Continuous Deep Equilibrium Models: Training
Neural ODEs Faster by Integrating Them to Infinity

Avik Pal
Electrical Engg. & Computer Science
MIT
Cambridge, U.S.A.
avikpal @mit.edu

Abstract—Implicit models separate the definition of a layer from
the description of its solution process. While implicit layers allow
features such as depth to adapt automatically to new scenarios and
inputs, this adaptivity makes its computational expense challenging
to predict. In this manuscript, we increase the “implicitness” of
the DEQ by redefining the method in terms of an infinite time
neural ODE, which paradoxically decreases the training cost over
a standard neural ODE by 2 — / x. Additionally, we address the
question: is there a way to simultaneously achieve the robustness
of implicit layers while allowing the reduced computational expense
of an explicit layer? To solve this, we develop Skip and Skip Reg.
DEQ, an implicit-explicit (IMEX) layer that simultaneously trains
an explicit prediction followed by an implicit correction. We show
that training this explicit predictor is free and even decreases
the training time by 7.17 — 3.19x. Together, this manuscript
shows how bridging the dichotomy of implicit and explicit deep
learning can combine the advantages of both techniques.

Index Terms—implicit neural networks, neural ode, deep
equilibrium models, steady-state problems

I. INTRODUCTION

Implicit layer methods, such as Neural ODEs and Deep
Equilibrium models [1, 2, 3], have gained popularity due to
their ability to automatically adapt model depth based on the
“complexity” of new problems and inputs. The forward pass of
these methods involves solving steady-state problems, convex
optimization problems, differential equations, etc., all defined
by neural networks, which can be expensive. However, training
these more generalized models has empirically been shown to
take significantly more time than traditional explicit models
such as recurrent neural networks and transformers. Nothing
within the problem’s structure requires expensive training
methods, so we asked, can we reformulate continuous implicit
models so that this is not the case?

[4, 5, 6, 7] have identified several problems with training
implicit networks. These models grow in complexity as training
progresses, and a single forward pass can take over 100
iterations [6] even for simple problems like MNIST. Deep
Equilibrium Models [2, 8] have better scaling in the backward
pass but are still bottlenecked by slow steady-state convergence.
[9] quantified several convergence and stability problems with
DEQs. They proposed a regularization technique by exploiting
the “implicitness” of DEQs to stabilize their training. We marry
the idea of faster backward pass for DEQs and continuous
modeling from Neural ODEs to create Infinite Time Neural

Cambridge, U.S.A.
edelman @mit.edu

Alan Edelman
Mathematics
MIT

Chris Rackauckas
Mathematics
MIT
Cambridge, U.S.A.
crackauc @mit.edu

ODE:s, which scale significantly better in the backward pass
and drastically reduce the training time.
Our main contributions include'

1) An improved DEQ architecture (Skip-DEQ) that uses
an additional neural network to predict better initial
conditions.

2) A regularization scheme (Skip Regularized DEQ) incen-
tivizes the DEQ to learn simpler dynamics and leads
to faster training and prediction. Notably, this does
not require nested automatic differentiation and thus is
considerably less computationally expensive than other
published techniques.

3) A continuous formulation for DEQs as an infinite
time neural ODE, which paradoxically accelerates the
backward pass over standard neural ODEs by replacing
the continuous adjoints with a simple linear system.

4) We demonstrate the seamless combination of Continuous
DEQs with Skip DEQs to create a drop-in replacement
for Neural ODEs without incurring a high training cost.

II. BACKGROUND

Explicit Deep Learning Architectures specify a projection
[+ X — Z by stacking multiple “layers”. Implicit models,
however, define a solution process instead of directly specifying
the projection. These methods enforce a constraint on the
output space Z by learning g : X x Z — R". By specifying a
solution process, implicit models can effectively vary features
like depth to adapt automatically to new scenarios and inputs.
Some prominent implicit models include Neural ODEs [1],
where the output z is defined by the ODE % = go(z,t). [10]
generalized this framework to Stochastic Differential Equations
(SDEs) by stochastic noise injection, which regularizes the
training of Neural ODEs, allowing them to be more robust and
achieve better generalization. [2] designed equilibrium models
where the output z was constrained to be a steady state, z* =
fo(2*,x). Another example of implicit layer architectures is
seen in [11, 12] set z to be the solution of convex optimization
problems.

Deep Implicit Models essentially removed the design bottle-
neck of choosing the “depth” of neural networks. Instead, these

ICode: https://github.com/SciML/DeepEquilibriumNetworks.jl

Training

Backward Pass

6 M skip Cont. DEQ 61
|7 skip Reg. Cont. DEQ

251 I Neural ODE 54
a
£ 4 4
[$)
L
2 3
k<t
& 2- 2
@
E
B _] 1 _'

ol |:| . | [ol] —— N

T T T T T T
CIFAR10 Small CIFAR10 Large ImageNet CIFAR10 Small CIFAR10 Large ImageNet

Fig. 1: Relative Training and Backward Pass Timings against Continuous DEQs (lower is better): In all scenarios, Neural
ODEs take 4.7 — 6.182x more time in the backward pass compared to Vanilla Continuous DEQs. Whereas combining Skip
(Reg.) with Continuous DEQs accelerates the backward pass by 2.8 — 5.9 x.

models use a “tolerance” to determine the accuracy to which
the constraint needs to be satisfied. Additionally, many of these
models only require O(1) memory for backpropagation, thus
alluding to potential increased efficiency over their explicit
layer counterparts. However, evaluating these models require
solving differential equations [1, 10], non-linear equations [2],
convex optimization problems [11, 12], etc. Numerous au-
thors [4, 5, 6, 7, 9, 13] have noted that this solution process
makes implicit models significantly slower in practice during
training and prediction compared to explicit networks achieving
similar accuracy.

A. Neural Ordinary Differential Equations

Initial Value Problems (IVPs) are a class of ODEs that
involve finding the state at a later time ¢1, given the value z,
at time tg. [1] proposed the Neural ODE framework, which
uses neural networks to model the ODE dynamics

dz(t)
7 = fo(2)

Using adaptive time stepping allows the model to operate at a
variable continuous depth depending on the inputs. Removing
the fixed depth constraint of Residual Networks provides a
more expressive framework and offers several advantages
in problems like density estimation [4], irregularly spaced
time series problems [14], etc. Training Neural ODEs using
continuous adjoints has the added benefit of constant memory
overhead. However, this benefit often leads to slower training
since we need to backsolve an ODE. We defer the exact details
of the continuous adjoint equations to [1].

B. Deep Equilibrium Models

Deep Equilibrium Networks (DEQs) [2] are implicit models
where the output space represents a steady-state solution.
Intuitively, this represents infinitely deep neural networks with
input injection, i.e., an infinite composition of explicit layers
Zn+1 = fo(zn,x) with zg = 0 and n — oo. In practice, it is
equivalent to evaluating a dynamical system until it reaches a
steady state z* = fy(2*,). [2, 8] perform nonlinear fixed point
iterations of the discrete dynamical system using Broyden’s
method [8, 15] to reach this steady-state solution.

Evaluating DEQs requires solving a steady-state equation
involving multiple evaluations of the explicit layer slowing
down the forward pass. However, driving the solution to steady-
state makes the backward pass very efficient [16]. Despite a
potentially infinite number of evaluations of fy in the forward
pass, backpropagation only requires solving a linear equation.

2" = fo(2",)
0z° fo(z*,x) 07 Ofe(z*,x)
o0 0z 00 06
_ O0fp(z",)\ 92" _ Ofe(2",)
- (I o=) o0~ o6

For backpropagation, we need the Vector-Jacobian Prod-
uct (VIP):

() = (5= (-2

where v is the gradients from layers after the DEQ module.

. -T
Computing (I — %) is expensive and makes DEQs

non-scalable to high-dimensional problems. Instead, we solve

afo(z"2)\ "
the linear equation g = (% g + v using Newton-

Krylov Methods like GMRES [17]. To compute the final
9fe(z",x)
o0

VIP, we need to compute (g, which allows us
to efficiently perform the backpropagation without explicitly
computing the Jacobian.

1) Multiscale Deep Equilibrium Network: Multiscale model-
ing [18] has been the central theme for several deep computer
vision applications [19, 20, 21, 22]. The standard DEQ
formulation drives a single feature vector to a steady state. [8]
proposed Multiscale DEQ (MDEQ) to learn coarse and fine-
grained feature representations simultaneously. MDEQs operate
at multiple feature scales z = {z1, 22, ..., 2, }, with the new
equilibrium state z* = fp(z7,25,...,25,x). All the feature
vectors in an MDEQ are interdependent and are simultaneously
driven to a steady state. [8] used a Limited-Memory Broyden
Solver [15] to solve these large scale computer vision problems.

We use this MDEQ formulation for all our classification
experiments.

2) Jacobian Stabilization: Infinite composition of a function
fo does not necessarily lead to a steady-state — chaos, period-
icity, divergence, etc., are other possible asymptotic behaviors.
The Jacobian Matrix Jy, (2*) controls the existence of a stable
steady-state and influences the convergence of DEQs in the
forward and backward passes. [9] describes how controlling
the spectral radius of J,(z*) would prevent simpler iterative
solvers from diverging or oscillating. [9] introduce a Jacobian
term to the training objective to regularize the model training.
The authors use the Hutchinson estimator [23] to compute and
regularize the Frobenius norm of the Jacobian.
ll€” T, ()13

d b
While well-motivated, the disadvantage of this method is
that the Hutchinson trace estimator requires automatic dif-
ferentiation in the loss function, thus requiring higher order
differentiation in the training process and greatly increasing the
training costs. However, in return for the increased cost, it was
demonstrated that increased robustness followed, along with
faster forward passes in the trained results. Our methods are
orthogonal to the Jacobian stabilization process. In Section 1V,
we provide empirical evidence on composing our models with
Jacobian Stabilization to achieve even more robust results.

ﬁjac =)\jac €~ N(O, Id)

II1. METHODS
A. Continuous Deep Equilibrium Networks

Deep Equilibrium Models have traditionally been formulated
as steady-state problems for a discrete dynamical system.
However, discrete dynamical systems come with a variety of
shortcomings. Consider the following linear discrete dynamical
system (See Figure 2):

Upt1 = Q- Up where |jaf| <1 and up=1

This system converges to a steady state of u., = 0. However, in
many cases, this convergence can be relatively slow. If o = 0.9,
then after 10 steps, the value is u19 = 0.35 because a small
amount only reduces each successive step. Thus convergence
could only be accelerated by taking many steps together. Even
further, if o« = —0.9, the value ping-pongs over the steady state
u; = —0.9, meaning that if we could take some fractional step
us+ then it would be possible to approach the steady state much
faster. [24, 25] describe several other shortcomings of using
discrete steady-state dynamics over continuous steady-state
dynamics. These issues combined motivate changing from a
discrete description of the system (the fixed point or Broyden’s
method approach) to a continuous description of the system
that allows adaptivity to change the stepping behavior and
accelerate convergence.

To this end, we propose an alternate formulation for DEQs
by modeling a continuous dynamical system (Continuous DEQ)
where the forward pass is represented by an ODE which is
solved from ¢y = 0 to ¢; = oo:

dz

pri fo(z,x) — 2

05 |

N

—a=-09
a=0.5
a=0.9

--a=0.1
a=0.99

05+

t

Fig. 2: Slow Convergence of Simple Linear Discrete
Dynamical Systems

where fy is an explicit neural network. Continuous DEQs lever-
age fast adaptive ODE solvers, which terminate automatically
once the solution is close to a steady state, i.e., ‘idi; = 0, which
then satisfies fy(2*,x) = z* and is thus the solution to the
same implicit system as before.

The Continuous DEQ can be considered an infinite-time
neural ODE in this form. However, almost paradoxically,
the infinite time version is cheaper to train than the finite
time version as its solution is the solution to the nonlinear
system, meaning the same implicit differentiation formula
of the original DEQ holds for the derivative. This means
that no backpropagation through the steps is required for the
Continuous DEQ, and only a linear system must be solved.
In Section IV, we empirically demonstrate that Continuous
DEQs outperform Neural ODEs in terms of training time while
achieving similar accuracies.

B. Skip Deep Equilibrium Networks

[2, 8] set the initial condition uy = 0 while solving a DEQ.
Assuming the existence of a steady state, the solvers will
converge given enough iterations. However, each iteration is
expensive, and a poor guess of the initial condition makes the
convergence slower. To counteract these issues, we introduce
an alternate architecture for DEQ (Skip DEQ), where we use
an explicit model g4 to predict the initial condition for the
steady-state problem ug = g,(z)*. We jointly optimize for
{0, ¢} by adding an auxiliary loss function:

Loxip = Asxipll fo (2", @) — g ()|

Intuitively, our explicit model g, better predicts a value closer
to the steady-state (over the training iterations), and hence we
need to perform fewer iterations during the forward pass. Given
that its prediction is relatively free compared to the cost of the
DEQ, this technique could decrease the cost of the DEQ by
reducing the total number of iterations required. However, this
prediction-correction approach still uses the result of the DEQ
for its final predictions and thus should achieve robustness
properties equal.

2We note that the concurrent work [26] introduced a similar formulation as
a part of HyperDEQ

Model Jacobian Reg. # of Params Test Accuracy (%) Testing NFE Training Time (min) Prediction Time (s / batch)
Vanilla DEQ X 138K 97.926 £+ 0.107 18.345 £0.732 5.197 £ 1.106 0.038 £ 0.009
98.123 + 0.025 5.034 £+ 0.059 7.321 £0.454 0.011 £ 0.005
Skip DEQ X 151K 97.759 + 0.080 4.001 4+ 0.001 1.711 + 0.202 0.010 £ 0.001
97.749 £+ 0.141 4.001 4+ 0.000 6.019 £ 0.234 0.012 £ 0.001
Skip Reg. DEQ X 138K 97.973 £ 0.134 4.001 4+ 0.000 1.295 4+ 0.222 0.010 £ 0.001
98.016 + 0.049 4.001 4+ 0.000 5.128 £ 0.241 0.012 £ 0.000

TABLE I: MNIST Classification with Fully Connected Layers: Skip Reg. Continuous DEQ without Jacobian Regularization
takes 4 X less training time and speeds up prediction time by 4x compared to Continuous DEQ. Continuous DEQ with Jacobian
Regularization has a similar prediction time but takes 6 X more training time than Skip Reg. Continuous DEQ. Using Skip

variants speeds up training by 1.42 X —4 X.

1) Skip Regularized DEQ: Regularization Scheme without
Extra Parameters: One of the primary benefits of DEQs is
the low memory footprint of these models (See Section II).
Introducing an explicit model g4 increases the memory require-
ments for training. To alleviate this problem, we propose a
regularization term to minimize the L1 distance between the
first prediction of fy and the steady-state solution:

Loxip = Askipll fo (2",) — fo(0,)|

This technique follows the same principle as the Skip DEQ
where the DEQ’s internal neural network is now treated as
the prediction model. We hypothesize that this introduces an
inductive bias in the model to learn simpler training dynamics.

IV. EXPERIMENTS

In this section, we consider the effectiveness of our proposed
methods — Continuous DEQs and Skip DEQs — on the training
and prediction timings. We consider the following baselines:

1) Discrete DEQs with L-Broyden Solver.

2) Jacobian Regularization of DEQs.?

3) Multi-Scale Neural ODEs with Input Injection: A modi-
fied Continuous Multiscale DEQ without the steady state
convergence constaint.

Our primary metrics are classification accuracy, the number
of function evaluations (NFEs), total training time, time
for the backward pass, and prediction time per batch. We
showcase the performance of our methods on — MNIST [27],
CIFAR-10 [28], SVHN [29], & ImageNet [30]. We use
perform our experiments in Julia [31] using Lux.jl [32] and
DifferentialEquations.jl [33, 34, 35]. We provide the exact
experimental setup in Appendix A, B, & C.

A. MNIST Image Classification

We summarize our results in Table 1. Without Jacobian
Stabilization, Skip Reg. Continuous DEQ has the highest
testing accuracy of 97.973% and has the lowest training and
prediction timings overall. Using Jacobian Regularization, DEQ
outperforms Skip DEQ models by < 0.4 %, however, jacobian

3We note that due to limitations of our Automatic Differentiation system, we
cannot perform Jacobian Regularization for Convolutional Models. However,
our preliminary analysis suggests that the Skip DEQ and Continuous DEQ
approaches are fully composable with Jacobian Regularization and provide
better performance compared to using only Jacobian Regularization (See
Table I).

regularization increases training time by 1.4 — 4 x. Skip DEQ
models can obtain the lowest prediction time per batch of
~ 0.01s.

B. CIFARIO Image Classification

We summarize our results for the smaller 200K parameter
model in Table II and Figure 3. Continuous DEQs are faster
than Neural ODEs during training by a factor of 2 x —2.36 X,
with a speedup of 4.2 x —8.67x in the backward pass.

We summarize our 11M parameter model results in Table III
and Figure 4. Continuous DEQs are faster than Neural ODEs
during training by a factor of 4.1 x —7.98x, with a speedup
of 6.18 x —36.552 % in the backward pass.

C. ImageNet Image Classification

We summarize our results in Table IV and Figure 5. Skip
(Reg.) variants accelerate the training of Continuous DEQ by
1.57 x —1.96 x, with a reduction of 2.2 x —/.2x in the
backward pass timings.

V. RELATED WORKS
A. Implicit Models

Implicit Models have obtained competitive results in image
processing [8], generative modeling [4], time-series predic-
tion [14], etc, at a fraction of memory requirements for
explicit models. Additionally, [36] show that for a certain
class of DEQs convergence to global optima is guaranteed
at a linear rate. However, the slow training and prediction
timings [5, 6, 7, 9, 13, 37] often overshadow these benefits.

B. Accelerating Neural ODEs

[6, 7] used higher-order regularization terms to constrain the
space of learnable dynamics for Neural ODEs. Despite speeding
up predictions, these models often increase the training time by
7x [37]. Alternatively, [13] randomized the endpoint of Neural
ODE:s to incentivize simpler dynamics. [37] used internal solver
heuristics — local error and stiffness estimates — to control the
learned dynamics in a way that decreased both prediction and
training time. [38] rewrite Neural ODEs as heavy ball ODEs
to accelerate both forward and backward passes. [39] replace
ODE solvers in the forward with a Taylor-Lagrange expansion
and report significantly better training and prediction times.

Regularized Neural ODEs can not be directly extended to
discrete DEQs [2, 8]. Our continuous formulation introduces the

Training Time

Backward Pass

Prediction Time

Model Continuous # of Params Test Accuracy (%) (s / batch) (s / batch) (s / batch)
Vanilla DEQ X 163546 81.233 £ 0.097 0.651 +0.009 0.075 + 0.001 0.282 + 0.005
80.807 £ 0.631 0.753 +0.017 0.261 +£0.010 0.136 £0.010
Skip DEQ X 200122 82.013 £ 0.306 0.717+0.022 0.1154+0.004 0.274 £ 0.005
80.807 £ 0.230 0.806 = 0.010 0.293 +0.004 0.154 £ 0.002
Skip Reg. DEQ X 163546 81.170 £ 0.356 0.709 + 0.005 0.114 £ 0.002 0.283 + 0.007
82.513 £0.177 0.679 +0.015 0.143+0.017 0.154 £ 0.003
Neural ODE 163546 83.543 £0.393 1.608 £ 0.026 1.240 4+ 0.021 0.207 + 0.006

TABLE II: CIFAR10 Classification with Small Neural Network: Skip Reg. Continuous DEQ achieves the highest test accuracy
among DEQs. Continuous DEQs are faster than Neural ODEs during training by a factor of 2 x —2.36 x, with a speedup
of 4.2 x —8.67x in the backward pass. We also observe a prediction speed-up for Continuous DEQs of 1.77 x —2.07x
against Discrete DEQs and 1.34 x —1.52x against Neural ODE.

Forward (Testing) Pass Time (s)

Backward (Training) Pass Time (s)

Testing Accuracy (Top 1) (%)

04F 0.4F »
g — Vanilla DEQ E
w L E
o 03 = 03 Skip DEQ 85¢ o
B 02F 0.2f Skip Reg. DEQ 3‘5’ 3 =
Q E
"
2ot 0.1F . 7ok

, ; : ; A e 35 .

0 5.00x10° 1.00x10% 1.50x10% 2.00x10% 0

5.00x10° 1.00x10* 1.50x10*

S

2.00x10* 0 5.00x10° 1.00x10* 1.50x10* 2.00x10

o 04F 0.4F

w 90k

©03F 0.3F 3

w - Y I 85 R
3 80F —_—

0.2F

Contin

S02F - =
01F 0.1F) AWW 70F

0 5.00x10° 1.00x10* 1.50x10* 2.00x10% 0
Step

5.00x10° 1.00x10* 1.50x10*

5.00x10° 1.00x10* 1.50x10* 2.00x104

Step

65
2.00x10* 0
Step

Fig. 3: CIFAR10 Classification with Small Neural Network

Training Time

Backward Pass

Prediction Time

Model Continuous # of Params Test Accuracy (%) (s / batch) (s / batch) (s / batch)
Vanilla DEQ X 10.63M 88.913 £ 0.287 0.625+0.165 0.111 £+ 0.021 0.414 4+ 0.222
89.367 £ 0.832 1.284 £0.011 0.739£0.003 0.606 +0.010
Skip DEQ X 11.19M 88.783 £0.178 0.588 +£0.042 0.112+0.006 0.314+£0.017
89.600 £ 0.947 0.697 £ 0.012 0.150+0.013 0.625 £ 0.004
Skip Reg. DEQ X 10.63M 88.773 £0.115 0.613 +0.048 0.109 +0.008 0.268 £ 0.031
90.107 £ 0.837 0.660 +0.019 0.125+0.003 0.634 £ 0.019
Neural ODE 10.63M 89.047 £0.116 5.267 +0.078 4.569 + 0.077 0.573 £0.010

TABLE III: CIFAR10 Classification with Large Neural Network: Skip Reg. Continuous DEQ achieves the highest test
accuracy. Continuous DEQs are faster than Neural ODEs during training by a factor of 4.1 x —7.98x, with a speedup of
6.18 x —36.552 % in the backward pass. However, we observe a prediction slowdown for Continuous DEQs of 1.4 X —2.36 x
against Discrete DEQs and 0.90 x —0.95 x against Neural ODE.

potential to extend [38, 39] to DEQs. However, these methods
benefit from the structure in the backward pass, which does
not apply to DEQs. Additionally, relying on discrete sensitivity
analysis [37] nullifies the benefit of a cost-effective backward
pass.

C. Accelerating DEQs

[9] uses second-order derivatives to regularize the Jacobian,
stabilizing the training and prediction timings of DEQs. [40]
proposes a Jacobian-Free Backpropagation Model, which
accelerates solving the Linear Equation in the backward

pass. Our work complements these models and can be freely
composed with them. We have shown that a poor initial
condition harms convergence, and a better estimate for the
same leads to faster training and prediction. We hypothesize
that combining these methods would lead to more stable and
faster convergence, demonstrating this possibility with the
Jacobian regularization Skip DEQ.

VI. DISCUSSION

We have empirically shown the effectiveness of Continu-
ous DEQs as a faster alternative for Neural ODEs. Consistent

Forward (Testing) Pass Time (s) Backward (Training) Pass Time (s) Testing Accuracy (Top 1) (%)

95
90 F
85F
80F
75
70k

. . . . 65 b
2.0x10* 4.0x10* 6.0x10* 8.0x10* 0

— Vanilla DEQ
o5k Skip DEQ
s ' — Skip Reg. DEQ

Discrete DEQ
o
(&)

0.0}

2.0x10* 4.0x10* 6.0x10* 8.0x10*

95
90 F
85
80 F
75
70F

Continuous DEQ

0.0

!

0 2.0x10* 4.0x10* 6.0x10* 8.0x10% 0

Step

2.0x10* 4.0x10* 6.0x10* 8.0x10*

Step

65 it
0 2.0x10* 4.0x10* 6.0x10% 8.0x10%

Fig. 4: CIFAR10 Classification with Large Neural Network

Step

Test Accuracy

Training Time

Backward Pass

Prediction Time

Model Continuous 4 of Params " p)" g, (s / batch) (s / batch) (s / batch)
Vanilla DEQ P 1791M 81.809+0.115 2.057+£0.138 0.195+0.007 1.963 = 0.189
81.320 £ 0.516 3.131+0.027 1.873+0.015 1.506 + 0.027
Skip DEQ x 1847M 8L717+0452 1.956+0.012 0.194+0.001 1.843 +0.025
81.334+0.322 2.016+0.120 0.845+0.127 1.575+ 0.053
Skip Reg. DEQ X 1791M 81.611+0.369 1.996+0.035 0.539+0.023 1.752 % 0.093
81.813+0.350 1.607+0.044 0.444+0.026 1.560 + 0.021

TABLE IV: ImageNet Classification: All the variants attain comparable evaluation accuracies. Skip (Reg.) accelerates the
training of Continuous DEQ by 1.57 x —1.96 %, with a reduction of 2.2 X —/.2x in the backward pass timings. However,
we observe a marginal increase of 4% in prediction timings for Skip (Reg.) Continuous DEQ compared against Continuous
DEQ. For Discrete DEQs, Skip (Reg.) variants reduce the prediction timings by 6.5% — 12%.

Forward (Testing) Pass Time (s)

Backward (Training) Pass Time (s) Testing Accuracy (Top 5) (%)

4F 4F 95
g — Vanilla DEQ 90¢
a8l \\ s Skip DEQ 85¢
§2f ——— A i | 2 — Skip Reg. DEQ 32 3
5 E
21F 1F
e e — - 70F
ok, . . (0] S
65
0 2.0x10° 4.0x10° 0 2.0x10° 4.0x10° 0 2.0x10° 4.0x10°
95
g 4f 4f ook
23 3f a5k
g 2f 2F patthiad 80F = P
£t 3 75F
; 1 1| ok
ok . . ok,
65
0 2.0x10° 4.0x10° 0 2.0x10° 4.0x10° 0 2.0x105 4.0x10°
Step Step Step

Fig. 5: ImageNet Classification

with the ablation studies in [26], we see that Skip DEQ in
itself doesn’t significantly improve the prediction or training
timings for Discrete DEQs. Skip Reg. DEQ does, however,
speeds up the inference for larger Discrete DEQs. However,
combining Skip DEQ and Skip Reg. DEQ with Continuous
DEQs, enable a speedup in backward pass by over 2.8 — 5.9 x.
We hypothesize that this improvement is due to reduction in
the condition number, which results in faster convergence of
GMRES in the backward pass, however, acertaining this would
require furthur investigation. We have demonstrated that our .
improvements to DEQs and Neural ODEs enable the drop-

in replacement of Skip Continuous DEQs in any classical

deep learning problem where continuous implicit models were
previously employed.

A. Limitations

We observe
methods:

the following limitations for our proposed

o Reformulating a Neural ODE as a Continuous DEQ is
valid, when the actual dynamics of the system doesn’t
matter. This holds true for all applications of Neural ODEs
to classical Deep Learning problems.

Continuous DEQs are slower than their Discrete counter-
parts for larger models (without any significant improve-
ment to accuracy), hence the authors recommend their
usage only for cases where a continuous model is truly
needed.

VII. ACKNOWLEDGEMENT

The authors acknowledge the MIT SuperCloud and Lin-
coln Laboratory Supercomputing Center for providing HPC
resources that have contributed to the research results reported
within this paper. This material is based upon work supported
by the National Science Foundation under grant no. OAC-
1835443, grant no. SII-2029670, grant no. ECCS-2029670,
grant no. OAC-2103804, and grant no. PHY-2021825. We
also gratefully acknowledge the U.S. Agency for International
Development through Penn State for grant no. S002283-USAID.
The information, data, or work presented herein was funded
in part by the Advanced Research Projects Agency-Energy
(ARPA-E), U.S. Department of Energy, under Award Number
DE-AR0001211 and DE-AR0001222. We also gratefully
acknowledge the U.S. Agency for International Development
through Penn State for grant no. S002283-USAID. The views
and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any
agency thereof. This material was supported by The Research
Council of Norway and Equinor ASA through Research Council
project “308817 - Digital wells for optimal production and
drainage”. Research was sponsored by the United States Air
Force Research Laboratory and the United States Air Force
Artificial Intelligence Accelerator and was accomplished under
Cooperative Agreement Number FA8750-19-2-1000. The views
and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official
policies, either expressed or implied, of the United States
Air Force or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation herein.

REFERENCES

[1] R.T. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud,
“Neural ordinary differential equations,” arXiv preprint
arXiv:1806.07366, 2018.

[2] S. Bai, J. Z. Kolter, and V. Koltun, “Deep Equilibrium
Models,” arXiv:1909.01377 [cs, stat], Oct. 2019. arXiv:
1909.01377.

[3] L. E. Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Y.
Tsai, “Implicit Deep Learning,” arXiv:1908.06315 [cs,
math, stat], Aug. 2020. arXiv: 1908.06315.

[4] W. Grathwohl, R. T. Chen, J. Bettencourt, I. Sutskever, and
D. Duvenaud, “Ffjord: Free-form continuous dynamics
for scalable reversible generative models,” arXiv preprint
arXiv:1810.01367, 2018.

[5] E. Dupont, A. Doucet, and Y. W. Teh, “Augmented neural
odes,” arXiv preprint arXiv:1904.01681, 2019.

[6] J. Kelly, J. Bettencourt, M. J. Johnson, and D. Duvenaud,
“Learning differential equations that are easy to solve,”
arXiv preprint arXiv:2007.04504, 2020.

[7] C. Finlay, J.-H. Jacobsen, L. Nurbekyan, and A. M.
Oberman, “How to train your neural ode,” arXiv preprint
arXiv:2002.02798, 2020.

[8] S. Bai, V. Koltun, and J. Z. Kolter, “Multiscale Deep
Equilibrium Models,” arXiv:2006.08656 [cs, stat], Nov.
2020. arXiv: 2006.08656.

[9] S. Bai, V. Koltun, and J. Z. Kolter, “Stabilizing equilib-

rium models by jacobian regularization,” arXiv preprint

arXiv:2106.14342, 2021.

X. Liu, S. Si, Q. Cao, S. Kumar, and C.-J. Hsieh, “Neural

sde: Stabilizing neural ode networks with stochastic noise,”

arXiv preprint arXiv:1906.02355, 2019.

B. Amos and J. Z. Kolter, “Optnet: Differentiable opti-

mization as a layer in neural networks,” in International

Conference on Machine Learning, pp. 136—145, PMLR,

2017.

A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond,

and Z. Kolter, “Differentiable convex optimization layers,”

arXiv preprint arXiv:1910.12430, 2019.

[13] A. Ghosh, H. S. Behl, E. Dupont, P. H. Torr, and

V. Namboodiri, “Steer: Simple temporal regularization

for neural odes,” arXiv preprint arXiv:2006.10711, 2020.

Y. Rubanova, R. T. Chen, and D. Duvenaud, “Latent

odes for irregularly-sampled time series,” arXiv preprint

arXiv:1907.03907, 2019.

C. G. Broyden, “A class of methods for solving nonlinear

simultaneous equations,” Mathematics of computation,

vol. 19, no. 92, pp. 577-593, 1965.

[16] S. G. Johnson, “Notes on adjoint methods for 18.335,”

Introduction to Numerical Methods, 2006.

Y. Saad and M. H. Schultz, “Gmres: A generalized

minimal residual algorithm for solving nonsymmetric

linear systems,” SIAM Journal on scientific and statistical

computing, vol. 7, no. 3, pp. 856-869, 1986.

P. J. Burt and E. H. Adelson, “The laplacian pyramid as

a compact image code,” in Readings in computer vision,

pp. 671-679, Elsevier, 1987.

C. Farabet, C. Couprie, L. Najman, and Y. LeCun,

“Learning hierarchical features for scene labeling,” IEEE

transactions on pattern analysis and machine intelligence,

vol. 35, no. 8, pp. 1915-1929, 2012.

F. Yu and V. Koltun, “Multi-scale context aggregation by

dilated convolutions,” arXiv preprint arXiv:1511.07122,

2015.

L.-C. Chen, Y. Yang, J. Wang, W. Xu, and A. L.

Yuille, “Attention to scale: Scale-aware semantic image

segmentation,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 3640-3649,

2016.

L.-C. Chen, G. Papandreou, 1. Kokkinos, K. Murphy, and

A. L. Yuille, “Deeplab: Semantic image segmentation

with deep convolutional nets, atrous convolution, and fully

connected crfs,” IEEE transactions on pattern analysis

and machine intelligence, vol. 40, no. 4, pp. 834-848,

2017.

M. F. Hutchinson, “A stochastic estimator of the trace

of the influence matrix for laplacian smoothing splines,”

Communications in Statistics-Simulation and Computa-

tion, vol. 18, no. 3, pp. 1059-1076, 1989.

[12]

[17]

[24] R. Rico-Martinez, K. Krischer, I. Kevrekidis, M. Kube,
and J. Hudson, “Discrete-vs. continuous-time nonlinear
signal processing of cu electrodissolution data,” Chemical
Engineering Communications, vol. 118, no. 1, pp. 2548,
1992.

[25] A. Bulsari, Neural Networks for Chemical Engineers.
Computer-aided chemical engineering, Elsevier, 1995.

[26] S. Bai, V. Koltun, and J. Z. Kolter, “Neural deep equilib-
rium solvers,” in International Conference on Learning
Representations, 2021.

[27] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceed-
ings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[28] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers
of features from tiny images,” 2009.

[29] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu,

and A. Y. Ng, “Reading digits in natural images with

unsupervised feature learning,” 2011.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei, “Imagenet: A large-scale hierarchical image database,”

in 2009 IEEE conference on computer vision and pattern

recognition, pp. 248-255, Teee, 2009.

J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah,

“Julia: A fresh approach to numerical computing,” SIAM

Review, vol. 59, no. 1, pp. 65-98, 2017.

[32] A. Pal, “Lux: Explicit parameterization of deep neural

networks in julia.”” https://github.com/avik-pal/Lux.jl/,

2022.

C. Rackauckas and Q. Nie, “Differentialequations.jl —

a performant and feature-rich ecosystem for solving

differential equations in julia,” The Journal of Open

Research Software, vol. 5, no. 1, 2017. Exported from

https://app.dimensions.ai on 2019/05/05.

C. Rackauckas, Y. Ma, V. Dixit, X. Guo, M. Innes,

J. Revels, J. Nyberg, and V. Ivaturi, “A comparison

of automatic differentiation and continuous sensitivity

analysis for derivatives of differential equation solutions,”

arXiv preprint arXiv:1812.01892, 2018.

C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov,

R. Supekar, D. Skinner, A. Ramadhan, and A. Edelman,

“Universal differential equations for scientific machine

learning,” arXiv preprint arXiv:2001.04385, 2020.

K. Kawaguchi, “On the theory of implicit deep learning:

Global convergence with implicit layers,” arXiv preprint

arXiv:2102.07346, 2021.

A. Pal, Y. Ma, V. Shah, and C. V. Rackauckas, “Opening

the blackbox: Accelerating neural differential equations by

regularizing internal solver heuristics,” in Proceedings of
the 38th International Conference on Machine Learning,
vol. 139 of Proceedings of Machine Learning Research,

pp- 8325-8335, PMLR, 18-24 Jul 2021.

H. Xia, V. Suliafu, H. Ji, T. Nguyen, A. Bertozzi, S. Osher,

and B. Wang, “Heavy ball neural ordinary differential

equations,” Advances in Neural Information Processing

Systems, vol. 34, 2021.

[39] F. Djeumou, C. Neary, E. Goubault, S. Putot, and

[30]

[31]

[33]

[34]

[35]

[36]

[37]

[38]

U. Topcu, “Taylor-lagrange neural ordinary differential

equations: Toward fast training and evaluation of neural

odes,” 2022.

S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and

W. Yin, “Jfb: Jacobian-free backpropagation for implicit

networks,” in Proceedings of the AAAI Conference on

Artificial Intelligence, 2022.

C. Tsitouras, “Runge—kutta pairs of order 5 (4) satisfying

only the first column simplifying assumption,” Comput-

ers & Mathematics with Applications, vol. 62, no. 2,

p. 770-775, 2011.

D. P. Kingma and J. Ba, “Adam: A method for stochastic

optimization,” arXiv preprint arXiv:1412.6980, 2014.

G. Wanner and E. Hairer, Solving ordinary differential

equations 11, vol. 375. Springer Berlin Heidelberg New

York, 1996.

[44] 1. Loshchilov and F. Hutter, “Decoupled weight decay
regularization,” arXiv preprint arXiv:1711.05101, 2017.

APPENDIX
A. MNIST Experimental Details

Training Details: Following [6], our Fully Connected Model
consists of 3 layers — a downsampling layer R™* s R128,
continuous DEQ layer fj : R'?8 — R'28 and a linear classifier
R128 .y R10

For regularization, we use Asxip = 0.01 and train the models
for 25 epochs with a batch size of 32. We use Tsit5 [41] with a
relative tolerance for convergence of 0.005. We use Adam [42]
with a constant learning rate of 0.001 for optimization.

Baselines: We use continuous DEQ and continuous DEQ
with Jacobian Stabilization as our baselines. We additionally
compose Skip DEQs with Jacobian Stabilization in our bench-
marks. For all experiments, we keep Ay, = 1.0.

B. CIFARIO Experimental Details

For all the baselines in this section, Vanilla DEQ is trained
with the same training hyperparameters as the corresponding
Skip DEQs (taken from [8]). Multiscale Neural ODE with
Input Injection is trained with the same hyperparameters as
the corresponding Continuous DEQs.

1) Architecture with 200K parameters: Training Details:
Our Multiscale DEQ architecture is the same as MDEQ-small
architecture used in [8]. For the explicit network in Skip DEQ,
we use the residual block and downsampling blocks from [8]
which account for the additional 58K trainable parameters.

We use a fixed regularization weight of Agx;p = 0.01 and
the models are trained for 20000 steps. We use a batch size
of 128. For continuous models, we use VCAB3 [43] with a
relative tolerance for convergence of 0.05. We use AdamW [44]
optimizer with a cosine scheduling on the learning rate —
starting from 1073 and terminating at 1075 — and a weight
decay of 2.5 x 1076,

2) Architecture with 11M parameters: Training Details:
Our Multiscale DEQ architecture is the same as MDEQ-large
architecture used in [8]. For the explicit network in Skip DEQ,
we use the residual block and downsampling blocks from [8]
which account for the additional 58K trainable parameters.

We use a fixed regularization weight of Agi;p = 0.01 and the
models are trained for 90000 steps. We use a batch size of 128.
For continuous models, we use VCAB3 [43] with a relative
tolerance for convergence of 0.05. We use Adam [42] optimizer
with a cosine scheduling on the learning rate — starting from
1073 and terminating at 1075,

C. ImageNet Experimental Details

Training Details: Our Multiscale DEQ architecture is
the same as MDEQ-small architecture used in [8]. For the
explicit network in Skip DEQ, we use the residual block and
downsampling blocks from [8] which account for the additional
58K trainable parameters.

We use a fixed regularization weight of Agy;, = 0.01, and
the models are trained for 500000 steps. We use a batch size
of 64. For continuous models, we use VCAB3 [43] with a
relative tolerance for convergence of 0.05. We use SGD with
a momentum of 0.9 and weight decay of 1075. We use a

step LR scheduling reducing the learning rate from 0.05 by
a multiplicative factor of 0.1 at steps 100000, 150000, and
250000.

Baselines: Vanilla DEQ is trained with the same training
hyperparameters as the corresponding Skip DEQs (taken from
[8D)*.

4When training MultiScale Neural ODE with the same configuration as
Continuous DEQ, we observed a 8 x slower backward pass which made the
training of the baseline infeasible.

