
An Analysis of Accelerator Data-Transfer Modes
in NoC-Based SoC Architectures

Kuan-Lin Chiu, Davide Giri, Luca Piccolboni and Luca P. Carloni
Department of Computer Science

Columbia University, New York, U.S.A

{chiu, davide giri, piccolboni, luca}@cs.columbia.edu

Abstract—Data movement is a key factor impacting the perfor-
mance of hardware accelerators. In a complex SoC architecture,
multiple accelerators compete for accessing the resources of
on-chip communication and off-chip memory interfaces. For a
program that invokes many accelerators, orchestrating the data
movement is critically important to avoid degrading the speedup
that each standalone accelerator can achieve. We present a
comparative analysis of the two main data-transfer modes among
accelerators: memory-based and point-to-point (p2p) communi-
cation. We describe their implementation on FPGA for both
single-thread and multi-thread software programs. We analyze
the implications on programmability, performance, and energy
efficiency by using a variety of synthetic benchmarks to evaluate
the data-transfer modes in different scenarios and by accelerating
two real-world image processing applications: Nightvision and
Wide-Area Motion Imagery (WAMI). We demonstrate that for
various configurations of a tile-based many-accelerator SoC, p2p
outperforms memory-based communication.

Index Terms—accelerators, data-transfer modes, point-to-point
communication, system-on-chip, image processing.

I. INTRODUCTION

Heterogeneous system-on-chip (SoC) architectures combine

general-purpose processors with hardware accelerators [1],

[2] that are specialized for given domains such as graph

analytics [3], machine learning [4], and image processing [5].

There are two main categories of accelerators: tightly-

coupled and loosely-coupled [6]. Tightly-coupled accelerators

are integrated with the processor’s pipeline and execute fine-

grain tasks on small datasets. Loosely-coupled accelerators,

instead, are computing engines that are independent from par-

ticular processor cores in terms of their design and their oper-

ations. They are typically integrated on a bus or a network-on-

chip (NoC) and perform coarse-grain tasks on large datasets.

In this paper, we focus on loosely-coupled accelerators and

their integration into NoC-based SoC architectures.

A loosely-coupled accelerator is usually invoked by soft-

ware programs through a device driver. The device driver

configures the execution of the accelerator by specifying, for

example, where the data are located in the main memory.

Complex programs typically invoke multiple accelerators,

which communicate by using a shared region of memory.

The program copies the input data for the accelerator in the

shared region of memory and invokes the first accelerator.

The accelerator performs the task by accessing the data in

the main memory, and then returns the control to software

when the task is completed. Other accelerators can be invoked

afterwards, thus resulting in a sequence of invocations of

accelerators that communicate through the main memory.

CPU
mem ctrl

&
LLC

DRAM

peri-
pherals

Ethernet UART

accel. accel. accel.

NoC routers

mem ctrl
&

LLC

DRAM

accel.

accelerator

load compute store

PLM banksbanks

...

DMA
engine

cfg/status
registers

network-on-chip

Fig. 1. A NoC-based SoC architecture with a heterogeneous tile organization.

Multiple accelerators can be invoked concurrently when their

tasks are independent. While memory-based communication is

the most used method for data transfers, Giri et al. propose

using point-to-point (p2p) communication for accelerators [7].

With p2p communication, the accelerators can exchange data

directly after being configured from software through device

drivers. An accelerator can send data to another accelerator

without using the off-chip main memory as a temporary buffer,

thereby avoiding many costly data transfers.

Contributions. Our main contribution is a comprehensive

analysis of these two main data-transfer modes in NoC-based

heterogeneous SoC architectures. The analysis shows that the

p2p communication mode provides more benefits in terms

of performance, energy efficiency and programmability, com-

pared to the memory-based communication mode. To complete

our analysis, we make these additional contributions:

• We design many loosely-coupled accelerators including a

synthetic accelerator, 3 accelerators for Nightvision, and

13 accelerators for Wide-Area Motion Imagery (WAMI).

• We develop three software programs for synthetic ap-

plications, four for Nightvision, and four for WAMI, all

running on top of Linux.

• We deploy the heterogeneous SoC on an FPGA board

and evaluate the performance and energy efficiency of

the data-transfer modes.

To the best of our knowledge (Section VI), this is the first in-

depth analysis of the accelerator data-transfer modes in NoC-

based SoC architectures.

II. HARDWARE ARCHITECTURE

To analyze the data movement of a NoC-based heteroge-

neous SoC, we utilize ESP, an open-source platform for agile

SoC design [8], [9]. An SoC designed with ESP has a tile-

based architecture with a configurable number of heteroge-

neous tiles. The left-hand side of Fig. 1 shows the example of

1

1

2

mem ctrl
&

LLC
CPU

SoC

DRAM

accel.
A

peri-
pherals

accel.
B

accel.
C

3 4

5

6

1

2

mem ctrl
&

LLC
CPU

SoC

DRAM

accel.
A

peri-
pherals

accel.
B

accel.
C

3

4

(a) memory-based (b) p2p

Fig. 2. Data movements required for memory-based and p2p communication
for accelerator A, B, and C.

an SoC that has 8 tiles in a 4x2 matrix with: one processor

tile (hosting a RISC-V CVA6 core [10]), four accelerator

tiles (hosting loosely-coupled accelerators), two memory tiles

(hosting memory controllers to communicate with off-chip

DRAM banks), and an input/output tile (hosting various

peripherals, such as Ethernet and UART). The core in the

processor boots Linux and software programs use Linux device

drivers to invoke the accelerators. Each tile is encapsulated in a

socket that interfaces it to the router of a packet-switched 2D-

mesh NoC with six physical planes [11]. Two of the planes are

dedicated to DMA requests and responses between accelerator

tiles and the memory tiles. Three other planes are for cache

coherence messages and the last plane is for I/O, interrupts,

monitoring, and debugging.

For our analysis, we design the accelerators in Sys-

temC [12], and synthesize their RTL implementations by

using commercial high-level synthesis (HLS) tools. We deploy

the accelerators on FPGA and invoke them from a software

program by using custom device drivers. Each device driver

configures the corresponding accelerator through memory-

mapped registers that define the location of the input and

output data in memory and accelerator-specific parameters,

for example, the size of the images to be processed. Once

configured from software, the accelerators are autonomous

computational engines that communicate directly with off-chip

main memory (DRAM) via direct-memory access (DMA).

Once an accelerator completes the execution of its task, it

notifies the program via an interrupt.

The architecture of an accelerator is specified with three

synthesizable SystemC processes: load(), compute(), and

store() (right-hand side of Fig. 1). The load() process is

responsible for loading the input data, while the store()

process produces the output data that are the results of the

accelerator computation. These two processes manage the

external interface that allows the accelerator to communicate

with the main memory or another accelerator. Because the

ESP socket redirects the memory requests at runtime to the

particular component as specified by the software program

(Section III), the choice of communicating with the main

memory or another accelerator is entirely transparent to the

load() and store() processes. The compute() process

implements the particular computational kernel that needs to

be accelerated. It can be easily modified to include multiple

kernels if some accelerators are merged into a single accelera-

tor. These processes are organized in a sequence of loops that

implement the highly-parallel datapath of the accelerator.
Each accelerator has a private local memory (PLM) to hold

the data during the computation [13]. A PLM has a multi-bank

memory architecture managed by the accelerator explicitly and

can be used to hold the data that are frequently accessed. The

data in the PLM can be accessed quickly (even in a single

clock cycle if there are enough ports to manage concurrent

requests). In contrast, communicating with the main memory

can take from tens to hundreds of cycles.

III. SOFTWARE PROGRAMS AND DATA-TRANSFER MODES

To evaluate the two data-transfer modes: memory-based

and p2p communication, we develop different programs that

invoke the accelerators. Fig. 2 shows the data transfers

performed by the accelerators when they communicate (a)

through memory or (b) via p2p. In the figure, we assume that

we execute only three accelerators: A, B, and C.
In the case of memory-based communication (Fig. 2 (a)),

each accelerator loads and stores the data by using some

shared memory (in DRAM) as a “buffer”. Each accelerator

operates independently by reading and storing the data in the

shared memory. The accelerators need to be configured and

synchronized from software to enable the correct exchange of

data. On the other hand, in the case of p2p communication

(Fig. 2 (b)), once read from memory by the first accelerator,

the data can be passed along to the next accelerators until the

last accelerator stores the final results to memory. The software

needs to define the dependencies among the accelerators

(as explained later), but their synchronization is inherently

supported by the hardware.

A. Memory-Based Communication

When a software program invokes multiple accelerators,

they typically exchange data by using memory-based com-

munication. The program first allocates a shared region of

memory that can be used by both the program and the various

accelerators. Then, it copies the input data that need to be

processed before proceeding with the invocation of the first

accelerator. As explained in Section II, the accelerator loads

the input data, performs the computation, and stores back the

results in the shared region of memory. When it has completed

the assigned task, it notifies the program, which in turn invokes

another accelerator that operates similarly to the first.
We develop two software programs that invoke the ac-

celerators by using memory-based communication: a single-

thread program and a multi-thread program. We use them

in Section V to evaluate the performance and the energy

efficiency of memory-based communication.
Single-Thread Program (stm). Implementing the single-

thread program is relatively straightforward. ESP provides

an API that allows software developers to access hardware

accelerators [8]. After defining the location of the input and

output data for each accelerator in the main memory, it is

sufficient to call the primitive esp_run() in the API for

invoking each accelerator in sequence. By default, esp_run()

spawns a new thread to invoke the accelerator. This extra

thread is not needed for the case of the single-thread program

and, therefore, we remove it to improve the performance and

have a stronger baseline in our comparative analysis.

2

Multi-Thread Program (mtm). Implementing the multi-

thread program is, however, more complicated. ESP does not

natively support the synchronization of multiple accelerator

invocations: this is left to the programmer. Therefore, we

develop a software library to synchronize the executions of

the accelerators. The sequential invocation of the accelerators

can be improved by pipelining their executions over time. A

software thread is spawned for each accelerator. The library

uses a queue data structure to store the data items exchanged

by the accelerators (these correspond to the tokens in the

dataflow [14] and Petri Net [15] models of computation). The

access to a queue is protected by a corresponding mutex. Upon

completing its execution, an accelerator produces its output

tokens that are enqueued in the input queues of the accelerators

whose computation depends on this accelerator. An accelerator

cannot start its execution until all the accelerators that generate

its input tokens have completed theirs.

B. Point-to-Point Communication

The other main data-transfer mode is p2p communica-

tion [7]. In this case, the program allocates a region of memory

and copies the input data for the first accelerator that needs

to be executed. The program configures all the accelerators

by specifying where the data need to be accessed (either

from the main memory or from another accelerator) and

their accelerator-specific parameters. The program also defines

the execution dependencies of the accelerators. Then, all the

accelerators are invoked. The first accelerator (the one that

accesses the data from the main memory) starts executing,

while the subsequent accelerators wait for the input data from

the previous accelerators in the pipeline.

Naturally, p2p supports implicit pipelining. The synchro-

nization of the accelerators is entirely handled in hardware,

without requiring the software to pipeline and synchronize the

execution of the accelerators explicitly.

P2P Program (p2p). In order to implement the p2p program,

we augment the original ESP API to support complex commu-

nication patterns in a dataflow, such as fork/join and feedback

loops. This allows us to call esp_run() a single time to

invoke the executions of all the accelerators of the dataflow

kernels and have them processing a sequence of many frames.

In the invocation, we specify the configuration parameters for

all the accelerators, including the source of the input data

(main memory or another accelerator), the destination of the

output data (main memory or another accelerator), how many

copies of the outputs, and so on.

The p2p communication is implemented as a pull mecha-

nism: each accelerator sends request to the uplink accelerators

in the dataflow (one or more than one) that produce its

input data. When esp_run() is called in p2p mode, those

accelerators that read inputs data only from main memory

start executing, while all the others enter a polling cycle

that makes them periodically send input-data requests. This

implicitly handles the synchronization among the accelerators.

Without our enhancement of the original ESP API, it would

be necessary to invoke esp_run() many times, one for each

accelerator processing each frame, thus suffering a larger

invocation overhead.

(a) serial

input
data

output
data

synth
accel.

synth
accel.

synth
accel.

synth
accel.

synth
accel.

synth
accel.

(c) feedback loop

input
data

output
data

synth
accel.

synth
accel.

synth
accel.

synth
accel.

synth
accel.

synth
accel.

(b) fork and join

input
data

output
data

synth
accel.

synth
accel.

synth
accel.

synth
accel.

synth
accel.

synth
accel.

Fig. 3. Three main communication patterns in accelerator dataflows.

C. Programmability Considerations

The ability for accelerators to run concurrently is critical

for performance. The choice of the data-transfer mode has

substantial implication on concurrent programming with mul-

tiple threads. For the case of memory-based communication,

we implement multiple threads with a library of functions that

handles six main operations: create and join of the pthreads,

lock and unlock of the mutexes, put and get of the queues.

This requires writing approximately 800 lines of C code while

considering the synchronization carefully among threads based

on the topology of the dataflow application. This centralized

communication control of programming effort is error-prone

and leads to code that is difficult to debug.

On the contrary, the implementation of a multi-thread pro-

gram utilizing p2p communication is a much simpler approach.

Once the dependencies of the accelerators have been identified

and specified in the configuration file, the process merely

involves a single API call to initiate all accelerator invoca-

tions. Subsequent synchronization tasks are performed by the

hardware itself without involving the CPU. Nevertheless, a

drawback of this approach is that developers are required to

modify the accelerators to ensure the smooth functioning of

the overall workflow. For instance, in a 1-to-2 fork situation,

it becomes necessary to duplicate the output of the upstream

accelerator, enabling both downstream accelerators to receive

a copy of the relevant data.

All the three mentioned programs (stm, mtm and p2p)

are easy to scale up to accommodate more accelerators and

execute a batch of many inputs.

IV. TARGET APPLICATION

Synthetic Accelerators. To first study the relationship be-

tween data-transfer modes and communication patterns in

accelerator dataflow, we design synth, a synthetic hardware

accelerator. This highly flexible hardware accelerator can be

used as an actor to build dataflows, from a simple pipeline

to a complex graph. The amount of input taken by the

load() process and the amount of output data produced

by the store() process can be both configured through

the accelerator parameters by the software program. These

allow us to tune the communication between accelerators

and the main memory. In addition, the computation time in

compute() of each synth can also be configured through

the accelerator parameters. In this paper, we consider the

three main communication patterns in dataflows shown in

Fig. 3: (a) serial, (b) fork and join, (c) feedback loop. With

these three patterns, we analyze the performance of the p2p

3

Table I
CHARACTERISTCS OF THE NIGHTVISION AND WAMI ACCELERATORS.

% SW PLM Power
accelerator exec. (Byte) LUTs BRAMs DSPs (W)

NF 79.05 153,600 11,621 301 8 0.087
Hist 14.22 338,944 5,609 183 6 0.047
HistEq 6.73 415,744 12,222 381 9 0.103

debayer 8.86 135,232 19,874 35 70 0.069
grayscale 1.84 131,072 15,244 57 23 0.086
gradient 1.66 196,608 15,342 97 26 0.078
warp 25.82 131,096 49,381 71 0 0.094
matrix sub 1.72 196,608 17,424 97 7 0.082
steepest descent 3.84 524,288 28,164 321 0 0.131
hessian 18.88 393,360 23,011 195 0 0.106
matrix inv 0.03 288 27,305 7 0 0.066
sd update 7.54 458,776 24,796 227 0 0.111
matrix mult 0.04 192 19,381 7 0 0.056
matrix reshape 0.02 48 12,198 5 0 0.045
matrix add 0.01 72 14,828 4 0 0.053
change detection 29.74 131,072 32,199 497 310 0.344

Table II
SYSTEM CONFIGURATION FOR THE EXPERIMENTAL RESULTS.

Processor CVA6, RISC-V, 64-Bit, 78 MHz
L1 Cache ICache: 16KB, DCache: 32KB
Memory 2.5 GB DDR4-2400 memory
Accelerator Type 1 Synthetic, 3 Nightvision, and 13 WAMI
Evaluation Board proFPGA Virtex UltraScale XCVU440
Operating System Linux v4.20.0
HLS Tool Cadence Stratus 20.25
Synthesis Tool Xilinx Vivado 2019.2

communication and memory-based data-transfer modes across

many different scenarios.

Nightvision and WAMI. In addition to the synthetic

dataflows, we develop specialized accelerators for two distinct

image processing applications: Nightvision [9] and Wide-Area

Motion Imagery (WAMI) [16]. The Nightvision application

serves the purpose of enhancing visibility in low-light or dark

environments by improving the image contrast. Nightvision

consists of three different kernels: noise filtering (NF), his-

togram (Hist), and histogram equalization (HistEq). These

kernels are shown in Fig. 4 (a), which also showcases the

fork/join pattern. We design an accelerator for each kernel.

WAMI processes the sequence of frames of an input video to

detect changes in regions of interest, such as people or vehicles

moving on the ground, while discarding the environmental

noise, e.g. reflections. A software implementation of WAMI is

available in the PERFECT Benchmark Suite [17]. As shown

in Fig. 4 (b), WAMI consists of four main computational

kernels: Debayer, Grayscale, Lucas-Kanade, and Change-

Detection. We break the Lucas-Kanade into several image

processing kernels to (i) further investigate the parallelism of

the data transfer on a NoC-based SoC architecture and (ii)

stress the two data-transfer modes in a scenario with complex

dependencies (forks/joins and feedback loops).

We develop sixteen different hardware accelerators for each

kernel in Nightvision and WAMI. Table I reports the main

characteristics of these accelerators. The sizes of the PLMs

lucas-kanade

(a) Nightvision

(b) WAMI

grayscale

gradient

warp

grayscale

matrix sub

sd update
matrix

mul

matrix

add

warp

iwxp

steep

descent
hessian

input

frames

change

detection
output

frames

warp

dx
matrix

inv

warp

dy

matrix

reshape

debayer

Hist HistEq

input

frames

output

frames

NF

Fig. 4. Accelerator dataflow for the (a) Nightvision and (b) WAMI application.

Table III
PERFORMANCE COMPARISON OF SYNTHETIC DATAFLOWS.

(a) serial stm mtm p2p

10 frames
computation 1.0 1.2 4.4
communication 1.0 2.2 4.2

100 frames
computation 1.0 1.2 6.8
communication 1.0 4.1 17.3

1000 frames
computation 1.0 1.2 7.2
communication 1.0 4.3 25.0

(b) fork and join stm mtm p2p

10 frames
computation 1.0 1.4 4.6
communication 1.0 2.2 4.1

100 frames
computation 1.0 1.4 6.8
communication 1.0 3.9 12.7

1000 frames
computation 1.0 1.4 7.2
communication 1.0 4.2 16.6

(c) feedback loop stm mtm p2p

10 frames
computation 1.0 1.2 5.1
communication 1.0 2.2 3.6

100 frames
computation 1.0 1.2 7.0
communication 1.0 3.7 9.9

1000 frames
computation 1.0 1.2 7.2
communication 1.0 3.9 12.9

are based on the amount of data to be processed by each

accelerator.

V. EXPERIMENTAL EVALUATION

We first evaluate the two data-transfer modes of the three

different synthetic dataflows (Section V-A). Then, we complete

an extensive evaluation of Nightvision and WAMI by measur-

ing performance and energy efficiency (Section V-B) as well as

the number of accesses to the off-chip memory (Section V-C).

Finally, we do both a theoretical and an experimental analysis

on the achievable speedup of the accelerators that we have de-

veloped for WAMI (Section V-D). For this analysis, we design

several complete NoC-based SoCs with multiple accelerators,

deploy them on an FPGA board, and collect results running

software on top of Linux. Table II summarizes the common

properties of our SoC.

A. Synthetic Dataflows

To evaluate the performance of the three synthetic dataflows

of Section IV, we create two extreme scenarios: computation

heavy and communication heavy. We arbitrarily assign 512

bytes for both load() and store(), and 1,048,576 cycles

for compute() to represent a computation-bound scenario.

For the communication-bound scenario, we pick 32,768 bytes

4

5.8
5 5.3 5.9

8

14.4

5.9
8.2

23.3

5.9

8.9

23.6

4.5
3

4.2 4.6
6

13.3

4.6
6.3

15.8

4.6
6.5

16.1

0

10

20

1 fra
me

10 fra
mes

100 fra
mes

1000 fra
mes

 1 fra
me

 10 fra
mes

 100 fra
mes

 1000 fra
mes

Nightvision WAMI

p
e

rf
o

rm
a

n
c
e

 (
re

la
ti
ve

 t
o

 s
w

) stm mtm p2p

Fig. 5. Speedups: memory-based vs. p2p communication.

of data to transfer and 16,384 cycles for computation. Table III

reports the experimental results as speedups with respect

to the single-threaded stm. We can observe that the multi-

threaded processes (mtm and p2p) have better performance

over stm, particularly when the accelerator of the application

is communication-bound. Furthermore, p2p shows greater

speedup comparing to mtm in all the cases, especially when

the dataflow is communication-bound, as it optimizes the

transfer of data between the different accelerators.

B. Performance and Energy Efficiency

Fig. 5 reports the results of the performance analysis of

Nightvision and WAMI. We measure the performance in terms

of throughput (calculated as frames per second) by varying

the workload, which is defined as the total number of frames

that are processed by the different programs. The results

are normalized with respect to the software execution on

the CVA6 core. We observe that, despite the overheads for

accelerator invocation, the programs that use memory-based

communication already outperform the CVA6 core. When the

workload consists of processing only one frame, stm gives the

best speedup compared to software execution because there

is no need for pipelining, and thus having fewer software

overheads results in better performance. In contrast, both mtm

and p2p are slower because the overhead for spawning the

software threads and handling their synchronization does not

pay off when processing a single frame. As the number of

frames increases, spawning multiple threads brings benefits

while its overhead becomes negligible. In fact, mtm achieves

better performance than stm thanks to the concurrent execution

of multiple accelerators. Noticeably, p2p provides higher

performance than memory-based communication when the

number of frames is greater than one. For example, when

invoking the sixteen accelerators to process a workload of

WAMI that consists of a stream of 100 frames, p2p achieves

a performance improvement of 15.8× compared to sw. This

is mainly due to the reduction in the number of accesses to

main memory compared to memory-based communication.

We also investigate the energy efficiency when executing the

applications with different programs. From the post-synthesis

report of Vivado, we obtain the dynamic power consumption of

each tile, including CPU, memory, I/O, and accelerators. The

ratio of the power dissipated by the SoC without accelerators

divided by the power dissipated by the SoC with the acceler-

ators is 0.91 for Nightvision and 0.66 for WAMI. The energy

10
0

10
2

10
4

10
6

10
8

10
10

1 fra
me

10 fra
mes

100 fra
mes

1000 fra
mes

 1 fra
me

 10 fra
mes

 100 fra
mes

 1000 fra
mes

Nightvision WAMI

m
e

m
o

ry
 a

c
c
e

s
s
e

s
 (

lo
g

)

stm mtm p2p

Fig. 6. Memory access savings with p2p communication.

is defined as the product of power and latency. Therefore, the

energy efficiency gain over the software execution is defined

as the speedup times the ratio of the power. For example,

when executing a workload of Nightvision that consists of

100 frames, the energy efficiency gain of p2p is 21.1×
compared to sw. Overall, as the number of frames grows, the

energy efficiency gain scales proportionally with the speedup

of Fig. 5.

C. Accesses to the Off-chip Memory

To analyze the impact on the number of memory accesses,

we use esp_monitor(). This function, made available in

the ESP API, calls performance counters that keep track of

the number of (read and write) accesses performed by each

accelerator to the main memory. The results of this analysis

are reported in Fig. 6, which shows the number of memory

accesses performed by the accelerators when executing the

Nightvision and WAMI application on workloads with differ-

ent numbers of frames. We can observe that the number of

accesses scales linearly with the number of frames, but in the

case of p2p, the absolute value is significantly less. In fact,

the utilization of p2p in the Nightvision leads to a reduction

of memory accesses by a factor of 4 when compared to stm

and mtm. Additionally, in the case of WAMI, the memory

accesses is reduced by 20× due to the heavy data transactions

between accelerators. This reduces the pressure on the memory

subsystem, which is critically important for SoCs that run

multiple applications.

D. Analysis on Achievable Speedup

After designing the WAMI accelerators, we want to confirm

that we reach the maximum speedup at the application level.

Amdahl’s Law [18] provides a way to calculate the theoretical

speedup of an entire application when a portion of it is

parallelized. We develop sixteen simple variations of the

program implementing the WAMI application. Each of these

variations only invokes one accelerator to offload the execution

of its corresponding kernel in hardware, while the rest of the

kernels are executed in software on the CVA6 processor core.

Each of the experimental bars in the diagram of Fig. 7 reports

the value of the actual speedup measured on the FPGA while

executing each of these variations of the WAMI application.

Each of the theoretical bars in the diagram of Fig. 7 reports

the value of the theoretical speedup for each accelerator. While

a small degradation in speedup is to be expected, the actual

speedup provided by each accelerator is very close to its

5

0.0

0.5

1.0

1.5

debaye
r

gradient

grayscale
warp

warp sub

warp x

warp y

steepest d
escent

hessian

matrix
 in

v

sd update

matrix
 m

ult

matrix
 re

shape

matrix
 add

warp iw
xp

change detectio
n

p
e

rf
o

rm
a

n
c
e

theoretical experimental

Fig. 7. Application-level speedup: experimental vs. theoretical results.

theoretical speedup. Although the performance speedups of

these accelerators are limited when running standalone, their

combined effect when running together is significant and it

becomes very remarkable when they work in pipelining by

exchanging data with p2p communication, as shown by the

results presented in the previous sections.

E. Summary of Results and Lessons Learned

The main outcome of our analysis is a recommendation to

use p2p communication instead of memory-based communica-

tion when designing an SoC that has multiple loosely-coupled

accelerators that interact by exchanging large data amounts in

a complex dataflow topology. Not only the p2p communication

gives better performance through its on-chip data movement

and implicit pipelining, but it also leads to smaller energy

dissipation with respect to the memory-based communication

mode. Next, we summarize the most important results obtained

from our experiments:

• The p2p program has significantly better performance

comparing to the memory-based programs when the

dataflow is communication heavy.

• For two image processing applications, the stm program

provides the best performance when only one frame is

executed. The software overhead of stm is less than the

others because spawning threads and software synchro-

nization are not necessary.

• In the case of multiple frames, the mtm program achieves

better performance than the stm program thanks to the

parallelism that can be exploited.

• Overall, the p2p program outperforms stm and mtm both

in terms of performance and energy efficiency.

• For the WAMI application, the measured speedups ap-

proach the theoretical maximum speedups.

In addition, we have some results that are not discussed in

the previous sections due to limited space:

• In the case of memory-based communication, using two

or more memory controllers can improve the performance

(depending on the application). For p2p having more

memory controllers is less important because the number

of accesses to off-chip memory is reduced.

• The exploration of multiple SoC configurations by vary-

ing the positions of the accelerators does not substantially

change the results of our analysis.

VI. RELATED WORK

In an SoC, on-chip communication between CPUs, GPUs,

accelerators, and memories is costly. Approaches like Wi-

HetNoC by Choi et al. [19] and WNoC by Guirado et

Table IV
COMPARISON WITH RELATED WORK

Processing multi- feedback
Unit Type FPGA OS thread p2p loop

our work 17 ACCs ✓ ✓ ✓ ✓ ✓

[19] 28 GPUs - - - - -
[20] 256 PEs - - - ✓ -
[21] 15 ABBs - ✓ ✓ - -
[22] 36 Chiplets ✓ - - ✓ -
[7] 3 ACCs ✓ ✓ - ✓ -
[23] 16 ACCs - ✓ ✓ ✓ -

al. [20] address this problem by improving the NoC. Memory-

based communication is the standard mechanism to allow

accelerators to exchange data. Conversely, p2p communication

is mostly used to allow different components of the same

accelerator to communicate efficiently. For example, Cong

et al. [21] propose an architecture with “accelerator building

blocks” that can be freely composed to create more complex

accelerators. Shao et al. [22] propose a multi-chip architecture

to scale the performance of deep learning inference. Each

chiplet has various processing elements (PE) that can commu-

nicate directly. However, p2p communication is more rarely

used for accelerator communication on an NoC or a bus. Giri

et al. [7] propose to use p2p communication to improve the

performance of accelerators for machine learning and com-

puter vision. Cong et al. [23] describe “accelerator chaining”

as a technique for accelerator-to-accelerator communication,

which is implemented by allowing the DMA controllers of

the accelerators to communicate with each other.

Table IV summarizes the experimental setups of these

related works. Compared to these, the setup for our analysis is

the only one that is based on FPGA-based prototypes of com-

plete SoCs that execute complex multi-threaded applications

(with feedback loops) running on top of the Linux operating

system and exchanging data through p2p communications. We

are not aware of any prior published analysis that compares

memory-based and p2p communication for a heterogeneous

SoC architecture executing a complex application that invokes

many loosely-coupled accelerators.

VII. CONCLUSIONS

In this paper, we present a detailed comparative analysis of

two data-transfer modes among many loosely-coupled acceler-

ators in heterogeneous NoC-based SoC architectures: memory-

based and p2p communication. We demonstrate the concept by

using a variety of synthetic benchmarks to get a preliminary

evaluation. Then we consider Nightvision and WAMI, real-

world complex image processing applications [16], [17]. We

develop sixteen distinct accelerators with HLS. For both

applications, we integrate the accelerators into a Linux-capable

SoC. We deploy and test the SoC on an FPGA development

board to perform our experiments. Our analysis shows that p2p

communication outperforms memory-based communication in

terms of performance and energy efficiency. In addition, it

simplifies the development of software by hiding the syn-

chronization details from the programmers. We plan an open-

source release of all the software and hardware artefacts in

time for HPEC.

6

ACKNOWLEDGMENTS

This research was developed, in part, with funding from

the Defense Advanced Research Projects Agency (DARPA),

and in part with funding from the Army Research Office un-

der Grant Number W911NF-19-1-0476. The views, opinions

and/or other findings expressed are those of the authors and

should not be interpreted as representing the official views

or policies (either expressed or implied) of the Department

of Defense, the Army Research Office, the National Science

Foundation, or the U.S. Government. Distribution Statement

“A”: Approved for Public Release, Distribution Unlimited. The

U.S. Government is authorized to reproduce and distribute

reprints for Government purposes notwithstanding any copy-

right notation herein.

REFERENCES

[1] W. J. Dally et al., “Domain-Specific Hardware Accelerators,” Commu-
nications of ACM, vol. 63, no. 7, 2020.

[2] J. Cong et al., “Accelerator-rich Architectures: Opportunities and Pro-
gresses,” in Proc. of the Design Automation Conference (DAC), 2014.

[3] T. Oguntebi et al., “GraphOps: A Dataflow Library for Graph Analytics
Acceleration,” in Proc. of the ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA), 2016.

[4] P. Srivastava et al., “PROMISE: An end-to-end Design of a Pro-
grammable Mixed-Signal Accelerator for Machine-Learning Algo-
rithms,” in Proc. of the International Symposium on Compute Archi-
tecture (ISCA), 2018.

[5] O. Reiche et al., “Generating FPGA-based Image Processing Accelera-
tors with Hipacc,” in Proc. of the International Conference On Computer
Aided Design, 2017.

[6] E. G. Cota et al., “An Analysis of Accelerator Coupling in Hetero-
geneous Architectures,” in Proc. of the Design Automation Conference
(DAC), 2015.

[7] D. Giri et al., “ESP4ML: Platform-Based Design of Systems-on-Chip
for Embedded Machine Learning,” in Proc. of the ACM/IEEE Design,
Automation and Test in Europe Conference (DATE), 2020.

[8] P. Mantovani et al., “Agile SoC Development with Open ESP,” in Proc.
of the International Conference On Computer Aided Design, 2020.

[9] Embedded Scalable Platform (ESP), www.esp.cs.columbia.edu.
[10] F. Zaruba et al., “The Cost of Application-Class Processing: Energy and

Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core
in 22-nm FDSOI Technology,” IEEE Transactions on Very Large Scale
Integration Systems, vol. 27, no. 11, 2019.

[11] L. P. Carloni, “The case for embedded scalable platforms,” in Proc. of
the ACM/IEEE Design Automation Conference (DAC), 2016.

[12] D. Black et al., SystemC: From the Ground Up, Second Edition.
Springer, 2009.

[13] M. J. Lyons et al., “The Accelerator Store: A Shared Memory Frame-
work for Accelerator-based Systems,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 8, no. 4, 2012.

[14] E. Lee and D. Messerschmitt, “Synchronous data flow,” Proceedings of
the IEEE, vol. 75, no. 9, pp. 1235–1245, 1987.

[15] T. Murata, “Petri nets: Properties, analysis and applications,” Proceed-
ings of the IEEE, vol. 77, no. 4, pp. 541–580, 1989.

[16] R. Porter et al., “Wide-Area Motion Imagery,” IEEE Signal Processing
Magazine, vol. 27, no. 5, 2010.

[17] K. Barker et al., PERFECT (Power Efficiency Revolution For Embedded
Computing Technologies) Benchmark Suite Manual, 2013.

[18] M. Amdahl, “Validity of the single processor approach to achieving large
scale computing capabilities,” in afips, 1967.

[19] W. Choi et al., “On-chip communication network for efficient training
of deep convolutional networks on heterogeneous manycore systems,”
IEEE Transactions on Computers, vol. 67, no. 5, pp. 672–686, 2018.

[20] R. Guirado et al., “Understanding the impact of on-chip communica-
tion on dnn accelerator performance,” in International Conference on
Electronics, Circuits and Systems (ICECS), 2019, pp. 85–88.

[21] J. Cong et al., “Charm: A composable heterogeneous accelerator-rich
microprocessor,” in Proc. of the International Symposium on Low Power
Electronics and Design (ISLPED), 2012.

[22] Y. S. Shao et al., “Simba: Scaling Deep-learning Inference with Multi-
chip-module-based Architecture,” in Proc. of the ACM/IEEE Interna-
tional Symposium on Microarchitecture (MICRO), 2019.

[23] J. Cong et al., “Architecture Support for Accelerator-rich CMPs,” in
Proc. of the Design Automation Conference (DAC), 2012.

7

