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Abstract—The energy requirements of neural network learning
are growing at a rapid rate. Increased energy demands have
caused a global need to seek ways to improve energy efficiency of
neural network learning. This paper aims to establish a baseline
on how adjusting basic parameters can affect energy consumption
in neural network learning on Computer Vision tasks. In this
article, we catalog the effects of various adjustments, from
simple batch size adjustments to more complicated hardware
settings (e.g., power capping). Based on our characterizations,
we have found numerous avenues to adjust computer vision
algorithm energy expenditure. For example, switching from a
single precision model to mixed precision training can result in
energy reductions of nearly 40%. Additionally, power capping
the Graphical Processing Unit (GPU) can reduce energy cost by
an additional 10%.

I. INTRODUCTION

The computational cost of machine learning is rising at an
incredibly rapid rate. In an effort to improve performance
of models, one can simply throw additional computational
power at the problem for minor improvements. Computation
Costs nearly double every 3—4 months [1], [2]. Part of this
is caused by the development of larger and larger neural
networks that have more parameters [3] and require increased
training flops count (visualized in Figure 1, [4]) This trend
is widely understood and deeply concerning [5]-[7]. This
increase in computational power is having a very poor effect
on the environment, as more and more energy has to be
devoted to training these models for minimal improvement (the
relationship between performance and compute is logarithmic,
requiring exponentially more compute time for linear increases
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in performance [8]). Deep Learning Datacenters currently
consume 1% of global energy reserves, and this value is
expected to rise to 8-21% by the year 2030 [9], [10] and
cost between 200 and 500 million dollars [11]. There is a
great need to research and analyze the energy efficiency and
performance of neural network learning, as well as create
methods to develop better practices and standards to focus
on performing efficient machine network learning that aims to
reduce the carbon impact of deep learning [10], [12], [13].

Our current climate crisis is directly related to global energy
demands and problems created from the use of nonrenewable
energy sources to meet our energy needs. Massive overhauls
to our energy habits are needed to stay under the 1.5 degree
rise in global temperature before catastrophic climate effect
could occur [14]. We need to investigate and overhaul how
we produce and consume energy in order to limit global
consequences.

This paper analyzes and catalogs how some simple ad-
justments can affect performance of several Computer Vision
tasks. The goal is to provide a series of benchmarks one
can use to catalog future performance and use as a stepping
stone for future research on improving the energy efficiency
of computer vision learning.

II. RELATED WORK

One major problem with current machine learning analysis
practices is that most are intensively performance focused
[15]. A new architecture and design may show improved
performance and meet a higher accuracy, but the increased
training time and costs are not mentioned. Since the primary
measurement is performance, other features (including energy
costs, algorithmic efficiency) are ignored in pursuit of a sin-
gular metric. Since the simplest way to increase performance
is to throw additional computing power at the problem, this
highly promotes inefficiency and poor practices and heavily
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Fig. 1: Parameter and Flop Count of Computer Vision Neural Networks [4]

biases results in favor of large organizations that can afford
large hardware setups [12].

A. Reducing Energy for Al training such NLP Computer
Vision

Some research has been done to catalog the expense of Nat-
ural Language Processing (NLP) models. Some NLP models
can consume as much C'O, emission as the lifetime emission
of five cars [16]. This caused a collection of work that analyzes
power consumption on NLP learning tasks [17], as well as
the energy demand of this training. [16] This paper seeks to
analyze computer vision tasks and, hopefully, apply the results
found for NLP tasks to computer vision and find generally
applicable results.

Additionally, one promising avenue of research has been
the investigation of power capping Graphics Processing Unit
(GPU) on NLP training [18]. Power capping involves limiting
the maximum power that can flow through the GPU or Central
Processing Unit (CPU) nodes and thus reducing electrical
consumption. Power capping has shown limited progress in
others tasks [19] and we would like to see if the results
generalize to other fields of machine learning.

Existing research has explored how various architectures
perform on ImageNet [20]. This indicates a linear relationship
between the total operation required to run a model and total
inference time. Additionally, this indicates that batch size has
a minimal influence on energy consumption.

Existing work has been done in analyzing improvement
and lowering the computation load. Designing architecture to
minimize total flops and computational load [21] in order

to speed up training without major losses in accuracy is
necessary.

B. Computer Vision Benchmarks

Now we recall the current benchmarks established for
computer vision tasks as well as the common metrics to
analyze current performance. Existing literature on computer
vision and other AI benchmarks measure the time needed to
train the model. The goal is to create a set of standards and
measure the total training time it takes to train a model to a
desired accuracy. This allows testing of multiple algorithms
and methods, to compare and contrast the accuracy and
training time of the various approaches.

MLperf is one such collection of benchmarks for various
neural network learning tasks from image processing to object
segmentation [22]. It contains records for several tasks in-
cluding object detection, image classification, natural language
processing, and more. There have been many submissions
from various organizations about how their own hardware and
algorithms perform on the various tasks. Sadly, MLperf only
records the total training time needed to reach a desired accu-
racy. There is little documentation on the energy requirement
for an individual organization’s submission. This work hopes
to establish a starting point for energy demand in computer
vision neural network training.

One issue with cataloging the energy cost of machine
learning is the lack of a widely accepted framework to measure
the climate impact of machine learning. However, attempts to
create a standardized or consistent system to measure climate
impact of Al learning are being developed [23]. There are



many avenues of exploration for methods of measuring the
energy demand and climate impact of machine learning.

Additionally, there is a growing trend to consider Green
Al [10], [12], where environmental impact and practices are
recorded. Instead of constantly seeking better performance,
algorithmic efficiency is considered as well.

ITI. ANALYSIS OF HYPERPARAMETER SELECTION

The ImageNet [24] dataset is a massive computer vision
dataset that is used to train models for computer vision
tasks. ImageNet consists of numerous images (over 1 million)
of various categories. ImageNet is frequently used to train
neural network models for image classification tasks. Image
classification is when a model is given an image and needs to
clarify what it is a picture of (e.g., predicting if an image was
a cat or a dog). This is a very simple process for humans, but
quite complicated for machines.

The chosen neural network architecture will be ResNet50
[25]. This architecture will be used for our experiments.
ResNet50 (residual network) is a widely accepted model
architecture for image classifications with ImageNet, and is
even used as the accepted model architecture in the MLperf
category for image classification [22]. The goal of each exper-
iment will be to reach 70% top 1 accuracy on our ImageNet
validation set, and the experiment will cease upon reaching
this goal.

Additionally, we will be using the You Only Look Once
(YOLO) architecture [26] on the xView dataset [27] to provide
a sense of comparison to our finding on other computer vision
tasks. YOLO is another neural network architecture designed
around object detection (identifying where an image is in a
picture, rather than what the image is a picture of). The xView
dataset consist of overhead images take of location from the
air to identify locations on the ground (buildings, vehicles).

We hope to get a sense of how adjusting these algorithmic
features changes the energy consumption and training time.
Additionally, we want to gain a sense of how much influence
each adjustment has on the various metrics. Knowledge of how
each parameter influences those metrics could allow us to find
the optimal configuration for learning.

A. Batch Size

One of the simplest of the hyperparameters, for neural
network learning to adjust, is the batch size. Due to parallel
processing, networks can process and evaluate multiple data
points at once before each training update. The amount of data
points being processed at once is the batch size. Larger batch
sizes process more data and finish faster but consume larger
amounts of memory and have greater memory overhead.

For ResNet and ImageNet we used a batch size of 64, 128,
256, and 512 in our experiments (with 256 being used as a
reference point). For our YOLO experiments we used batch
size of 32, 64, 128, 256, 512 as values to be used. We can see
how this impacted energy consumption in Figure 2.

The batch size that reached the target accuracy in the fewest
epochs was between 128 and 256. Further analysis (as seen in

Figure 2) on the total time taken and energy consumed shows
remarkable similarities in both energy consumption and time
taken among these two batch sizes. However, analysis of the
accuracy per epoch, shows that a batch size of 256 was slightly
better. Consuming about 20% less energy than the other batch
size 64 and 512.

Conversely, upon examining the performance with the
YOLO architecture, no significant difference was seen. How-
ever, the xView dataset is much smaller than ImageNet and
thus may be obscuring possible values or trends that can only
be seen on a larger scale.

B. Network Complexity

For a given neural network, there is an underlying phi-
losophy in how the network is structured and created. For
example, ResNet architectures use residual layers [25] where
the current storage is sent to the future. The various networks
(e.g, ResNet18, ResNet34, ResNet50) use the same underlying
design with a crucial difference in total number of layers.
Increasing the complexity of the network and increasing the
total number of parameters allows for more flexible learning
and higher accuracy at the expense of greatly increasing the
computational cost [5].

We utilized both the ImageNet dataset and xView dataset to
train various models of ResNet (on ImageNet) and YOLO (on
xView). We measured performance both under several epochs
of training (40 epochs for ResNet and 100 epochs on YOLO)
as well as a single inference pass. We can see the results in
Figure 3 and Figure 4 for ResNet and YOLO respectively.

As can be seen, as the complexity of the network is
increased, we see increases in energy consumption as well.
The increase in parameters results in an increase in the re-
quired energy consumption for training processes. The desired
tradeoff can be seen in Figure 5. We compare the top 1
Accuracy of our models with the training time and energy
consumption and see a sharp decrease in diminished returns,
where a small increase in accuracy requires a much larger
energy consumption.

Utilizing ResNet50 as a baseline, we see that increasing
the complexity to ResNet101 causes a near 50% increase in
energy consumption while a further increase to ResNetl152
nearly doubles energy consumption; lowering the complexity
can shave energy consumption by 20%. Therefore, we see that
increasing the parameter count results in higher accuracy with
sharply diminishing returns in the final performance.

C. Precision

When calculating and performing operation on a machine,
there is some machine error performed with calculation. Since
machines must use a fixed amount of bytes to store values, not
every value can be represented and some small error will exist.
This error is called "machine error." The error can be reduced
by allowing for more bytes to store values; however, this
increases the complexity of operations. The common levels of
precision are single precision (or float32 which uses 32 bits to
store numbers) or double precision (or float64 which uses 64
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Fig. 3: ResNet Architecture, training, and inference

bits to store numbers). As the name suggests, double precision
has smaller errors than single precision but requires twice the
computation to calculate operations with. (In theory, precision
could be increased arbitrarily, but in most cases these levels
should suffice for the task at hand). Now we will examine how
precision effects energy usage.

Most training in PyTorch uses float32 or single precision
to store the values of the network. Both the values from the
network and the loss from the forward pass are calculated
using float32 values. However, there is an idea to save on
possible computation by using a mixed precision model. In a
mixed precision model, the forward pass is calculated using
floatl6 bits, (and then the loss is scaled to prevent any
adjustment errors from floatl6 to float32 for the backwards
propagation). Since a lot of work is spent doing the forward
pass for batches, this method could save a lot of computations
and result in much increased efficiency as the GPU could
process the forward pass twice as fast (as values as now
operations are consuming half as many bits).

We will experiment with both a single and mixed precision

model to identify the savings of improvements. Hopefully,
by reducing the complexity of the operations during training,
we can reduce the total computation time and total energy
expenditure.

As can be seen in Figure 6, switching to mixed precision can
improve and reduce energy consumption by nearly 40%. Addi-
tionally, the experimental result showed no significant change
in model accuracy or performance on the data. Changing the
precision seems to result in much faster and more efficient
training, with minimal impact on performance and accuracy.
This is a huge improvement and allows us to achieve massive
more leverage in our computations by reducing complexity.
If possible, experimenting with smaller precision (float8 or
lower) could be investigated to see if further reduction in cost
could be obtained.

IV. HARDWARE TUNING

Neural network learning involves performing lots of ma-
trix operations during training. The ability to perform these
calculations in parallel is a task where the GPU excels.
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Modern machine learning algorithms leverage this feature
of the GPU to accelerate the training process [28]. These
techniques heavily reduce total training time for a much faster
and more efficient performance.

A. GPU Power Capping

By doing many calculations quickly, the GPU plays a major
and important role during neural network training. Therefore,
analyzing the efficiency and performance of the GPU itself can
be a possible method to identify ways to improve the energy
efficiency of neural network learning.

While the GPU is being used for training, it is not always
using 100% of its power as there is downtime between batches
because the data needs to be loaded onto and from the GPU.
Potentially, limiting the maximum power draw is one possible
way of reducing energy. While in theory this will increase
the time it takes because it must operate slower, results on
NLP tasks have shown promise, and we wish to see if results
replicate with computer vision tasks [17]. We will explore
the impact and effect power capping the GPU will have on
computer vision tasks in the following section.

One avenue of exploration was power capping the GPU
to reduce the total power expenditure. The idea was to limit
how much power the GPU can consume during training and
hopefully alter and find improvements. Lowering how much
energy the GPU can consume will hopefully reduce power



demands of the network during training.
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Experiments were set up with a GPU power cap of 250W
(default), as well as reduction in the cap to 200W, 150W, and
100W. The idea was to measure the effect of reducing the
power cap, as well as seeing if greater reduction resulted in
greater improvements.

We can see in Figure 7 that lowering the power cap from
250W to 100W or 150W resulted in a savings of about 10%.
We also note that the change and increase in run time was not
significant enough to counteract these effects.

As it stands, lowering the power cap seems to result in
reduced energy consumption without a significant drop in
training time or accuracy, and thus could easily be applied
in future data center learning by adjusting the default power
cap of GPU. It is an easy and simple change that could result
in massive energy savings.

V. DISCUSSION

Through our course of experiments, we found that even sim-
ple adjustments (e.g., adjusting the batch-size) can influence
how much energy was consumed during training and resulting
impacts on efficiency. We catalog how much increasing the
complexity of a model influences on performance and how it
results in minor improvements in performance (a nearly 50%
increase in energy consumption for around 3% increase in
top 1 accuracy from jumping from ResNet50 to ResNetl01,
with even further diminishing returns going to ResNet152). We
noticed massive gains and reduction in energy from switching
from the single precision of nearly 40%. Showcasing how this
makes neural network training more efficient by a massive
value. Simple hardware adjustments — capping the GPU —
resulted in a savings of 10% which when applied on a massive
datacenter could have massive and incredible impacts on the
energy impact of the datacenter. This implies that a datacenter
can simply alter the default power cap of the GPU associated
with jobs to result in major savings with minimal performance
impact on the user. Such a simple change could result in a
massive reduction in energy consumption.

VI. CONCLUSION

Overall, the results are a great starting point for future
analysis and behavior. However, a lot more work could and
will be done. Due to limitations, only a single model’s GPU

was available on our datacenter; therefore, we were unable to
measure how various GPU models consume energy.

Since training and jobs involve both CPU and GPUs, one
possible avenue of future exploration is to analyze if power-
capping the CPU can also have a similar effect. Since CPUs
are used for all datacenter job tasks (while GPUs are used
for those that require parallel computation) finding out how
power-capping the CPU influence performance can also be a
major exploration to reduce datacenter electrical demand.

All in all, this is a promising future avenue of research
that aims to reduce energy demand during neural network
learning. Additional data on datacenter operation as well as
non-Al learning tasks could also help find optimal settings
for a datacenter to reduce energy demand while minimizing
inconvenience for users.
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