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Abstract — The latest Intel neuromorphic processor, Loihi 2, 

provides a breakthrough in Artificial Intelligence (AI) for 

computing at the edge, where sensor information is collected. 

The computing architecture does this by leveraging 

computations at the transistor level in a fashion analogous to the 

human brain’s biological neural networks (vs. a Von Neumann 

compute architecture). The Loihi 2’s high performance, small 

form factor, and low-power consumption makes it a unique 

capability that is well suited for use in devices. Our technical 

approach and findings support extreme computing needs for the 

internet of things (IoT) and various airborne platforms’ 

applications. The recently released Loihi 2 and the novel 

research completed on this effort were combined to accelerate 

development and demonstration of a new concept of operation 

for machine learning at the edge. This research included the 

development of spiking neural networks (SNN) on sensor data 

representative of information sources from a small research 

platform. Our concept uses the representative sensor data to 

predict the platform mode through machine learning. 

Importantly, our technical approach allowed us to rapidly scale 

from IBM’s TrueNorth Corelet framework to the Lava 

framework, which Intel’s Loihi 2 neuromorphic processor 

utilizes. The use of the Lava framework demonstrates the art-of-

the-possible in edge computing by demonstrating capabilities on 

small airborne platform sensor data and wide extensibility to 

other domains that can use this neuromorphic compute 

hardware. In summary, this research included the use of new 

compute frameworks, novel processing algorithms, and a 

unique concept of operation. This technical approach resulted 

in the classification of the platform mode given the sensor 

information with accuracies up to 97.6%. 

*Keywords — Extreme Computing, Machine Learning, High 

Performance Embedded Computing, Neuromorphic 

Computing, Deep Learning, Intel Loihi 2, Autonomous 

Operation. 

I. INTRODUCTION 

This research advances extreme computing technologies 
(computing hardware, machine learning, algorithms) through 
the development and demonstration of new capabilities to 
support several use cases and applications. The research does 
this by using frameworks utilized by newly invented 
neuromorphic computing, machine learning algorithms, and 
the innovative use on platform sensor data with extensibility 
to other information sources, such as electro-optical, infrared 
and/or radar. 

Background and insight into recent research, as well as 
demand signals that make this research appropriate and 
applicable are provided in Section II. The Compute Hardware 
used is introduced in Section III. Section IV describes the 
Compute Software. The Neuromorphic Classification 
Algorithm is described in Section V. The Data Description is 
introduced in Section VI. The Processing Approach, Results 
Conclusions and Future Research are described in Sections 
VII, VIII and IX respectively. 

II. BACKGROUND/SIGNIFICANCE 

The Air Force Research Laboratory, Information 
Directorate (AFRL), High Performance Systems Branch is 
developing and demonstrating new computing architectures 
that are providing unique high-performance embedded 
computing (HPEC) solutions meeting the most demanding 
operational and tactical processing requirements for emerging 
and future surveillance operations.  

Sensor capabilities have become less expensive and more 
prevalent; this has created vast quantities of data which must 
be analyzed promptly to provide information in a timely 
manner.  The data is either stored and/or downlinked for post 
processing delaying the time relevance of the information. 
This information can be utilized to better inform and support 
disaster relief efforts where reduced processing timelines can 
save lives. Further, more time saving can be obtained through 
upstream compute systems that operate autonomously, i.e., 
with very limited or no user interaction [1, 2, 3]. Therefore, 
sensors have rapidly increased in fidelity and are now able to 
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collect vast quantities of data, which must be analyzed 
promptly to provide critical information [4].  

III. COMPUTE HARDWARE 

In the late 2021, Intel released an advanced neuromorphic 
processor called Loihi 2. The Loihi 2 has over 2.3 billion 
transistors with over a million neurons per chip, which contain 
state variable allocation between 0 to 4096. This makes Loihi 
2 outperform its predecessor by 10x [5]. The Loihi 2 supports 
low-power applications, below 1 Watt with a die area of only 
31 mm2. Loihi 2 is an advancement to its predecessor, which 
is a 60-mm2 chip [6]. In addition, its intuitive Python-based 
API for specifying SNNs, a compiler and runtime library for 
building and executing SNNs make it a practical solution [7]. 
This makes it a favorable compute asset for extreme edge 
computing research and development. Additional details on 
this chip architecture are shown in Fig. 1.  

Fig. 1. Loihi 2 Chip Architecture, Benefits and Scalability 

IV. COMPUTE SOFTWARE 

With Loihi 2 came the release of Lava, a suite of libraries 
designed by Intel’s Neuromorphic Research Community 
(INRC) to optimize models to run on neuromorphic hardware 
[8]. For our application, we used Lava-dl [9], which enables 
a process called ANN-SNN Training, Fig. 2.  
 

 
Fig. 2: Workflow Illustration of ANN-SNN Training  

To get the best performance from a spiking neural network 
(SNN), direct training is often the preferred training method. 
However, directly training SNNs can take a long time and a 
large amount of compute resources, depending on model size 
and architecture. One known alternative to this is artificial 
neural network (ANN) to SNN conversion that takes 
advantage of rapidly training an ANN and then using a 
conversion tool to translate that model into an SNN. This 
process is based on the resemblance of a Leaky Integrate-and-
Fire (LIF) neuron to a Rectified Linear Unit (ReLU) transfer 
function. This means that by using a LIF neuron and 
integrating over some number of timesteps, we can obtain a 
good representation of an ANN model trained with ReLU.  

Lava-dl’s ANN-SNN Bootstrap Training follows a similar 
workflow: (1) starting with an SNN model, we sample over a 
few iterations; (2) Bootstrap then dynamically creates a ReLU 
based ANN, which it trains on; (3) before converting back into 
an SNN for another round of sampling. Converting to an ANN 
enables quickly training the model and the sample/train cycle 
can also improve the gap in performance between an ANN and 
SNN. 

V. NEUROMORPHIC CLASSIFICATION ALGORITHM 

Neuromorphic computing aims at a paradigm shift from 
Von Neumann-based architectures to distributed and co-
integrated memory, the granularity at which this paradigm 
shift is achieved in digital implementations strongly varies 
between a distributed Von Neumann or full custom 
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approaches [10, 11, 12]. These custom chip approaches enable 
the implementation of various algorithms/methods.  

Neuromorphic systems hold a critical position in the 
investigation of novel architectures, as the brain exemplifies 
an exceptional model for accomplishing scalable, energy-
efficient, and real-time embodied computation [13]. It 
promises to realize artificial intelligence while reducing the 
energy requirements of computing platforms [14]. 

The classification algorithm utilized for this research was 
a Multilayer Perceptron (MLP) network on the representative 
sensor data. Previously, we successfully completed research 
and development using a Gradient Boosted Machine (GBM) 
algorithm on the same dataset with the IBM TrueNorth 
neuromorphic processor. Different hyperparameters were 
adjusted on the MLP algorithm to find an optimal setting for 
maximizing accuracy on predicting the platform’s mode from 
sensor data, e.g., using engine response speed (ERS). Multiple 
models were created for a given set of packets of sensor data. 
The packet size was less than 146 bytes total. In this paper, the 
engine response was grouped into an engine response speed, 
ERS and a custom data command, Custom_data_1, that 
included the engines response speed and various other sensors 
onboard the platform that appeared most correlated. These 
hyperparameters included the time steps, number of dense 
neurons, and the number of dense layers in the MLP network. 
Three models using ERS data and their hyperparameters are 
described in Table I. Three models using additional data and 
their hyperparameters are described in Table II.   

TABLE I: HYPERPARAMETER SELECTION FOR ERS MODELS 

 

TABLE II: HYPERPARAMETER SELECTION FOR CUSTOM_DATA_1 MODELS 

 

VI. DATA DESCRIPTION 

The data used in this paper was from a representative 
small research-based platform equipped with various sensors. 
The sensor data included key sensory information from. 
Example data includes engines and their speed, sensor vector 
information (e.g., direction to the object of interest), global 
positioning system (GPS) data, magnetometer data, etc. The 

sensor data was grouped by information packets provided to 
the compute system.  

VII. PROCESSING APPROACH 

In order to quickly experiment and refine various models 
on the Loihi 2, the MLP architecture was chosen as our base 
model. Because Lava-dl follows the block format similar to 
PyTorch ModuleList, it is easy to configure the model 
architectures used for training and testing. Two methods of 
feeding the data to the algorithms were tested in this paper: 
One method, which was previously tested with PyTorch 
models trained on central processing unit (CPU), consisted of 
tiling the commands into 28 x 28 pixel squares with zero 
padding; the other method consisted of feeding the command 
data, which is an array of binary inputs of shape (320x1) 
directly to the models, without preprocessing or 
augmentation.  

VIII. RESULTS 

One interesting observation made when testing different 
models is that the Lava-dl models trained with augmented 
data, which meant each input was reshaped into a 28 x 28 chip 
and zero-padded, resulted in lower accuracies (an average of 
77% across all models) than the baseline PyTorch CPU 
models (average of 90% across all models) trained on the 
same data.  

When these Lava-dl models were trained directly on raw 
data, there was a significant increase in performance. Table III 
shows the comparison in accuracies between the Lava-dl 
models trained on two different inputs. 

 TABLE III: LAVA-DL MODEL ACCURACIES ON RAW VS. AUGMENTED DATA 

 

This behavior could be due to the nature of data itself. In a 
conventional neural network classifier, the expected input is 
often an image, and the network extracts features from the 
pixels of a region in the image. Even when these images are 
converted into spiking data for SNN’s, a scaling factor is used 
to convert them into graded spikes, giving the models 
adequate information for classification. 

The data used in this paper is not an image but a binary 
sequence representing the state of a sensor. Augmenting this 
binary sequence could affect the way the model learns. 

Tables IV and V show the accuracies of the fine-tuned 
models trained on raw data. In this case we see a significant 
improvement in results.  

Data Command: Engine Response Speed (ERS)

Model

#

# of Dense 

Layers

# of Dense 

Neurons
Timesteps Accuracy

1 1 128 16 94.0%

2 2 256 16 92.8%

3 1 1024 32 93.8%
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TABLE IV: ACCURACIES OF MODELS TRAINED ON ERS 

 

  TABLE V: ACCURACIES ON MODELS TRAINED ON CUSTOM_DATA_1 

 

IX. CONCLUSION AND FUTURE RESEARCH 

More effective, efficient, and pervasive use of sensing 
systems such as sensors for smart buildings or cities, disaster 
surveying drones (where ultra-low power compute is needed) 
is more realizable than ever before. In addition, the Loihi 2 
research chip can use the output of event-based sensors, such 
as DVS cameras, for further utilization [15]. Additionally, the 
system could provide command and control capabilities that 
enable various levels of autonomy and system 
management/utilization for building security. Applications 
include completing training operations with SNNs, where 
innovative new spike-based backpropagation [16], and/or 
complex spatial temporal timing is learned [17, 18]. 

Additional research illustrates the potential of neuromorphic 
sensing and processing for enabling smaller, more intelligent 
robots [19]. Neuromorphic systems ,such as this, can be used 
to calculate the short time Fourier transform of a signal and 
compute the optical flow of visual data with significant 
savings in computational cost compared to conventional 
approaches – applying such methods to various sensor and 
sensor data processing systems represents additional future 
work [20]. 
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