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Abstract—Sparse deep neural networks (DNNs) leverage
sparse representations to achieve faster inference and lower
memory footprint. However, deploying sparse DNNs comes with
challenges, such as irregular memory access patterns, workload
imbalance, etc. To address these challenges, IEEE HPEC has
organized the Sparse DNN Graph Challenge (SDGC), seeking new
methods from the high-performance computing community. For
many years, SDGC has yielded innovative works on accelerating
sparse DNN inference. However, none of them have identified
redundant global memory access that contributes to significant
runtime overhead. To overcome this challenge, we propose
GLARE, a framework that can assist existing sparse inference
kernels in effectively reducing redundant global memory access.
We have applied GLARE to previous SDGC champions and a
recent sparse inference engine SNICIT. Evaluated on SDGC
benchmarks, we demonstrate the promising performance of
GLARE and its generalizability in accelerating existing sparse
inference kernels, for instance, up to 31.56× speed-up over one
of the previous SDGC champions.

Index Terms—Sparse Neural Network, Memory, GPU

I. INTRODUCTION

In recent years, deep neural networks (DNNs) have
witnessed remarkable accomplishments across various do-
mains, including computer vision [1], and natural language
processing [2], on diverse hardware platforms [3]–[9].
To enhance accuracy, DNNs have experienced substantial
growth in both depth and width. For example, the computer
vision model EfficientNet [10] has 800 layers and 66 million
parameters, and the current trending ChatGPT [11] contains
96 transformer layers and 175 billion parameters. However,
deploying these large-scale models poses challenges in
terms of runtime and memory requirements. Thus, they
are oftentimes pruned to sparse DNNs for faster inference
speed and lower memory footprint.

Nonetheless, achieving efficient computation of sparse
DNNs, especially when developing parallel inference algo-
rithms on GPUs, presents many challenges. Sparse DNNs’
parameters are often stored in a compressed format (e.g.,
CSR [12]) for space efficiency at the cost of irregular and
uncoalesced memory access. Furthermore, the parameter
matrices may exhibit significant variations in the number of
non-zero values across different rows or columns, leading to
unbalanced workloads among parallel processors. To tackle
this challenge, IEEE HPEC has organized Sparse Deep Neural
Network Graph Challenge (SDGC) [13], seeking innovative

TABLE I: A memory latency example of CUDA GPU.

Memory
level

Accessibility Access time

Registers Private to thread 1 clock cycle
Shared

memory
Private to block,

shared within a block
4 clock cycles

Global
memory

Accessible to
all threads

> 100 clock cycles

solutions from the high-performance computing (HPC)
community. Since then, academia and industry have worked
together to propose many methods [4]–[9] for SDGC. These
methods focus on optimizing sparse DNN inference kernels
using various techniques, such as task-graph parallelism [5],
[14], [15], intra-batch similarity-based transformation [9],
and so on. Despite significant performance improvement
achieved by these methods, we have identified a potential
to further enhance the inference speed by reducing the
number of global memory access (GMA) of their kernels.

Table I outlines different memory latency values for a
typical CUDA GPU. Each CUDA thread has access to its
own set of registers that normally take one clock cycle
per read/write access [16]. Shared memory is a fast, on-
chip memory shared by multiple threads within a block. Its
access latency is about 4 clock cycles [17]. Global memory
is accessible by all threads in a CUDA kernel and provides
large off-chip memory space. However, it has the slowest
access time at a scale of hundreds of clock cycles [17]–[19].
To maximize kernel efficiency, it is important to reduce
the number of read/write operations on global memory
whenever possible.

In this paper, we identify the place that involves high GMA.
We focus on the outputs of the intermediate layers (i.e.,
intermediate results) and target activation functions with
upper bounds, i.e., ReLUk(x) = min(max(x,0),k). This type
of activation functions is common: SDGC uses ReLU 32(·),
while off-the-shelf DNNs like MobileNetV2 [20] use ReLU 6(·).
Consequently, numerous blocks in the intermediate results
contain consecutive elements that are all-upper-bound
(AUB). We propose to compress the GMA for AUB segments.
Figure 1 shows the prevalence of AUB segments in both



SDGC and real-world DNN applications. In Figure 1a, we
present the ratios of zeros, all-zero entries (individual input
vector, column or row, depending on the data matrix’s shape),
32s (upper bound), and 32s in non-zero entries, of different
layers on SDGC benchmark 1024-120 (i.e., with 1024 neurons
per layer and 120 layers). After layer 27, the ratio of zeros and
all-zero entries meet at 96.98%, while the ratio of 32s reaches
3.02% and the ratio of 32s in non-zero entries reaches 100%.
In other words, all the remaining non-zero entries are filled
with 32s (i.e., AUB segments). AUB segments widely exist
in real-world DNNs as well. To demonstrate this, we train
a convolutional neural network (CNN) with ReLU 1 that
achieves 98.57% test accuracy on MNIST dataset. Figure 1b
shows a gray-scale feature map across 16 channels, with the
white textures enclosed in red boxes representing numerous
AUB segments within the feature map.

Given the AUB segments are prevalent in DNN com-
putation, we aim to effectively compress their GMA. Our
approach involves utilizing a single boolean variable to
indicate whether an entire segment is classified as an AUB
segment. If the variable is true, we save the effort of reading
every element in the AUB segment from global memory.
Furthermore, if the feed-forward result also contains AUB
segments, we can omit the writing operation for every
element within the AUB segment to global memory and
just set the variable of the corresponding output AUB
segment as true. With this important observation, we
propose GLARE, a general framework that can accelerate
sparse DNN inference kernels with significant GLobal
memory Access REduction. We summarize our technical
contributions below:

• We introduce a mathematical model of GMA for sparse
DNN inference and propose acceleration methods by
reducing GMA.

• We study the GMA patterns of existing sparse DNN
inference kernels and propose an efficient matrix
partitioning strategy for AUB segments of each kernel.

• We develop an algorithm to reduce redundant GMA
within AUB segments. The algorithm can be applied
to enhance the performance of different sparse DNN
inference kernels.

We apply GLARE to accelerate state-of-the-art sparse
inference kernels [4]–[6], [9] (incl. recent SDGC champions).
We do not consider the 2022 champions [7], [8] because
their code is not open-source, and their speed-ups are not
as good as [9]. Evaluated on the official SDGC benchmarks,
we demonstrate the promising performance of GLARE and
its generalizability in accelerating existing sparse inference
kernels, for instance, up to 31.56× speed-up over the 2019
SDGC champion. We believe GLARE stands out as a unique
approach by accelerating sparse DNN inference from a
different angle than existing methods. We have made GLARE
open-source to facilitate high-performance machine learning
research 1.

1GLARE source code: https://github.com/IDEA-CUHK/GLARE
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Fig. 1: Prevalence of AUB segments in DNNs with upper-
bounded activation functions. (a) Ratios of 0s, all-zero
entries, 32s, and 32 in non-zero entries, in intermediate
results of SDGC benchmark 1024-120. (b) A reshaped feature
map showing AUB segments (boxed in red) containing
consecutive 1s in a CNN.

II. BACKGROUND

The recent IEEE HPEC has organized SDGC to facilitate
research on high-performance sparse DNN inference. SDGC
establishes a rigorous environment for performing sparse
DNN inference tasks. Contestants are invited to execute
feed-forward computation Yi+1 = ReLU 32(Wi ·Yi +b) across
l DNN layers. Here, Yi+1 and Yi are the input and output
data matrices of layer i , Wi is the weight matrix for layer
i , with 0 ≤ i ≤ l −1, and b is the bias (constant in SDGC).
Since each inference iteration is carried out by a kernel,
which only focuses on the input and output data matrices
for one particular layer, we use YI and YO to denote the
input and output data matrices of that layer. Note that in
implementation, some kernels (BF [4] and SNIG [5]) adopt
YT

i ·WT
i instead of Wi ·Yi for better memory coalescing. In

these cases, we omit the transpose sign for brevity. There
are 12 DNNs in total, with N neurons per layer and l layers.
They are denoted as N − l , with N = 1024,4096,16384,65536
and l = 120,480,1920.

III. GLARE FRAMEWORK

In this section, we begin by overviewing the idea of
GLARE. Subsequently, we provide formal definitions related
to GLARE. Next, we analyze the GMA patterns of the four
sparse DNN inference kernels, including SDGC champions
(BF [4], SNIG [5], XY [6]) and SNICIT [9]. For each
kernel, we study and select efficient data matrix partitioning
strategies for AUB segments. Lastly, we present a general
algorithm to reduce redundant global memory read and
write for AUB segments.

A. Overview

Figure 2 provides an overview of our GLARE framework.
During the GPU-based feed-forward computation of a layer,
every CUDA block (Bi j in Figure 2) is assigned a segment
Vi j _I to read from the input data matrix YI, and a segment
Vi j _O to write to the output data matrix YO. As depicted in
Figure 1, AUB segments can be very prevalent throughout
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Fig. 2: An overview of GLARE. Bi j is a CUDA block, which
reads Vi j _I from YI and writes Vi j _O to YO. Blue segments
represent input while red segments represent output. Dark
blue/red segments in YI/YO represent AUB while light blue
segments represent non-AUB. Ri j _I /Ri j _O is used to record
whether a segment in YI/YO is AUB.

inference. In Figure 2, the first and third segments of Vi j _I

(in dark blue) are AUB, and the other two segments of
Vi j _I (in light blue) are not AUB. We use a four-element
boolean array Ri j _I to track AUB segments in Vi j _I . Ri j _I [0] =
Ri j _I [2] =true, indicating that the first and third segments
of Vi j _I are all AUB. Consequently, there is no need to
perform global memory reads for retrieving them. Conversely,
since Ri j _I [1] = Ri j _I [3] =false, implying that the second
and fourth segments of Vi j _I are not AUB, and thus block
Bi j must read the corresponding segments from YI in global
memory. After computation, Bi j finds that all the results are
upper bounds (i.e., Vi j _O is an AUB, dark red in Figure 2).
Likewise, we employ a four-element boolean array Ri j _O

to record whether the corresponding segments are AUB.
Since block Bi j can only output Vi j _O , which constitutes
the leftmost quarter of an entire row in YO, we use Ri j _O[0]
to match the output (Vi j _O) for block Bi j . The remaining
elements in Ri j _O will match the remaining segments of
the row, which will be determined by other CUDA blocks.
Instead of writing the entire AUB segment to global memory,
we only set Ri j _O[0] =true.

Without writing back to global memory for synchroniza-
tion, it is possible that inconsistency occurs between Vi j _O

and YO when we claim a segment of the global memory to be
AUB in Ri j _O without actually writing the AUB data back to
YO in global memory. However, this inconsistency does not
impact the result of inference. Because we apply a two-buffer
scheme to Ri j _I /Ri j _O and YI/YO, in the subsequent round,
the kernel will access Ri j _I (the previous Ri j _O) first. After
learning that the segment in YI (the previous YO) is AUB from
Ri j _I , the kernel will not touch global memory and retrieve
the inconsistent data in YI. Therefore, the inconsistency
does not affect reading the data at all. YO and Ri j _O become
consistent when a round is reached where the kernel takes
in an AUB segment but outputs a segment that is not AUB.
In this case, YO in global memory is synchronized with Ri j _O

to claim back consistent results. This process is similar to
the write-back mechanism of caches [21].

B. Definitions

Definition 3.1. Partition P : A segment of the indices in
the data matrix.

Definition 3.2. Upper-bound universal quantifier U (·): This
determines whether any element vi in the data matrix
corresponding to index pi ∈ P is upper bound, i.e.,

U (P ) :=
{

1, ∀pi ∈ P, vi = 32;

0, ∃pi ∈ P, vi ̸= 32,
(1)

This is used to determine whether partition P is AUB.
We refer to the U (·) of input data matrix YI as UI (·) and of
output data matrix YO as UO(·), respectively.

Theorem 3.1. The upper-bound universal quantifier for a
union of multiple partitions equals the and of upper-bound
universal quantifiers applied to those partitions, i.e.,

U (
⋃
k

Pk ) =∧
k

U (Pk ) (2)

Definition 3.3. For CUDA block Bi j , the input partition
Pi j _I is defined as a partition that contains all the elements
in the input data matrix YI that Bi j reads. Likewise, the
output partition Pi j _O for Bi j is defined as a partition that
contains all the elements in the output data matrix YO that
Bi j writes. The sub-matrix that comprises elements in YI/YO

corresponding to Pi j _I /Pi j _O , is referred to as Vi j _I /Vi j _O .
Definition 3.4. Basic partition unit Si ′ j ′ : The minimum

unit segment of the data matrices adopted by the kernel for
AUB segment identification. We use the notation i ′ j ′ instead
of i j , because block Bi j does not hold a one-to-one mapping
with the basic partition unit. Among the many partition
schemes for Si ′ j ′ , we choose efficient partition schemes for
different kernels (further elaborated in Section III-C). We
refer to Si ′ j ′_I /Si ′ j ′_O specifically as the basic partition unit
of YI/YO.

Definition 3.5. Recorder matrix R: R records U (Si ′ j ′ ) for
all Si ′ j ′ in the data matrices. Ri j refers to a sub-matrix of
R , containing U (Si ′ j ′ ), for all Si ′ j ′ that Bi j encounters. Ri j _I

contains UI (Si ′ j ′_I ) for all Si ′ j ′_I that overlaps with Pi j _I ,
while Ri j _O contains UO(Si ′ j ′_O) for all Si ′ j ′_O that overlaps
with Pi j _O .

C. Analysis of Different Kernels

In table II, we study different kernels (BF, SNIG, XY,
and SNICIT) for sparse DNN inference by analyzing the
global memory read and write patterns of a CUDA block
Bi j . Then, we discuss a suitable Si ′ j ′ partitioning strategy
for data matrices and present the GMA count expectation
per layer for each kernel.

1) BF: For each round of inference iteration, Bi j reads a
row from YI, the non-zero elements from weight matrix W,
and eventually writes a row which has the same index as
the input row to YO. Due to limited GPU memory capacity,
BF divides W into multiple independent vertical slabs and
reads one slab from W at a time, hence dividing the output
row into multiple segments, when the number of neurons
per layer (n in Table II) is too large (e.g., 65536).

Next, to determine the appropriate Si ′ j ′ , we study the
non-zero pattern of intermediate results. We found that



after only about 30 layers (varying across different DNNs),
the indices of the non-zero entries stabilize. As shown in
Figure 1a, the likelihood of a random entry becoming a non-
zero entry is extremely low (at most 3.02%). Since BF and
SNIG do not prune the all-zero entries, non-zero entries are
uniformly and sparsely scattered in YI/YO. Thus, Si ′ j ′ must
not span across multiple rows for BF and SNIG, as this can
greatly increase the likelihood for U (Si ′ j ′ ) = 0. Additionally,
Si ′ j ′ should have the minimum length of slab size (N ) or
n, whichever the smaller, otherwise, the highly optimized
loop ordering and CUDA block partitioning schemes will
undergo substantial changes, bringing potential overhead.
Lastly, Si ′ j ′ needs to be 2k long, being able to evenly divide
n. Thus, Si ′ j ′ = Pi j _O[mk : m(k +1)],k ∈ {0, ...,n/m −1}.

Considering the constraints mentioned above, there are
still multiple options for the length (m) of Si ′ j ′ . We choose
the best m by minimizing the expectation of GMA counts
(Ei j ). It is inevitable to conduct reads and writes on Ri j _I

and Ri j _O , resulting in 2n/m counts combined. Next, we
examine the counts caused by reads from YI and writes to YO.
Assuming every element in Vi j _I or Vi j _O has a probability of
p I or pO to be upper bound (same in SNIG), Si ′ j ′_I or Si ′ j ′_O

with m elements, has the chance of 1−pm
I or 1−pm

O not to
be AUB. Within these n/m segments in Vi j _I or Vi j _O , the
probability for k segments being AUB and the remaining
segments not being AUB is C k

n/mk(1− pm
I )k pm(n/m−k)

I or

C k
n/mk(1−pm

O )k pm(n/m−k)
O . Since k ranges from 0 to n/m,

the total expectation for access counts regarding YI and
YO is m

∑n/m
k=0 (C k

n/m(1− pm
I )k · pm(n/m−k)

I k +C k
n/m(1− pm

O )k ·
pm(n/m−k)

O k). Considering the aforementioned factors, we
minimize the sum of Ei j (rightmost column in Table II)
on all layers, s.t. m ≥ min{N ,n} and m = 2k . Computation
reveals that m has different values on different DNNs.

2) SNIG: Bi j reads a row from YI, one vertical slab (of
size N ) from W, and only outputs a segment of a row,
whose length being min{N ,n}, to YO. Si ′ j ′ ’s length m shares
the same constraints as BF. We select the optimal m by
minimizing the GMA count expectation.

There are n/m inputs from Ri j _I , and one output for Ri j _O .
The expectation regarding Pi j _I is the same as BF, and the
expectation regarding Pi j _O is the same as the writing count
expectation for a non-AUB, which is m(1−pm

O ). We minimize

the sum of Ei j = n
m +1+m

∑n/m
k=0 (C k

n/m(1−pm
I )k ·pm(n/m−k)

I k+
(1−pm

O )) on all layers, s.t. m ≥ min{N ,n} and m = 2k . After
computation, we find that the best m is min{N ,n} for all
SDGC DNNs. Since Pi j _O has the length of min{N ,n}, we
have Si ′ j ′ = Pi j _O .

3) XY: In XY and SNICIT, entries of the data matrices
are columns instead of rows. XY applies multiple kernels at
different layers of SDGC inference. In this work, we study the
kernel XY uses after layer 22 exclusively [6]. Bi j takes in s
columns from YI (Vi j _I ), d rows (d = 32 in XY) from W, and
outputs a d×s segment (Vi j _O) to YO. We set a m×d segment
in YI/YO to be Si ′ j ′ . Thus, Si ′ j ′ =

⋃
mk/d< j<m(k+1)/d Pi j _O ,k =

{0, ...,n/m −1}. Apparently, m > d , otherwise, Bi j will have

to read n/d elements (at most 2048) from Ri j _I , leading to
excessive global memory reads.

Bi j reads from Ri j _I n/m times. We assume that an
element in YI or YO has a probability of p I or pO to be an
upper bound. Since after a certain number of layers, the
ratio of 32 in non-zero columns tends to converge to 1 as
shown in Figure 1a, we consider p I or pO also to be the
probability of a column being AUB in YI or YO. As XY and
SNICIT pruned the all-zero entries, p I and pO are very
close to 1. Thus, the probability for Si ′ j ′_I or Si ′ j ′_O to be
AUB is 1−p s

I or 1−p s
O , and the expectation for memory

access count regarding YI and YO is ns(1−p s
I )+ms(1−p s

O).
Also, if Pi j _O is not AUB (probability = 1−p s

O), Bi j writes
false to Ri j _O (Section III-D). Ideally, according to Ei j

(rightmost column in Table II), m should be as large as
possible (1− p s

O ≈ 0). However, the runtime is not solely
dependent on Ei j . Other factors like memory coalescing and
memory contention affect the runtime as well. In practice,
we empirically fine-tune the best m based on our GPU.

4) SNICIT: SNICIT divides the entire inference task
into multiple stages and kernels. We focus on load-reduced
spMM kernel in the post-convergence update stage, which
involves the most layers. Compared with XY, YI/YO in
SNICIT contains fewer columns. Thus, Bi j reads d rows
from W, everything from YI (Vi j _I ), and outputs only d rows
to YO. Similar to XY, we set a m ×d segment in YI/YO to
be Si ′ j ′ . Thus, we have Si ′ j ′ =

⋃
mk/d< j<m(k+1)/d Pi j _O ,k =

{0, ...,n/m −1}. Post-convergence update takes place after
the layer reaches 30, and by that time, every element in the
non-zero columns is upper bound. Thus, there will not be
any GMA regarding YI/YO and Ri j _O . For each layer, Bi j will
only have n/m reads from Ri j _I . Once again, we empirically
decide the best m through experiments.

D. Global Memory Access Reduction Algorithm

Here, we provide a general algorithm to enable efficient
GMA access in our GLARE framework. While applying
GLARE to different kernels results in different implemen-
tations, we focus in this paper on existing SDGC kernels.
Similar ideas are applicable to other kernels.

Algorithm 1 shows how a thread (x, y) in Bi j reads value
vx y_I from YI. i d x is the index of Ri j _I corresponding to
vx y_I . Depending on Ri j _I [i d x]’s value, we either assign
32 directly to vx y_I , or load the value from YI to vx y_I .
R0 is initialized as all false, but undergoes dynamic
modifications during subsequent inference iterations to
record the correct AUB segment information of each layer.

Algorithm 2 shows how a thread (x, y) in Bi j writes
a value vx y_O to YO. If vx y_O is not 32, then we have to
update the corresponding element in YO (lines 1-3). i d x
is the index of Ri j _O corresponding to vx y_O , while Si ′ j ′_O

is the basic partition unit containing vx y_O . Then, if Si ′ j ′_O

is a subset of Pi j _O (like in BF or SNIG), we update the
corresponding Ri j _O value with U1(Si ′ j ′_O), which is decided
by each thread within Si ′ j ′_O (lines 4-5). Otherwise (like in
XY or SNICIT), (x, y) set the corresponding Ri j _O to be



TABLE II: Different SDGC kernels with different input and output GMA. For each kernel, we show our partitioning strategy
(in basic partition unit Si ′ j ′ ) for data matrices and present the GMA count expectation. Blue color represents the input
segments and red represents the output segments of Bi j . The green-colored segment shows a basic partition unit.

Methods
Input and output

GMA of Bi j

Basic
partition unit Si ′ j ′

GMA count
expectation Ei j

BF [4] 𝑃𝑖𝑗_𝐼 𝑃𝑖𝑗_𝑂

𝐘I 𝐘O
𝐖

𝐘I/𝐘O

𝑆𝑖′𝑗′ 𝑆𝑖′𝑗′ = 𝑃𝑖𝑗_𝑂 𝑚𝑘:𝑚 𝑘 + 1 ,

𝑘 ∈ {0, … ,
𝑛

𝑚
− 1}

𝑚 2 n
m +m

∑n/m
k=0 (C k

n/m(1−pm
I )k ·

pm(n/m−k)
I k +C k

n/m(1−pm
O )k ·

pm(n/m−k)
O k)

SNIG [5] 𝑃𝑖𝑗_𝑂

𝐘O
𝐖

𝑚

𝑃𝑖𝑗_𝐼

𝐘I

𝑆𝑖′𝑗′

𝐘I/𝐘O

𝑆𝑖′𝑗′ = 𝑃𝑖𝑗_𝑂

𝑚 n
m +1+m

∑n/m
k=0 (C k

n/m(1−pm
I )k ·

pm(n/m−k)
I k + (1−pm

O ))

XY [6]

𝐖

𝑃𝑖𝑗_𝐼 𝑃𝑖𝑗_𝑂

𝐘I 𝐘O

𝑑
𝑠

𝑆𝑖′𝑗′

𝐘I/𝐘O

𝑚
𝑠

𝑆𝑖′𝑗′ = ራ
𝑚
𝑑
𝑘<𝑗<

𝑚
𝑑
(𝑘+1)

𝑃𝑖𝑗_𝑂 ,

𝑘 = {0,… ,
𝑛

𝑚
− 1}

n
m +ns(1−p s

I )+ (1−p s
O) · (ms +1)

SNICIT [9]

𝐖

𝑃𝑖𝑗_𝐼 𝑃𝑖𝑗_𝑂

𝐘𝐈 𝐘O

𝑠𝑑 𝑆𝑖′𝑗′

𝐘I/𝐘O

𝑚 𝑆𝑖′𝑗′ = ራ
𝑚
𝑑
𝑘<𝑗<

𝑚
𝑑
(𝑘+1)

𝑃𝑖𝑗_𝑂 ,

𝑘 = {0,… ,
𝑛

𝑚
− 1}

n
m

Algorithm 1 Reading vx y_I from YI in Bi j

Input: Ri j _I : recorder sub-matrix of YI, YI, i d x: index of
Ri j _I corresponding to vx y_I

Output: vx y_I : the value fetched
1: if Ri j _I [i d x] ==true then
2: vx y_I ← 32
3: else
4: vx y_I ← YI[i ·BlockDim.x+x][ j ·BlockDim.y+ y]
5: end if

false (lines 6-10). All elements in Ri j _O are set to be
true before Algorithm 2. According to Theorem 3.1, any
vx y_O ̸= 32 can cause UO(Si ′ j ′_O) =false. Therefore, even
though Si ′ j ′_O spans across the output of multiple CUDA
blocks, any non-upper-bound element can veto the entire
Si ′ j ′_O being AUB.

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the effectiveness of GLARE
on four kernels, BF [4], SNIG [5], XY [6], and SNICIT [9].
BF, SNIG, and XY are the previous SGDC champions. We
first measure the runtime for the four original kernels on the
official SDGC benchmarks [13]. Then, we apply GLARE to
each kernel and demonstrate the performance gain achieved
by GLARE. All the experiments are conducted on a Ubuntu
22.04.2 LTS machine with 64 Intel Xeon Gold 6226R CPUs
at 2.9 GHz and 256 GB memory capacity. The machine
is equipped with an NVIDIA GeForce RTX 3090 GPU with
24 GB memory capacity. All the programs are compiled with
nvcc v12.1 with -O3 flag enabled.

Algorithm 2 Writing vx y_O to YO in Bi j

Input: vx y_O : the value to write, i d x: index of Ri j _O corre-
sponding to vx y_O , Si ′ j ′_O : basic partition unit containing
vx y_O , Pi j _O : output partition of Bi j

Output: YO, Ri j _O : recorder sub-matrix of YO

1: if vx y_O ̸= 32 then
2: YO[i ·BlockDim.x+x][ j ·BlockDim.y+ y] ← vx y_O

3: end if
4: if Si ′ j ′_O ⊆ Pi j _O then
5: Ri j _O[i d x] ←UO(Si ′ j ′_O)
6: else
7: if vx y_O ̸= 32 then
8: Ri j _O[i d x] ←false
9: end if

10: end if

A. Runtime Comparison

Table III shows the runtime of the four inference kernels
with and without GLARE. On average, GLARE can accelerate
the four kernels by 141.73%. The performance of GLARE-
accelerated BF (BF+GLARE) is faster than BF alone across
all DNNs, with up to 31.56×. The reason for BF+GLARE
to perform exceptionally well on DNNs of 65536 neurons
is that the data for BF is too large to fit in caches. Global
memory includes L1/L2 cache and DRAM [22], and GLARE
saves the constant and costly communications between
caches and DRAMs. For SNIG+GLARE, XY+GLARE and
SNICIT+GLARE, the speed-up is up to 1.43×. However,
GLARE in some DNNs is slower than the original kernels,
because GLARE introduces conditional branching cost,
which may outweigh its benefit.



TABLE III: Comparisons of inference time (ms) among BF, SNIG, and XY (previous SDGC champions), and SNICIT, and
their enhancement after applying GLARE. Results are evaluated on SDGC benchmarks.

Benchmarks Methods

Neurons Layers BF
BF+

GLARE
SNIG

SNIG+
GLARE

XY
XY+

GLARE
SNICIT

SNICIT+
GLARE

1024

120 451.508
431.894
(1.04×)

209.038
198.753
(1.05×)

18.2043
20.5027
(0.89×)

12.8492
12.9843
(0.99×)

480 1262.99
1142.5
(1.10×)

653.692
607.657
(1.08×)

57.1754
62.9377
(0.91×)

22.468
22.5781
(1.00×)

1920 4564.58
4049.81
(1.13×)

2376.64
2267.66
(1.05×)

208.593
235.835
(0.88×)

58.9009
60.9954
(0.96×)

4096

120 1442.55
1339.59
(1.08×)

599.074
590.782
(1.01×)

39.3821
37.9181
(1.04×)

29.2297
29.3868
(0.99×)

480 4229.13
3719.68
(1.14×)

1909.64
1889.06
(1.01×)

104.353
95.0824
(1.10×)

38.8117
39.3935
(0.98×)

1920 15413.3
13323.2
(1.16×)

7101.33
7123.93
(1.00×)

348.886
318.481
(1.10×)

81.7058
78.4672
(1.04×)

16384

120 5305.51
4965.01
(1.07×)

2265.96
2208.76
(1.02×)

124.922
114.332
(1.09×)

97.3652
97.2451
(1.00×)

480 15227.2
13436.8
(1.13×)

6477.07
6746.5
(0.96×)

300.869
230.877
(1.30×)

108.174
105.142
(1.03×)

1920 54983.7
48796.3
(1.13×)

23617.6
25001.8
(0.94×)

994.232
694.165
(1.43×)

152.281
147.089
(1.04×)

65536

120 417769
33912

(12.32×)
76224.7

74404.2
(1.02×)

554.5584
571.6059
(0.97×)

738.4524
727.829
(1.01×)

480 1647670
66882.3
(24.64×)

91935.7
88676.8
(1.04×)

1427.9744
1453.8338

(0.98×)
957.0351

887.2877
(1.07×)

1920 6555300
207741

(31.56×)
152753

138634
(1.10×)

4758.151
4845.427
(0.98×)

1827.796
1515.235
(1.20×)
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Fig. 3: GMA reduction rate with GLARE on DNN 1024-120.

B. GMA Reduction

Figure 3 illustrates the effectiveness of GLARE on reducing
GMA for the four kernels on DNN 1024-120, represented
by the ratio of reduced GMA access count divided by the
original GMA access count. The reduction rate is below 15%
because each block needs to access numerous elements of
the weight matrices from the global memory as well. The
curves for BF and SNIG are nearly identical, resembling
the occupancy trend of AUB segments in data matrices. To
be more specific, the curves remain at zero until layer 7,
steadily increase, and stabilize after layer 30. Curves of XY

and SNICIT begin from layers 22 and 30 respectively, as
GLARE is only applied to one specific kernel, each spanning
across a specific range of layers. The initial points of XY
and SNICIT are lower, because R0 is initialized to false
(Section III-D), requiring more GMA. Apart from the initial
points, the reduction rate for XY and SNICIT remains
constant throughout the inference layers, as the number of
AUB segments has little change.

V. CONCLUSION

In this paper, we have presented GLARE, a framework that
effectively reduces redundant GMA in existing large sparse
DNN inference kernels. We have introduced a mathematical
model of GMA, studied the GMA patterns of existing sparse
DNN inference kernels, and proposed an efficient matrix
partitioning strategy for AUB segments of each kernel.
Additionally, we have developed a general algorithm that can
be applied to accelerate the performance of different sparse
DNN inference kernels by reducing redundant GMA within
AUB segments. Evaluated on the official SDGC benchmarks,
GLARE has successfully accelerated all the kernels we have
studied, with up to 31.56× speed-up. Future work will
consider the use of new CUDA Graph [23], [24] and other
task graph libraries [14], [15], [25]–[30] to gain further
acceleration, as inspired by [31]–[46].
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