidth.
This is because the FMCOMMS 3 transceiver can only handle a
sampling rate up to 61.44 MHz.

After laying out some constraints, we began to determine
what main components our transmitter design would need. First,
we would need memory to hold both the resource grid and the
list of cyclic prefix lengths. For the memory, we would also need
control logic to handle addressing. In addition to memory, the
other main piece of the transmitter design would be the OFDM
modulator to take the grid from the frequency domain to the time
domain. Lastly, we would need AXI interface logic to set control
registers, read data from MATLAB, and to write data to
MATLAB.

To serve as the “golden reference” for the design, resource
grids from the 5G waveform generator application were created.
The OFDM demodulation function from the 5G toolbox was
used to translate the application’s time-domain waveform into
its associated grid.

For the Simulink model, in order to facilitate prototyping of
different grid configurations more quickly, we decided that
using random-access memory (RAM) would be a better choice
than look-up tables (LUT). This is because LUTs are static and
can only contain the values specified at the time of code
generation. Therefore, in order to swap resource grids, the code
would have to be regenerated and the synthesis, implementation,
and bitstream generations steps would need to be repeated. By
instead using RAM, the stored resource grid can be swapped by
reading in a new configuration from MATLAB via the AXI-
Stream interface.

There are a few limitations as to what grids can be loaded
into the implemented design. At the time of code generation, a
clock speed must be specified, therefore while SCS can be
swapped on the fly, the sampling rate of the 5G waveform must
remain the same. The sampling rate for the various supported
5G waveform configurations range from 1.92 MHz up to 61.44
MHz by powers of 2. These sample rate values are equivalent to
the SCS times the OFDM modulator’s FFT size. The supported
FFT sizes rage from 128 to 4096, also by powers of 2.

In order to enable swapping resource grids, the array of
cyclic prefix lengths fed in to the OFDM modulator had to also
be configurable. This is because the number of cyclic prefix
array elements is equivalent to the number of symbols per
subframe and therefore changes with SCS.

To configure this array of lengths, a small additional RAM
was used which is also loaded by the AXI-Stream interface. To
arbitrate whether the grid RAM or the cyclic prefix RAM
receives the input write data, a control flag was added which can
be set with the AXI-Lite interface.

A number of other AXI-Lite control signals were added
including the number of total elements and number of
subcarriers in the loaded resource grid, the size of the of the
OFDM modulator’s Fast Fourier Transform (FFT), the number
of cyclic prefix lengths in the array, a reset signal for the input
FIFO, a write cyclic prefix flag, and a start transmitter signal.

To aid in debugging, an AXI-Stream interface was also used
to write data from the FPGA to MATLAB. Additional control
signals for this interface include a capture start flag, a capture
length, and a select signal to choose what data to be written to
MATLAB.

B. 5G Resource Grid Transmitter Operation

The operation of the transmitter begins by setting the control
registers for the grid that needs to be loaded. Written grid and
cyclic prefix data arrive from the AXI-Stream interface and
passes through an input FIFO. Based on the status of the
writeCyclicPrefix flag, that data either makes its way to the grid
RAM or the cyclic prefix RAM. Counters and control logic set
the address to which the data is written in the respective RAM.

Once both RAMs have their values populated, transmission
can be enabled. With transmission enabled, another counter
addresses the grid RAM and the IQ data for each grid element is
read out sequentially. The valid flag for the grid data is
monitored and a counter for the cyclic prefix watches for the
transition from grid symbol to grid symbol. Based on the grid
symbol corresponding to the current data from the grid RAM a
cyclic prefix length is generated. This first half of the design is
shown in Fig. 3.

Fig. 3. First half of 5G Resource Grid Transmitter Design.

The grid data is then passed through another FIFO before
entering the OFDM modulator Simulink block. This Simulink
block is made up of three independent OFDM modulators, one
for each possible SCS at the specified sample rate, each with a
different value for their max FFT size parameter. Of the three
OFDM modulators, only one is used at a time. This was done
because it was found that if the max FFT size parameter of the
OFDM modulator block differed from the actual FFT size, the
OFDM modulator would produce cycles of invalid data to make
up the difference in size. To ensure valid data is constantly
streamed without interruption, the design swaps the active
OFDM modulator based on the SCS of the loaded grid.

Following OFDM modulation, the waveform gets scaled by
the square-root of the FFT size to undo the butterfly divisions
during the OFDM computations. After scaling, the waveform’s
bit widths are adjusted and the signal is sent to the FMCOMMS
3 transceiver for transmission. This second half of the design is
shown in Fig. 4.

Fig. 4. Second Half of the 5G Resource Grid Transmitter Design.

C. Testing of the 5G Resource Grid Transmitter

After constructing all of the blocks and control logic, testing
was done in Simulink. As was shown in Fig. 2, additional blocks
were added outside the DUT to play the role of the AXI
interfaces. To test the accuracy of the design, a 30 kHz SCS
downlink waveform was produced using the 5G Toolbox’s
Waveform Generator application. This waveform was then
configured to act as stimulus for the DUT Simulink model, fed
in through the AXI-Stream write interface. The produced
Simulink time domain waveform was then compared to the
waveform produced by the application. A comparison plot of the
results is shown in Fig. 5. Due to quantization caused by the
fixed-point data types, there was a maximum error of 8.12e-3
between the Simulink result and the “golden reference.”

Fig. 5. Comparison between Simulink Waveform and 5G Toolbox Waveform.

Once the Simulink version of the design showed the desired
behavior, the DUT was ran through the HDL Coder’s workflow
advisor and code was generated, synthesized, implemented, and
a bitstream for the FPGA was generated. Following bitstream

generation, the FPGA was programmed and the hardware was
tested with the design. Using the AXI-Stream read interface for
debugging, result waveforms were pulled directly from the
FPGA and again compared to the 5G waveform generator
“golden reference,” shown in Fig. 6. Similar to the Simulink
results, a small error between the hardware results and the 5G
toolbox results was present.

Fig. 6. Comparison between FPGA Waveform and 5G Toolbox Waveform.

Finally, through the use of the FMCOMMS 3 board, the

waveform was modulated to a carrier frequency of 2.4 GHz and
then transmitted. A secondary FMCOMMS 3 board was used to
receive the transmit waveform. A comparison of the received
waveform’s resource grid to the original 5G toolbox waveform’s
resource grid can be seen in Fig. 7. Distortion due to channel
effects can be seen, however the general timing and shape of the
waveform remained the same.

Fig. 7. Comparison between Received Waveform's Grid and the Original

Waveform's Grid.

Although error existed in the Simulink, FPGA, and received
waveform we determined that this was within acceptable levels
for the continued use of this design. In the future, additional
receive processing such as filtering, channel estimation, and

carrier offset estimation may be added to further refine the
received waveform.

V. CONCLUSION

In this work, we explored MATLAB, Simulink, and HDL
Coder as solutions to some of the challenges faced while trying
to implement custom 5G applications in hardware. The
capabilities of these tools were demonstrated using a custom 5G
resource grid transmitter design. By exploiting the pre-built
MATLAB functions and Simulink blocks, in conjunction with
the HDL Coder, we experienced significant improvement in
productivity and a speedup of the design timeline. In the future,
we plan on experimenting with these tools further both in 5G
and in other applications.

ACKNOWLEDGMENT

The authors would like to thank Jeff Miller from MathWorks
for his support throughout this effort.

REFERENCES

[1] Richter, Felix. “Global 5G Adoption to Hit One Billion in 2022.” Digital
image. June 22, 2022. Accessed July 13, 2023.
https://www.statista.com/chart/9604/5g-subscription-forecast/

[2] 5G NR Physical channels and modulation (3GPP TS 38.211 version
15.2.0 Release 15), 2018. Accessed July 13, 2023.
https://www.etsi.org/deliver/etsi_ts/138200_138299/138211/15.02.00_6
0/ts_138211v150200p.pdf

[3] N. Ferdosian, S. Berri and A. Chorti, "5G New Radio Resource Allocation
Optimization for Heterogeneous Services," in 2022 International
Symposium ELMAR, Zadar, Croatia, 2022, pp. 1-6, doi:
10.1109/ELMAR55880.2022.9899817.

[4] H. Nguyen and S. Nguyen, “FPGA-based Implementation and Evaluation
of Realtime OFDM Phase Compensation in 5G,” 2021 International
Conference on Advanced Technologies for Communications (ATC), Ho
Chi Minh City, Vietnam, 2021, pp. 131-134, doi:
10.1109/ATC52653.2021.9598312.

[5] A. R. Brodtkorb, C. Dyken, T. R. Hagen, J. M. Hjelmervik, and O. O.
Storaasli, “State-of-the-art in Heterogeneous Computing,” in Scientific
Programming, vol. 18, Oct. 2010. doi: 10.3233/SPR-2009-0296.

[6] R. Nane et al., "A Survey and Evaluation of FPGA High-Level Synthesis
Tools," in IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 35, no. 10, pp. 1591-1604, Oct. 2016, doi:
10.1109/TCAD.2015.2513673.

[7] M. Enescu et al., "PHY Layer," in 5G New Radio: A Beam-based Air
Interface, Wiley, 2020, pp.95-260, doi: 10.1002/9781119582335.ch3.

[8] W. Saad, M. Bennis and M. Chen, "A Vision of 6G Wireless Systems:
Applications, Trends, Technologies, and Open Research Problems," in
IEEE Network, vol. 34, no. 3, pp. 134-142, May/June 2020, doi:
10.1109/MNET.001.1900287.

[9] MathWorks, “Deploying 5G NR Wireless Communications on FPGAs: A
Complete MATLAB and Simulink Workflow”, MathWorks,
https://www.mathworks.com/campaigns/offers/deploying-5g-nr-on-
fpgas-white-paper.html

[10] Cousins, D. and Rohloff, K., “Accelerating Computations on Encrypted
Data with an FPGA,” Accessed July 13, 2023.
https://www.mathworks.com/company/newsletters/articles/accelerating-
computations-on-encrypted-data-with-an-fpga.html

[11] N. Othman, F. Mahmud, A. K. Mahamad, M. Hairol Jabbar and N. A.
Adon, “Cardiac excitation modeling: HDL coder optimization towards
FPGA stand-alone implementation,” 2014 IEEE International Conference
on Control System, Computing and Engineering (ICCSCE 2014), Penang,
Malaysia, 2014, pp. 507-511, doi: 10.1109/ICCSCE.2014.7072771.

[12] S. Spanò, L. Canese and G. C. Cardarilli, “Profiling of CNNs using the
MATLAB FPGA-based Deep Learning Processor,” 2022 17th
Conference on Ph.D Research in Microelectronics and Electronics
(PRIME), Villasimius, SU, Italy, 2022, pp. 121-124, doi:
10.1109/PRIME55000.2022.9816841.

