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Abstract—Spiking neural networks (SNNs), as the third-

generation neural networks, can work under an energy efficient 

mode. SNNs are different from the second-generation neural 

networks which consume a lot of energy and power. SNNs are 

suitable for oceanographic data analysis on the edge devices 

underwater since the devices have constrained power supply and 

limited communication bandwidth in underwater environments. 

Although SNNs have been widely used in classification tasks, SNN-

based regression tasks are studied less because SNNs are generally 

considered to process discrete and sequential spikes. The existing 

regression model based on the membrane potential of Leaky 

Integrate-and-Fire (LIF) neuron uses constant settings and this 

mechanism may not be adaptive and capable of analyzing 

oceanographic data which are complicated and dynamic. In this 

paper, we proposed three novel regression models of Adaptive 

Threshold Adjustment, Heterogeneous Neurons, and Nonlinear 

Integration to improve the existing LIF-based model. 

Experimental results on real oceanographic data indicate that the 

proposed regression models outperform the existing model 

through qualitative and quantitative analysis. Those SNN 

regression models could be implemented on edge devices within 

underwater environments in the future. 
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I. INTRODUCTION 

Spiking Neural Networks (SNNs) are recognized as the 
third-generation neural networks [6]. SNNs provide a significant 
energy efficiency advantage over the second-generation neural 
networks [7]. This energy-saving property makes SNNs suitable 
for edge devices. SNNs have low power consumption, so they 
can be used for applications in power-constrained environments. 
These networks simulate the brain's neural information 
processing and use asynchronous spikes. The SNN approach not 
only reduces energy usage but also enhances computational 
efficiency because SNNs generally work under the event-driven 
mechanism. Therefore, SNNs present a promising solution for 
deploying intelligent functionalities on edge devices, where 
power efficiency is a major concern. 

Oceanographic data analysis often occurs underwater, where 
communication bandwidth is limited. Data cannot be transferred 
to cloud computing for further processing and analysis. 
Underwater edge devices are typically battery-powered, which 
can be used to handle oceanographic data analysis tasks. Given 
their constrained energy resources, SNNs may provide a feasible 
solution. Based on the low energy consumption of edge devices, 
SNNs can efficiently perform data regression analysis in 
underwater environments. By employing SNNs, edge devices 
can process and analyze oceanographic data with less power 
usage than that on regular artificial neural network models. This 
approach ensures prolonged operation and reliable data analysis, 
even with limited bandwidth and energy in underwater 
environments. Therefore, SNNs present a feasible method for 
oceanographic data regression analysis and optimize 
performance in power-limited underwater environments. 

SNNs process discrete spikes, so this is a challenge for 
regression tasks. To address this, the Leaky Integrate-and-Fire 
(LIF) neuron's membrane potential is often used. By training the 
membrane potential, regression task aims to have it follow a 
given trajectory over time. This approach [2] involves training a 
LIF neuron to ensure its membrane potential accurately tracks 
the input training samples. LIF-based regression achieves 
precise alignment between the neuron's potential and the desired 
regression trajectory. This regression method uses the unique 
properties LIF neurons of SNNs and enables regression tasks in 
spiking neural networks. 

Existing LIF-based regression tasks have limitations, 
resulting in suboptimal regression accuracy. Inspired by 
concepts like Adaptive Threshold Adjustment, Heterogeneous 
Neurons, and Nonlinear Integration, which closely resemble 
mechanisms in the human brain, we aim to improve the existing 
regression method in SNNs. Motivated by these brain-inspired 
ideas, this paper presents enhancements to the traditional LIF-
based regression approach. We apply these improved methods 
to oceanographic data regression analysis. Our goal is to achieve 
higher accuracy and efficiency in regression tasks. So, we can 
achieve the advanced SNN regression techniques for better 
performance on energy-constrained devices within underwater 



environments. In this paper, the first section is the introduction. 
The second part gives the related work. The proposed method is 
introduced in the third section. The fourth section presents the 
experimental results. Conclusion is given in the last part. 

II. RELATED WORKS 

SNNs are often used for classification tasks [8] due to their 
discrete spike-based information flow, which naturally aligns 
with the requirements of classification. The inherent temporal 
coding capabilities of SNNs make them particularly suitable for 
tasks involving temporal patterns, such as speech recognition [9] 
and event detection [10]. However, regression tasks require 
precise continuous value predictions. They are challenging to 
achieve with the spike-based nature of SNNs. This precision 
requirement has led to limited research and application of SNNs 
in regression. 

Initial attempts [11] to apply SNNs for regression tasks have 
shown promise in environments where power and 
computational efficiency are critical. The work [2] by Henkes et 
al. explores nonlinear regression with SNNs and demonstrates 
SNN potential for handling complex regression tasks. A 
regression framework was proposed based on the Leaky 
Integrate and Fire (LIF). SNN-based regression is very energy 
efficient while keeping the precision and generalizability. A 
study [12] has focused on the application of LIF neurons for 
regression tasks. The membrane potential dynamics of LIF 
neurons are utilized to encode and process continuous-valued 
data. This approach has shown promise in various scenarios, 
including underwater environmental data analysis and 
autonomous systems. The current LIF-based regression [2] still 
has some drawbacks to achieve optimal regression performance. 
We proposed three new regression models to improve the 
existing method. 

III.   PROPOSED METHODS 

A. Data Cleaning 

Prior to implementing the models, the data was cleaned and 
transformed. The data, retrieved from The California 
Cooperative Oceanic Fisheries Investigations [13], contained 
many columns describing various aspects of the ocean, 
including depth, temperature, salinity, and oxygen levels. For 
each implementation, two of these attributes (columns) were 
extracted for analysis. After narrowing down the target 
variables, any null values were dropped. For this paper, ‘depth-
oxygen’ and ‘depth-salinity’ will be the focused columns, where 
depth will be used to predict oxygen and salinity using SNN 
regression. The data was then normalized before being exported 
for the regression task. 

To begin work on the models, the data was imported using 
the Pandas ‘read_csv’ function. A sample of 500 points was 
extracted, and the data was then split into training, with 400 
points, and testing, with 100 points. Both sets of data were then 
converted using the ‘SNNDataset’ class, each with 100 time 
steps. This class designated column 0 as the ‘feature’ and 
column 1 as the ‘label’. We proposed three novel models with 
the goal of improving the original SNN with LIF regression [2]: 
Adaptive Threshold Adjustment, Heterogeneous Neurons, and 
Nonlinear Integration. Each of the models builds upon the 

original SNN with LIF model [1-2], but with various new 
improvements. 

B. Adaptive Threshold Adjustment 

The Adaptive Threshold Adjustment model implements 
neurons that can adjust their firing threshold for a given input 
spike, rather than remaining fixed. With this mechanism, the 
network can optimize its response based on the intensity and 
structure of the input to improve its training process. This 
updated model should yield better results as the neurons can 
adapt their threshold and recognize patterns amongst complex 
data. Unlike the traditional SNN regression with constant LIF 
potential, the new adaptive threshold adjustment makes this 
threshold a variable. Fig. 1 demonstrates the difference between 
constant and adaptive threshold mechanisms. The membrane 
potential exhibits periodic peaks at times T1 to T6. The constant 
threshold represented by the black dashed line remains 
unchanged over time. In contrast, the adaptive threshold shown 
by the green dashed line adjusts based on the membrane 
potential's behavior. It lowers after a spike and gradually 
increases until the next spike. This adaptive mechanism allows 
the neuron to dynamically alter its firing threshold. This 
potentially improves the network's ability to handle varying 
input patterns and enhances its overall computational efficiency. 

 

Fig. 1. Membrane potential dynamics of an LIF neuron over time. It illustrates 
constant (black dashed line) and adaptive (green dashed line) thresholds. The 
adaptive threshold adjusts in response to spikes.  

C. Heterogeneous Neurons 

In the Heterogeneous Neurons model, numerous neurons are 
used to simulate the billions of neurons found in the human 
brain. Unlike the original LIF regression model, this model 
allows for variability across the neurons. Variables including 
decay rate and threshold are randomly initialized for each 
neuron before the model is trained. With each neuron having its 
own characteristics, the model is better built for a broad range of 
data.  

Incorporating various decay rates across neurons brings 
several benefits to the Heterogeneous Neurons model. Decay 
rates determine how quickly a neuron's membrane potential 
returns to its resting state after receiving an input spike. By 
introducing variability in these decay rates, the model can 
simulate a more diverse set of neuronal behaviors. It is close to 
the biological variability seen in the human brain. This diversity 
enables the network to capture a wider range of temporal 
dynamics and patterns within the input data. It enhances the 
network’s ability to generalize across different tasks and 
datasets. Different decay rates also allow the network to balance 
sensitivity and stability. Some neurons may respond quickly to 
new information, while others retain information for longer 



periods. This approach simulates the natural distribution of fast- 
and slow-responding neurons in biological systems. So, the 
mechanism can improve the model's robustness and accuracy. 
Using various decay rates enhances the network's adaptability 
and resilience and makes it better suited for complex and 
dynamic oceanographic data. 

D. Nonlinear Integration 

The Nonlinear Integration mechanism implements a 
nonlinear activation function called Rectified Linear Unit. 
Unlike the original SNN with LIF model, which sums signals 
linearly, we proposed the model uses the ReLU function, seen 
in (1) to process input data [3]. 

�������  	 max�0,  ��,                  (1) 

where �   represents the input data. The use of a nonlinear 
activation function allows a more flexible response amongst the 
neurons. This leads to a more refined output and better accuracy. 
This mechanism can allow the model to recognize complex 
relationships in the data that the original SNN with LIF may 
miss. Compared to linear models, ReLU can more effectively 
capture complicated patterns and features within the data and 
improve the regression model's accuracy and output quality. 
When dealing with complex datasets, nonlinear activation 
functions enable the model to better adapt to data diversity and 
nonlinear characteristics and enhance overall performance. 

E. Performance Evaluation 

Each of the three proposed models was run through the same 
training and evaluation code. The models were trained at a 
learning rate of 0.001 for 200 iterations using Mean Square Error 
loss. They were then evaluated with L1 loss, L2 loss (Mean 
Square Error), and Relative Error. L1 loss is calculated using the 
Mean Absolute Error, seen in Equation (2). L2 loss as shown in 
Equation (3) is calculated similarly, using Mean Squared Error 
[4]. 
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where �������  represents the actual values in the dataset, 
����������  denotes the predicted values from the proposed 

methods or the traditional LIF-based regression model [2], and 
% is the total number of testing data. 

Relative error was calculated manually utilizing the 

‘torch.linalg.norm’ function. This calculates the vector norm of 

the difference between the target value and the model output 

(predicted) value [5]. That norm is then divided by the vector 

norm of the target value to achieve the relative error. The 

formula for relative error can be seen in Equation (4), 

��&'()*� +,,-,  	   �./012/34.567890178�./012/3
,                (4) 

where, for each iteration, the corresponding error value was 
appended to a list. The mean value of each list was returned as 
the overall error value for that model. These three-performance 
metrics will be used in analyzing the accuracy of each model.  

To highlight the difference between the proposed model and 
the original, the ‘Improvement’ formula was used. This 
calculated the percentage to which each of the models improved 
or worsened compared to the original SNN with LIF model. The 
formula used can be seen in Equation (5). 

:;<,-*.   	   >?��@���� 4 ��A?��@���� B ⋅ 100,               (5) 

where -,)D)%'& represents a performance metric value by the 
original method shown in reference [2] and %�E  denotes a 
performance metric value by each of three proposed methods. 
The improvement percentage can show each new method’s 
potential for enhancing the original method. 

III. EXPERIMENTAL RESULTS 

The first dataset to be tested was ‘depth-oxygen’. Based on 
the depth of the water, oxygen levels can be predicted. The 
visual output of the various models can be seen in Fig. 2. Target 
curve with orange color indicates the ground-truth data, and the 
Output curve with blue color represents the predicted values by 
each of regression models. The visual representation of the 
models’ output indicates better accuracy in the proposed 
regression models. The SNN with LIF is the traditional method 
presented in reference [2]. The other three new regression 
models of Adaptive Threshold Adjustment, Heterogeneous 
Neurons, and Nonlinear Integration Mechanism have better 
curve fitting performance than the SNN with LIF. 

 

 

Fig. 2. Four Model Outputs for Depth & Oxygen Data 

Numerical performance metrics were also calculated to 
provide a quantitative observation at these models' accuracy. 
The results of the previously described performance metrics of 
each model can be viewed in Table 1. 



TABLE 1. MODEL RESULTS FOR DEPTH-OXYGEN 

 

Equation (5) was also used to calculate how much each 
model improved when compared to the original SNN with LIF 
mode. These results can be seen in Table 2. Looking at the 
results of Table 2, specifically at L1 loss, the Adaptive 
Threshold Adjustment model improved in accuracy by 
18.9295% when compared to SNN with LIF. The 
Heterogeneous Neurons model saw the greatest improvement 
for this metric at 39.5436%. Nonlinear Integration also 
improved in accuracy by 17.9024%. This means that the 
absolute value of the difference between each target and 
predicted point decreased by at least 17% for each model. This 
decrease demonstrates an improvement as the model is 
predicting values closer to the target data. Similar patterns can 
be viewed in the subsequent metrics. Adaptive Threshold 
Adjustment improved in L2 loss by 7.65527%. The 
Heterogeneous Neurons model improved by 4.47365% while 
the Nonlinear Integration model improved by 25.002%. This 
means that the squared difference between each target and 
predicted point decreased by as much as 25%. Like L1 loss, this 
signifies an improvement in the proposed models as their output 
more closely predicts the target. Finally, Adaptive Threshold 
Adjustment also improved in Relative Error by 6.24842%. 
Heterogeneous Neurons improved in this metric as well by 
8.93246%. The Nonlinear Integration Mechanism improved by 
14.7219% in Relative Error. This means that the absolute value 
of the difference between each target and predicted point, 
divided by the target, decreased by at least 6%. A decrease in 
relative error, like the loss values, means that the model is more 
closely predicting the target values. These values illustrate an 
improvement in all tested performance metrics for the proposed 
models when compared to SNN with LIF. 

TABLE 2. PERCENT IMPROVEMENT FROM SNN WITH LIF FOR 

DEPTH-OXYGEN 

 

The models were also tested on the ‘depth-salinity’ dataset 
to verify these performance patterns. The visual output of the 
three proposed models on this data, seen in Fig. 3, suggests that 
all of them performed better than that of the traditional SNN 
with LIF regression model [2]. 

 

 

Fig. 3. Four Model Outputs for Depth & Salinity Data 

A visual representation of the tested performance metrics, 
seen in Fig. 4, provides a better comparison between the 
accuracy of these models. 

 

Fig. 4. Model Loss & Error Values for Depth & Salinity. Note. SNN refers to 
SNN with LIF, AT refers to Adaptive Threshold Adjustment, HN refers to 
Heterogeneous Neurons, and NI refers to Nonlinear Integration. 

Fig. 4 shows that while the loss and error values appear 
similar across all the models, SNN with LIF [2] had the highest 
loss/error value of them all for each metric. To provide a better 
quantitative analysis of these results, Equation (5) was employed 
to determine to what extent the proposed models outperformed 
the original. The data from these calculations can be seen in 
Table 3. 

 

 

 

 

 



TABLE 3. PERCENT IMPROVEMENT FROM SNN WITH LIF 

FOR DEPTH-SALINITY 

 

When compared to SNN with LIF, Adaptive Threshold 
Adjustment improved in L1 loss by 31.7136%. The 
Heterogeneous Neurons model also saw a substantial 
improvement of 54.3297%. Nonlinear Integration Mechanism 
also improved by a value of 28.8932%. Regarding L2 loss, 
Adaptive Threshold Adjustment improved by 23.6223%. The 
Heterogeneous Neurons model also saw an improvement of 
18.6309%. The Nonlinear Integration model also improved in 
this metric by 35.4578%. Finally, Adaptive Threshold 
Adjustment improved in Relative Error by 12.717%. 
Heterogeneous Neurons also improved in this metric at 
7.31843%. The Nonlinear Integration model also improved in 
Relative Error by 18.8351%. These positive improvement rates 
highlight to what extent the loss and error values decreased 
compared to SNN with LIF, demonstrating that the proposed 
models better predicted the target data. 

IV. CONCLUSIONS 

The results obtained show that all three proposed models 
outperformed the SNN with LIF model for every performance 
metric for both the ‘depth-oxygen’ and ‘depth-salinity’ datasets. 
Furthermore, Equation (5) highlighted that some of the models 
achieved vast improvements when compared to the original 
model. For example, the Heterogeneous Neurons model 
achieved over a 50% improvement in L1 loss for the ‘depth-
salinity’ dataset. With the smallest overall improvement value 
being approximately 4%, these results show that the proposed 
models were able to improve in accuracy for each metric tested. 
Overall, the results suggest that the proposed models of 
Adaptive Threshold Adjustment, Heterogeneous Neurons, and 
Nonlinear Integration Mechanism were able to improve the 
regression task for oceanographic data analysis compared to the 
conventional SNN with LIF model. 
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