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Abstract—Traditional interconnection network design approa-
ches focus on building general network topologies by optimizing
the bisection bandwidth or minimizing the network’s diameter
to reduce the maximum distance between any two nodes, thus
amortizing the overall execution time of the HPC workloads.
While such network topologies may accommodate a wide variety
of applications in general, this may result in sub-optimal perfor-
mance for many frequently-executed or dynamic workloads. In
this paper, instead of focusing on designing an all-encompassing,
general-purpose network topology, we develop a methodology to
design customized network interconnects, evolved by “finding”
the optimal topologies for a particular target workload given
by its communication and contention profiles. To this end,
we implement a Genetic Algorithm (GA)-based approach for
network topology design tailored to improve the overall execution
time of a particular workload of interest. We conducted extensive
experiments with well-known motifs in physics-based workloads
(Sweep3D and FFT), as well as with a representative graph
application (MiniVite), using the well-known Structural Simu-
lation Toolkit (SST) Macroscale Element Library (SST/macro)
simulator for network interconnect evaluation. We demonstrate
that our genetic algorithm-based approach is robust enough to
find the underlying optimal topology of a particular workload.

I. INTRODUCTION

Historically, interconnect design was driven by a deep
understanding of the limitations of the extant (or near-term)
hardware and characteristics of desired workloads, typically
physics-based simulation and dense linear algebra. However,
with the increasing diversity of HPC workloads and their
communication patterns, interconnects have moved toward
designs that minimize the latency/diameter of the network,
such as DragonFly [24], SlimFly [8], and Fat tree [27]. Despite
the success of these topologies, modern scientific workloads
still significantly stress the underlying communication fabric.
The pressure from communication is driven by the com-
plexity of modern scientific workloads, which often include
steps guided by surrogate artificial intelligence (AI) models
coupled with exploratory data analysis [26], [2], [25]. Each
stage demonstrates a distinct execution profile with unique
communication characteristics [28]. Further, HPC system’s
characteristics, such as non-uniform access patterns across
different memory hierarchies, offloading of computation to
heterogeneous accelerators, and I/O operations with networked
filesystems, compound the difficulty in engineering the perfor-
mance of the network for these composite workflows.

While distributed physics-based simulation and dense linear
algebra computation – where regular communication pattern
may be known apriori – are still prevalent, distributed sparse

data-driven computation with irregular communication profile
is becoming an integral part of the scientific and machine
learning workloads. For the later, communication over the
network takes a significant fraction of the total execution time
and is generally the main bottleneck. With the deployment
of Exascale machines, the gap between the bytes transferred
over the different communication fabrics and flops will only be
exacerbated [19]. However, the static network topologies used
in practice, such as Fat tree, DragonFly, Torus, and recently
proposed expander graph based topologies (JellyFish [31],
Xpander [36], SpectralFly [38], etc.) may leave crucial per-
formance on the table due to their inability to adapt to the
dynamic communication profile of data-driven workloads.

A solution to the “too general/static” challenge of current
HPC systems come in the form of co-designing mission crit-
ical workloads with their computing substrates and software
stacks [7]. Under this paradigm, the underlying computational
components (i.e., accelerators, network switches, etc) can
be tailored in accordance to the their underlying workload
needs. In response to this trend, reconfigurable computing has
seen a resurgence in interest with new proposals for Coarse-
Grained Reconfigurable Architectures (CGRA) [33], optical
switch networks [34], [35], and customized network-on-chips
(NoC) [21]. However, methodologies for designing customized
off-chip network topologies for specific workload have been
relatively unexplored.

In an effort to circumvent the problems associated with
static network topologies for dynamic workloads with runtime-
driven communication patterns, and to further complement
co-design efforts, we propose a data-driven methodology for
leveraging modern fine-grained simulation software to design
customized network topologies for target workloads. Specif-
ically, by modeling network topologies as graphs, where the
switches in a network and the connections among the switches
are considered as the vertices and the edges of the graph
respectively, we employ a Genetic Algorithm (GA) based
meta-heuristic [32] to evolve from an initial topology to a
topology tailored for a target workload. The objective is to
“find” the workload-specific optimal connections among the
switches so as to improve the overall performance of the
target workload when running on the final evolved topology.
The “searching” process may involve capturing the underlying
communication structure of the workload while considering
the impact of congestion simultaneously.

To demonstrate the effectiveness of the data-driven approach
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to customized topology design, we consider two broad classes
of workloads. First, we consider two structured communication
motifs, Sweep3D and FFT, from the Ember communica-
tion patterns library [1]. These motifs capture the regular,
structured communication patterns frequently encountered in
physics-based scientific workloads. Our chosen second work-
load category is unstructured communication, represented by
an ECP ExaGraph project proxy application, MiniVite [18].
We demonstrate that for structured topologies the GA approach
reduces the run time by as much as 26.8% over the the
initial (unstructured) JellyFish topologies with a well-known
adaptive routing scheme, by evolving a structure which aligns
with the underlying communication structure. For unstructured
communication workloads, the initial JellyFish topology is
extremely well-suited, thus the improvement is more modest
with a maximum improvement at around 1.7% at most when
compared with the best adaptive routing results.

The paper makes the following contributions:
• A novel GA based methodology to design and develop cus-

tomized network topologies tailored for specific workloads
running on the well-regarded network topology simulator,
Structural Simulation Toolkit (SST) Macroscale Element
Library (SST/macro) [3].

• An extensive network evaluation with two distinctive cate-
gories of workloads, characterized by their communication
patterns: workloads with structured communication patterns
(such as Sweep3D and FFT) and input-dependent workloads
with unstructured communication patterns (MiniVite).

• A performance comparison between our custom, work-
load specific topologies against a representative commercial
topology, i.e., Jellyfish, with adaptive routing, i.e., UGAL.

II. METHODOLOGY

A. Overall Workflow

We provide a high-level overview of our experimental
methodology in Figure 1. The methodology is divided into
three main phases: the preprocessing step, the “searching
loop”, and postprocessing and analysis phase. During the
preprocessing step, we utilize the PMPI-based [4] VISUS tool
to collect the number of bytes per message, record the source-
destination information for each message and compute the
cumulative bytes transferred between each source-destination
pair for each of the workloads( 1b ). For running with the
SST/macro simulator, we prepare the workload by either
skeletonizing them to retain only the communication motifs
(for Sweep3D and FFT) or executing the whole workload (i.e.,
capturing both communication and computation, for MiniVite)
( 1a ).

The “searching loop” phase involves simulating a set of
custom topologies for a target workload in SST/macro ( 2 ),
collecting the overall runtime, applying the genetic algorithm
to evaluate the current quality of the topologies and preparing
the next set of topologies for simulation ( 3 and 4 ). Initially,
a set of seed topologies are created based on given constraints,
e.g., switches with a specific radix. This loop continues until a
predetermined number of steps have been executed or until GA
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Fig. 1: An overview of our methodology.

converges. This process is described more in detail in Section
II-B.

Once the customized topologies are designed, in the post-
processing phase, a set of Python scripts takes the different re-
sults for each searching loop iteration per topology ( 5 ). This
information includes, but is not limited to, sorted runtimes,
communication patterns, queue lengths, and network char-
acteristics such as hops. Finally, this phase generates visual
representations of the candidate network’s behavior/structure
to evaluate the quality of the generated solution.

B. Genetic Algorithm for Evolving Topologies

To derive a better topology tailored for a workload, the
searching phase of our methodology employs a well-known
meta-heuristic based evolutionary algorithm, namely Genetic
Algorithm (GA), inspired by evolutionary biology. In informal
terms, the genetic algorithm is built upon the notion that,
within a population, only the “survival of the fittest” is
observed over the course of evolution.

To apply GA, the genotype or genome of a network topology
(an individual) is encoded as a n-vertex graph where each
vertex and each edge in the graph represent a network switch
and a communication link respectively. The graph is k-regular
– each vertex has a degree of k, thus representing a switch
with radix k. In each generation, the population of the GA
algorithm consists of a set of candidate topologies, encoded
as graphs. The next generation of candidate topologies are
generated by considering the topologies with better fitness
scores. In our case, the better the runtime of a workload with a
evolved topology, the higher the score. Once the candidate set
is selected for evolution, child topologies are generated from
the parent topologies (breeding), applying mutation.

Initial Population. In order to form our initial population
we generate 800 instances of the radix-k Jellyfish topol-
ogy [31] on n vertices using igraph [11], which uses
an acceptance/rejection approach to randomly choose a k-
regular graph from the configurational model 1. We note that,
in addition to representing the “zero knowledge” baseline,
this initial population is likely to have good communication
properties for almost all communication patterns [6]. Indeed,

1In this model a random perfect matching is formed on n groups of k “mini-
vertices” corresponding to vertices of the graph. This process is repeated until
a simple graph is generated.
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Fig. 3: Two different switch operations used in the generation of
non-initial populations

if k ≥ 3, then with high-probability the generated graph
is a nearly-optimal spectral expander [13], [14] having low-
diameter and high bisection bandwidth [10]. Extrapolating
from other expansion-based topologies, they are likely to be
highly performant independent of the specific application.

Population Evaluation. To evaluate the “fitness” of a par-
ticular topology for an application, we use a simulation plat-
form to evaluate the overall run time of the application using a
direct topology of concentration one (i.e., there is one switch
per vertex in the topology and one compute node per switch)
using minimal routing. While many options are available to
perform the application simulation, we use SST/macro [3]
in order to leverage the existing library of mini-applications
designed to evaluate topologies for communication patterns. In
order to eliminate any variability resulting from randomness,
a given MPI rank is assigned to the corresponding switch
number. Thus, the simulation time provided by SST/macro
is deterministic and can be used as a measure of fitness.

Non-Initial Generations. For every generation beyond the
initial one, our “gene pool” consists of the 40 graphs with the
greatest fitness (i.e., fastest run time) among all previous gen-
erations. In order to form subsequent generations we take two
randomly chosen “parents,” A = (V,EA) and B = (V,EB),
from the gene pool and consider their intersection (A ∩ B)
and symmetric difference (A4B), see Figure 2. The edges in
A∩B are immediately passed on to the child while the edges
in A4B are subject to mutation before a randomly chosen
half (subject to the regularity constraint) are passed on to the
child network. This process is repeated 800 times to form the
current generation.

The random mutation takes the form of the “connected
switch operation” (see Figure 3a) which locally perturbs the
edge set while maintaining the overall connectivity structure
of A4B. As this process may result in disconnected children,
these graphs are post-processed by using a generic switch
operation (see Figure 3b) to minimally merge disconnected
components. It is worth noting that the (connected) switch
operation is a fundamental primitive in Markov Chain Monte
Carlo (MCMC) methods to uniformly sample (connected)
graphs with a prescribed degree distribution ([22], [12]).

C. Earthmover’s Distance

While the genetic algorithm framework is explicitly opti-
mizing the overall run time, this has the effect of implic-
itly optimizing the nature of the interactions between the
structure of the network and communication profile. In this
work we will focus on the effect of the genetic algorithm
optimization on two primary interactions between the network
and communication profile; latency (measured by hops-per-
byte) and contention (measured by the packet queue length
of a switch observed upon packet insertion). While uniformly
decreasing either the latency or contention across the board
should decrease the overall run time, in practice, it is often
necessary to make trade-offs between reducing some aspects
while increasing others; for instance, it may be the case that
rewiring a switch would decrease the number of hops for
certain bytes, but increase the number of hops for others or in-
crease the queue size on packet insertion at other places/times
in the application. Thus, it is necessary to be able to compare
both latency and contention between different topologies in a
statistical manner.

To this end, we introduce the use of Earthmover’s distance
(EMD) [29] as a means of comparing discrete distributions
associated with communication performance. At a high-level,
the EMD (and it’s continuous analogue, the Wasserstein met-
ric [23]) can be thought of as the amount of work2 needed
to transform from one probability distribution to another
distribution. For arbitrary discrete distributions, the EMD can
be calculated as the solution to a minimum cost flow where the
edge weights are given by the distances between elements. If
both probability distributions take values in 1, . . . , k (as is the
case for latency and contention), the EMD can be calculated
via a single pass through the probability distributions.

III. EXPERIMENTAL RESULTS

Simulation platform. For our experiments, we use the
simulated time from SST/macro to evaluate network in-
terconnects. To perform a simulation, we first generated a
topology (i.e., graph) with the igraph library. To simulate
the igraph generated topologies, we perform an all-pairs
shortest path calculation to obtain the routing table and trans-
form the graph and table into JSON. The configuration of
the topology, routing, and network parameters is specified
in a parameter file. Table I provides a summary of the key
simulation parameters. To avoid deadlocks, the total number
of virtual channels was set to the graph’s diameter plus one.

Routing Configurations. We use minimal routing for
packet transfer for all topologies evaluated with the GA,
including the initial population of JellyFish topologies. To
compare the benefits of topology modification with the adap-
tive routing protocols, we consider both the initial population
and the best-observed topology using the local information
implementation of Universally Global Adaptive Load-balanced

2If two probability distributions can be thought of as discrete piles of earth,
the EMD is the physical work (mass× distance) needed to move one to
the other, hence the name.
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Parameter Value

Link bandwidth 10 GB/s

Switch latency 100 ns
Switch buffer 32 MB
MTU 4 KB
Network model SNAPPR
Virtual channels Topology diameter + 1

TABLE I: Relevant SST/macro simulation parameters

routing (UGAL) [30]. The best and worst runtimes for the
initial population using UGAL are reported with the notation
UGAL min and UGAL max. These two lines bracket the
JellyFish topology’s baseline behavior using adaptive routing.
Further, we report the runtime of the best-evolved topology
with adaptive routing (UGAL final).

The objective of choosing these baselines is to demonstrate
that even with applying adaptive routing, e.g., UGAL, there
is significant room for improvement for a given topology. In
general, as we will see later in this section, these baselines
help to establish that our GA-evolved topologies may not only
improve the performance of a workload by searching for the
structure of the communication pattern but also is capable of
incorporating the congestion information (for both structured
and data-driven communication patterns), potentially improv-
ing performance over adaptive routing.

Quantifying the “searching” process. One of the key
scientific questions in analyzing the results of a GA is un-
derstanding what the process is finding through the course
of the evolution. To this end, to interrogate the evolution
process, we capture for selected topologies in the GA the
number of hops-per-byte (latency) and the queue size on
packet insertion (contention). We view these statistics as a
probability distribution (i.e., how many hops does a randomly
chosen byte move and what is the distribution of queue sizes
for a randomly chosen packet) and use EMD to measure the
difference between distribution pairs. In order to measure the
”direction” of overall evolution for these statistics, we consider
the EMD to a fixed idealized situation (every byte moves
exactly one hop, and every queue is empty on packet insertion)
and report the results in Figure 5 and 9. To understand the
overall variation of the evolution, we use a linear programming
formulation to determine the radius minimum ball (in EMD)
that contains all of the best survivors throughout the GA. These
results are reported in Figure 6b and 8d.

A. Structured Communication Patterns

To evaluate the performance of real-world structured traffic
patterns with different topologies, we consider the commu-
nication motifs from the Ember Communication Pattern Li-
brary [1]. In particular, as examples of the wavefront and Sub-
communicator all-to-all communication patterns, Sweep3D
and FFT are chosen, respectively.

Sweep3D. We first look at the Sweep3D benchmark, part
of the ember suite, representing the highly-structured com-
munication of a 3D discrete ordinates neutron transportation
code. While it is well established that this benchmark performs

well on topologies such as tori and meshes [20], we leverage
this regular benchmark to demonstrate the ability of a GA
to achieve similar performance. Indeed, the runtime of the
evolved topology from the GA for Sweep3D on 64 ranks is
within 4% of the runtime of the built-in 8× 8 torus topology
simulated with SST/macro.

Figure 4a represents the communication pattern across 64
nodes. At each iteration of the application, an MPI rank
receives two messages from distinct ranks and sends a message
to two other ranks using blocking sends and receives. Figure
4e presents the performance of evolved topologies across 1000
generations conforming to the GA description in Section II-B.
The fanout of each switch is limited to four to match the
known communication pattern. In total, we have run 800,000
simulations. We present the min, max, and average simulated
time achieved per generation to show the overall performance
of the GA. We find the average time per generation to depict
the average performance and plot the closest simulation. The
red line represents the evolution of the fastest topologies across
generations (i.e., survivors).

As observed in Figure 4e, the survivors of the evolution
improve the execution time over UGAL max, UGAL min and
UGAL final by 42.3%, 26.8%, and 5.5%. In addition, we
observed a difference of 26.4% across the survivors ending
at generation 656. In Figure 4i, we summarize the structure
of the survivors in terms of network hops per byte and the
average hops per byte. In this figure, the number of hops expe-
rienced per byte decreases as more direct connections emerge
between communicating ranks. Figures 6a and 5 build on the
distribution of hops presented in Figure 4i. Figure 6a shows
the evolution of Sweep3d based on the normalized EMD from
the ideal (lower is better). Here we see the structural distance
based on the hops per byte steadily decreasing across the
survivors. In addition, the observed contention (based on the
distributions of queue lengths observed per packet per switch)
decreases more modestly across survivors.

Figure 5 depicts the change of the EMD to the ideal
distribution between the first/last survivors, represented by the
dark and light color bars. The table below the figure highlights
the normalized changes in structure and contention between
the first/last survivors for each benchmark. A positive value
means the evolution became closer to the ideal (i.e., a decrease
in hops-per-byte or contention). A negative value indicates the
topology evolved away from the ideal (i.e., more hops-per-byte
or observed contention). The last rows show the change in time
and the percent difference in performance. The color of each
cell highlights the magnitude of the change across experiments
(i.e., forming a heatmap per row). For example, Sweep3D
on 64 nodes (s1) shows the most significant improvement in
reducing the hops-per-byte and observed contention yielding
a performance improvement of 26.4%.

Figure 6b compares the distances of the survivors for a
benchmark’s evolution. The x-axis shows the structural dis-
tance explored (variations in hops per byte distributions), and
the y-axis shows the contention observed across the evolution
(variations in the insertion queue lengths). The distance from
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(h) F 512,21: Performance
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Fig. 4: Sweep3D (S) and FFT (F) characterization and experimental results: X,Y denotes nodes and fanout respectively
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Fig. 6: EMD Comparison

the origin helps to show the size of the space explored during
evolution. The dotted line refers to where the structural and
contention distances are equal. The figure shows that the 64-

node Sweep3D explores a larger structural design space than
the contention space.

Figure 4b presents 100 generations of Sweep3D running on
529 nodes with a fanout of four. In Figure 4f, we observe
a decrease in time across the survivors, albeit more modest.
The improved execution time over UGAL max, UGAL min,
and UGAL final are 11%, 4.5%, and 1.4%. Figure 4j
summarizes the structure’s evolution via its hops per byte dis-
tributions. We immediately notice an increase in hops relative
to the 64-node case. The modest performance improvement per
generation (in both time and hops per byte) can be attributed
to the exponential increase in topological exploration space
as the GA searches for the correct structure. Figure 6b (x-
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axis) highlights the large search space. From Figure 5, we
see Sweep3D on 529 nodes (s2) is the furthest from the
ideal topology and traverses a design space similar in size to
the evolution of Sweep3d on 64 nodes resulting in a 3.2%
improvement in performance. From Figures 5 and 6b, we
see the GA is evolving more structurally than in terms of
contention. We would anticipate this to change as we increase
the number of generations.

FFT. The second benchmark in our evaluation is the Fast
Fourier Transform (FFT). Figure 4c shows the computation
pattern of this highly structured application. Figure 4g shows
the performance of FFT with our generated topologies after
1000 generations, running on 64 node topologies, each with a
fanout of nine (chosen to match the communication of FFT).
The improved execution time over UGAL max, UGAL min,
and UGAL final are 6.3%, 2.4%, and 2.1%, respectively.
The survivors’ simulated time decreases by 2.4%, with a min-
imum at generation 673. From Figure 4g, we see distributions
with fewer variations than Sweep3D on 64 nodes resulting
in a smaller structural EMD in Figures 6a, 5 and 6b. For
FFT on 64 nodes (column f1 in Figure 5), Figure 6a shows
the normalized EMD from the ideal across the evolution. We
see modest changes in both structure and contention. Figure
5 highlights the topologies being structurally further from
the ideal while exhibiting low contention. Despite running
for 1000 generations, the space explored by the GA remains
modest compared to our other experiments. This would indi-
cate that the GA found a local minima requiring additional
techniques to improve.

In Figure 4d, we present the simulated times for 100
generations of FFT on 512 nodes with a fanout of 21. Figure
4h presents the performance of the evolved topologies. The
improved execution time over UGAL max and UGAL min
are 3.5% and .6%, respectively. The UGAL final time
outperforms our final survivor by .1%. Even though we have
increased the number of nodes, the maximum number of hops
remains 3 in Figure 4l. Moreover, from Figures 5 (column
f2) and 6b, we observe that the GA traverses little space
(structurally and in contention), ultimately opting to reduce
contention at the expense of structure, demonstrating little
improvement in time. This behavior indicates that the GA
is not finding enough of an evolutionary signal to guide its
evolution.

B. Unstructured Communication Patterns

Graph algorithms generally involve irregular memory ac-
cesses and low computation to communication ratio. The com-
munication pattern is dictated by the input graph properties
and revealed over the course of the runtime of an application.
The dynamic unfolding of message exchanges results in an
unstructured communication pattern distinguishes these family
of algorithms from physics-based applications.

Louvain Algorithm for Community Detection. To eval-
uate the effectiveness of the GA to “find” the underlying
topology of a graph application with an unstructured commu-
nication pattern, we consider the miniVite ([18], [5]) proxy

Network Type Graph # Vertices # edges

Social soc-Epinions1 (se) 76K 508K
wiki-RFA (wr) 11K 16K

Citation cit-HepPh (ch) 34.5K 421.5K

Product com-Amazon (ca) 335K 926K

Peer-to-peer p2p-Gnutella31 (pg) 62.5K 148K

TABLE II: Characteristics of the input graphs used for evaluating
different topologies with Minivite.

application from ECP. MiniVite implements the first phase
of the well-known Louvain algorithm for graph community
detection in MPI and OpenMP. The main network operations
of this workflow are global collective operations emphasizing
its all-to-all nature. To evaluate our GA-based evolved topol-
ogy for MiniVite, we consider a diverse set of graph inputs
from different domains (Table II). While the communication
pattern is fixed within the benchmark (i.e., all-to-all), the bytes
transferred will vary with different inputs.

We report the experimental results for MiniVite in Figure 7.
For each of these experiments, we perform 200 generations
on 32 nodes with a fanout of six. For all MiniVite inputs,
we observe that there is little to no performance difference
between the min and UGAL routing. This trend is because
contention communication is spread across nodes throughout
their application execution, making the Valiant path less likely.

Figure 7a shows the communication pattern for MiniVite
running the cite-HepPH dataset. Figure 7b depicts the evo-
lution of the survivors resulting in a 1% performance im-
provement. In Figure 5, the final topology evolves toward the
ideal in structure and contention. Figure 6b shows that the
GA observes a more significant difference in contention than
structure as the topologies evolve. This behavior is likely due
to the node 16 traffic observed in Figure 7a.

Figure 7c shows the communication pattern for MiniVite
with our largest input, com-amazon. Figure 7d shows a modest
performance evolution. Finally, figure 5 shows that the topol-
ogy evolves away from the ideal in favor of reducing con-
tention. Further, we see in Figure 6b, that the GA experiences
the most considerable contention distance.

In Figure 7e, we present the communication pattern for
the p2p-Gnutella dataset. The heavy communication along
the diagonal is reminiscent of the structured experiments in
Section III-A. While the communication structure is simi-
lar, collective versus point-to-point communication causes a
marked difference in the performance profile seen in Figure
7f. Similarly to com-Amazon, the final topology moves away
from the ideal in favor of reducing contention in Figure 5.
Figure 6b shows GA explores a greater structural space.

The soc-Epinions dataset presents an interesting structural
pattern in Figure 7g. Figure 7h shows only eight minimum
survivors across 200 generations. Combined with a greater
spread between the minimums per generation, this suggests the
communication structure is more difficult for the GA to find.
This insight is supported by a smaller structural exploration
observed from Figure 6b. Further, from Figure 5, the final
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Fig. 7: MiniVite characterization and experimental results with different datasets: X,Y denotes nodes and fanout respectively

topology has evolved away from the ideal.

C. Case Study: MiniVite with wiki-RFA dataset

The following presents a deep dive into the factors involved
in evolving a topology and the characteristics of the resulting
execution profile. We perform this analysis on MiniVite using
the wiki-RFA input. Figure 8a shows the communication pro-
file, which exhibits a subtle structure underlying an all-to-all
communication pattern. To better understand how topologies
evolve, we have performed three evolutions for a 32-node
network with fanouts of 2, 4, 8, and 16. The first evolution
performed uses the simulated time to evaluate the fitness of the
topology identical to our previous experiments. The additional
two use the structural and contention EMD from the ideal
topology as their evolution metric. In Figure 8, we present
the results of each evolution with blue, orange, and green
gradients representing the evolutions based on time, structure,
and contention, respectively. We present a moving average of
five data points for Figures 8b and 8c to highlight the trends.

Figure 8b shows the survivors’ normalized evolution metric
(higher is better). The structure-based evolution with a
fanout of 8 stands out with the most significant devel-
opment, followed by the contention-based evolutions and the
structure-based evolution with a fanout of 4. The time-based
evolutions show the least change. Figure 8c shows the resulting
time for the survivors (lower is better). The evolutions with
a fanout of 2 perform the worst as the GA explores the
layout of ranks in a ring topology (since the only connected
topology with a fanout of two is a ring). The structure-based
evolution with a fanout of 8 strongly correlates with its
evolution metric; however, its performance is the worst
of the remaining experiments. We see little change in time
across the surviving generations for the remaining evolutions.

Figures 8d and 9 depict how each topology evolves. Figure
8d shows the maximum EMD of the survivor topologies
explored. The distance from the origin gives the size of the
explored design space in terms of structure (x-axis) and ob-
served contention (y-axis). Of the three evolution sets, fanouts
of 2 and 16 show little structural exploration (i.e., x-axis) as the
design space is limited. There is less contention for the fanouts
of 16 due to the topologies’ connectivity resulting in a reduced
contention space exploration. In summary, the evolution of
the topology sets is restricted by the fanouts. Fanouts of 2
are too low to test different configurations. Fanouts of 16
are too high reducing the impact of congestion.

For the rest of the evolution sets, we see a greater explo-
ration in structure and contention for fanouts of 8 over fanouts
of 4. For the structure-based evolution with a fanout of 8,
we observed a large exploration space in both contention
and structure, as the fanout 8 point moves away from the
origin sharply in both axes. This behavior manifests itself
in the observed trend in time. The contention-based evolution
with a fanout of 8 also explored a sizeable structural design
space while modestly exploring the contention space.

Figure 9 presents the EMD from the ideal of the first and
final survivor. The table below the figure shows the change
in distance from the ideal in structure and contention per
evolution. In addition, we present the change in simulation
time, the percent difference relative to the start time for the
evolution, and the overall percent difference relative to the
starting time of the time-based evolutions. The colors in a row
highlight the intensity of the change across all experiments
(i.e., forming a heatmap per row). Each column corresponds
to the experiment above it (e.g., the structure-based evolution
with a fanout of 8 exhibits the most significant structural
change with a difference of 0.229). Overall, the structural
distance from the ideal is much larger than the contention.
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Fig. 9: Effect of GA on the distance to ideal distribution distribution for hops-per-byte and queue length on packet insertion

As noted, the GA finds the greatest evolutionary signal in
the structured-evolved topologies of fanouts 4 and 8, resulting
in more contention than observed in the initial topologies.
In the contention-evolved topologies with a fanout of 4, the
survivors evolve away from the ideal structurally to avoid
contention. Conversely, for a fanout of 8, the topology moves
closer to the ideal. The time-based evolutions with fanouts 4
and 8 evolve away from the ideal in structure and contention,
resulting in a 3.8 and 4.4% increase in performance. We
postulate that these results come from a combination of
a small search space (i.e., the GA is starting close to
the optimal), the dependent relationship between topology
and contention, and the load-balance of work in the
application.As noted, there are few structural differences for
fanouts of 2 and 16. For the topologies with a fanout of 2, the
GA evolutions can be viewed as heuristics solving the rank
placement problem to reduce contention. In this case, the time
and contention-based evolutions tie in reducing contention.
The time-based evolution performs the best, balancing the
reduction of hops per byte and observed contention resulting
time improvement of 4.8%. Given that there is less space to
traverse structurally, the contention-based evolution increases
performance by 1.9%. The topologies with a fanout of 16
exhibit the least change in overall performance (i.e., < 1%).

IV. RELATED WORK

TOPOOPT [37] is a recently-proposed direct-connect fabric
that co-optimizes the underlying topology and the degree of
parallelism for distributed neural networks (DNN). TOPOOPT
is different from our work in that, it only extracts the pattern of

allreduce collective execution from DNN workload and opti-
mizes the performance by making trade-offs between topology
and parallelism. In contrast, we propose a generic approach
in designing customized topologies for interesting workloads.
In [9], the authors discussed a machine learning approach to
understand network congestion. Our GA-based approach strive
to improve the overall performance by evolving the underlying
topology to mitigate the impact of congestion.

GAs have been adapted to solve various network optimiza-
tion problems, including multistage process planning (MPP)
problem, fixed charge transportation problem (fc-TP), mini-
mum spanning tree problem, centralized network design, local
area network (LAN) design, and shortest path problem [16],
[17], [15].

V. CONCLUSION

In this paper, we presented a data-driven methodology,
based on a GA metaheuristic to design network topologies,
customized for specific workloads. Workloads with structured
and unstructured communication patterns are considered and
topologies are evolved separately for different fitness metrics
(time, structure, and contention). To quantify the change in
the structure of the topology and contention (relative to a
communication motif) we apply EMD, noting that the timing
can decrease with the increase/decrease of the number of hops-
per-byte and increase/decrease with the observed queue length
on packet insertion. This indicates that, despite the fine-grained
nature of these distributions, there are significant impacts on
communication which are not captured by these distributions.
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