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Abstract—It is practical to steal cycles when Message Passing
Interface (MPI) programs are load imbalanced, either from natu-
ral algorithmic load, because of collective communication and/or
process skew, and/or because of variable message loads and
needs for message progress within the MPI implementation. We
introduce TIMELORD, a runtime library to provide fungibility
for compute-cycles without significantly degrading the nominal
performance of the parallel application. We propose three means
to exploit wasted cycles in LAMMPS, miniFE, and miniAMR.
The results show, on average, 40% of the runtime can be used
to execute extra computations and that runtime overheads are
less than 4%. We envisage that these extra computations be
related to the target application; here, for simplicity and proof-
of-concept, we assume arbitrary commodity applications. Addi-
tionally, TIMELORD uncovers inefficiencies in the MPI progress
engine and improves baseline performance. We explore some
fundamental issues of load imbalance and its interaction with
system software, including the predictability of extra time and
the relative benefits of prediction versus preemption. TIMELORD
requires no changes to the MPI application, MPI implementation,
or other system components.

Index Terms—Workload Imbalance, High-Performance Com-
puting, MPI, Progress Engine

I. INTRODUCTION

As parallel computing advances beyond the exascale mile-
stone, increases in heterogeneity and processor counts em-
phasize the utmost importance of resource utilization. The
new flagship system, Aurora, has over 1.1 million CPU cores
[1], while another exascale system, Frontier, has over 600,000
cores [2]. This new era of computing implies a new set of
challenges in designing scalable applications.

In parallel processing, the decomposition of the problem
and assigning tasks to processes has been fundamental to
delivering performance, and the set of methods to distribute
the algorithmic load is known as load balancing. In most cases,
application programmers implement at least some internal
mechanism to support the partitioning. In other cases, external
software (e.g., [3]) is used. The quality of load balance,
however, is ultimately constrained by the inherent limitations
of the problem. Another constraint is the programmer effort to
maintain load balance as applications increase in complexity
over lifetimes of 10+ years, and as they are ported to ever
more complex and heterogeneous architectures.

These challenges in load balancing, coupled with variance
in the cost incurred for synchronization and communication
across many processes, result in a significant portion (§IV-D)
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of the runtime being spent busy-waiting for the laggard;
that is, the slowest, process to complete its assignment [4]–
[6]. Moreover, as applications suffer from process skews,
performance loss is further exacerbated by external noise
sources such as networking, the operating system, and more
[7]–[9]. The standard everyday approach to improve resource
utilization is time-slicing: idle resources are released to other
processes. However, time-slicing is not well-defined for High-
Performance Computing (HPC) workloads, since they are
compute-intensive and resource-hungry. Also, typically each
entire compute node is occupied only with a single job.

Motivated by this problem, prior work [10], [11] has
proposed to minimize waiting costs or to slow down the
lead process. Another solution is to overload a CPU core
with multiple threads [12], [13]. These approaches pertain to
reducing energy consumption, whereas our work exploits a
fixed cost to run the program.

In this paper, we propose TIMELORD: an untapped, yet
straightforward, method to improve efficiency by claiming the
wasted cycles (extra time) to enable execution of extra work.
We define extra work as a secondary program that can be
executed along with the primary MPI application. In practice,
extra work can be any user-selected function. This spans from
scientific computation, such as Folding@Home [14], to utility
functions, video encoding, or homomorphic encryption. We
recognize that the most valuable secondary program of all may
be work usable by the primary program itself.

We postulate that the standard synchronous communication
model has concealed benefits yet to be extracted. The focus of
this study is any MPI application with a single communicator.
We offer an application-agnostic runtime library that applies
a transformation to any blocking MPI collective communica-
tion to provide fungibility to the trapped CPU cycles. We
examine methods of joining existing features in the MPI
implementation with OS scheduling, as well as designing an
adaptive prediction scheme to estimate the wait time. A key
feature of TIMELORD is that it is functionally transparent to
the application. In addition, the approach is compatible with
current production environments, without modification to the
MPI library, job scheduler and kernel.

We summarize our approach as follows. The starting point
is the fact that, despite massive efforts, most processes in HPC
MPI applications continue to have significant idle (extra) time.
We assert that doing something useful with this idle time is
better than doing nothing. We suggest various forms that this



extra work can take, but also claim that the overall result does
not depend on any of these particular extra work applications
being viable. Finally, we arrive at the core of this work: a study
of various approaches, collectively referred to as TIMELORD,
to exploit this extra time through the execution of extra work.
Among the questions asked are: (i) How predictable is the
extra time? (ii) What are the new overheads of the different
options? and (iii) Which class of approaches are more efficient,
those based on prediction or on preemption? A further goal of
this work is provide a framework within which to better tune
and structure HPC applications.

We evaluate TIMELORD with respect to a set of applications
on the TACC Stampede II cluster [15], a modern HPC system
representative of widely available systems on different scales
worldwide. We summarize our contributions as the following:

• Propose a runtime library to enable cycle-stealing with
zero application-level instrumentation and that is com-
pletely transparent to the application, MPI implementa-
tion, and scheduler scripting, while requiring no changes
to system components (e.g., slurm or Linux).

• Demonstrate that execution of extra work has minimal
performance overheads in LAMMPS, miniFE, and mini-
AMR. We show, on average, 40% of the runtime can be
exploited at less than 4% runtime overheads.

• Design of an Adaptive Deadline Estimation (ADE) al-
gorithm to improve preemption quality for waiting pro-
cesses.

The remainder of this paper is organized as follows. Sec-
tion II describes the background and challenges for this
work. Section III describes the system design and mechanisms
used in cycle stealing across MPI applications. Section IV
describes applications of the framework for cycle stealing.
Section V describes an evaluation of the effectiveness of the
methods offered. Related work in is Section VI, discussion in
Section VII, and conclusions and future work in Section VIII.

II. BACKGROUND

This background section first considers MPI collectives and
then discusses kernel preemption.

A. MPI Collectives

In the most prevalent model of parallel computation, bulk
synchronous parallel (BSP), processes execute in iterations
at the end of which they are synchronized at a barrier.
For example, in classical Molecular Dynamics, an iteration
corresponds to a timestep. Extra time, it would seem, should
be found in non-laggard processes idling at that barrier waiting
for the laggard process. In reality, however, processes sync
up frequently during iterations, often in conjunction with
MPI collective operations (collectives). Thus the extra time
is distributed over a large number of small quanta.

Collectives are a set of communication primitives involving
a group of processes within the communicator group. They are
ubiquitous to HPC applications and have often been the subject
of architectural support [16]–[18]. As prior work [19]–[21]
reveals, certain collectives are often paired together locally.

In this work we therefore focus on these operations. This
is effective because collectives are themselves often barriers
(e.g., Barrier, Allreduce), or behave as such. In any
case, we find that there is a high likelihood of finding extra
time during which extra work can execute.

Collectives come in blocking and non-blocking versions. As
an alternative to blocking (aka completing) collective com-
munication, their non-blocking (asynchronous) counterparts
return control to the application upon initiating the primitive.
We exploit this characteristic in TIMELORD. Although we
cannot access the message buffer before it is received, asyn-
chrony allows programmers to execute instructions without
data dependencies and so overlap computation and commu-
nication. This technique still requires some expertise from
application programmers while assuming there even exists
useful work that can be executed. Rather than improving the
application’s baseline performance, we exploit this window to
gain programmability and utility. Figure 1 illustrates a possible
solution to this problem, in which the extra work is overlapped
with asynchronous communication.

B. Kernel Preemption

Resource management in the kernel is implemented as a
scheduler that orchestrates CPU ownership and assigns states
to processes, such as running or ready, based on a given policy.
The Linux kernel supports several scheduling policies to allot
CPU resources. In this work, we explore the SCHED_IDLE
[22] policy as a candidate for extra work allocation, as it
assigns the lowest priority to the process, forcing tasks to
execute only during idle time. This mechanism from the
operating system, however suitable, does not integrate well
with MPI programs.

In general, MPI blocking communication often employs
a busy-polling mechanism during synchronization to avoid
high latency and prevent the execution of background pro-
cesses. Moreover, MPI ranks are typically mapped per core
to minimize resource-sharing between multiple threads (e.g.,
oversubscription). Certain MPI implementations, such as Open
MPI and Intel MPI, can be configured to disable polling during
blocking communication. When this option is set, MPI invokes
the system call sched_yield to idle the process, a technique
often employed in oversubscribed environments to prevent
contention among multiple ranks.

Polling is not always beneficial to overall application per-
formance. We benchmark a set of unmodified (vanilla) ap-
plications against a version in which the blocking collective
communication is replaced with their non-blocking counter-
parts (which are then synchronized afterward). In Figure 2,
we report a percentage relative to its vanilla runtime for the
applications when (1) sched_yield is enabled, and (2) a
non-blocking call is initiated and waits for completion. We ob-
serve some improvements: 3% and 7% runtime reductions for
asynchronous mode in miniAMR and LAMMPS, respectively.



Fig. 1: We define Comm as any MPI communication in progress. (a) Problem: longer wait time spent because of variation in
the thread. Possible solutions: (b) filling polling time with extra work (c) OS time-slicing (d) early preemption of extra work
to minimize time-slicing overhead.

TABLE I: Summary of TIMELORD methods to schedule extra work

Methods Use slack Predict / Preempt Blocking Context Switch

Baseline – – ✓ ✓
TL-Func (Function/Polling) all – – –
TL-Proc (OS Preemption) partial preempt ✓ ✓
TL-Hybrid (Prediction/Preemption) partial predict – ✓

Fig. 2: We normalize the measured runtime for yield (blocking
and yield) and async (non-blocking and polling) to its unmod-
ified vanilla (blocking and polling) application performance.

III. FRAMEWORK

TIMELORD is a runtime library that intercepts and manages
MPI collective communication procedures. The framework
supports the capability to execute a user-defined function or
a spawned secondary program during communication or syn-
chronization slack, providing a window for extra computation
before the completion of the laggard process. We present three
means to enable cycle-stealing: TL-FUNC, TL-PROC, and
TL-HYBRID. Table I summarizes their differences.

A. Abstraction

Our prior work [6] depended on careful annotation of
the application’s Bulk-Synchronous Parallel (BSP) region.
Although the user maintains greater control over the extra
work execution, it can be error-prone and difficult to navi-
gate the complexity of an HPC code base. Consequentially,
our design principle focuses on automatic instrumentation:
TIMELORD is implemented as a shim that interfaces directly
with the collective communication offered by the standard
MPI libraries via drop-in replacement and is enabled by using
LD_PRELOAD. We treat MPI_* as a weak symbols that
point to the TIMELORD definition, which internally calls its
equivalent subroutine with the PMPI_ prefix. In principle, any
program may be considered fungible and executed along with
the main application as extra work. The user specifies the
path to their program by exporting the execution path as an
environment variable.

B. TL-Func

This methodology executes extra work as a user-level
function, which does not require any system calls. Figure 3
illustrates the workflow of performing extra work with asyn-
chronous communication and polling. However, this comes
with the downside of not being able to save the context; that
is, we must explicitly return control at the end of execution.
This requires the extra work to be a series of iterations with
“checkpoints,” and limits the possible extra work applications.



// Polling −− TL−Func

int MPI Allreduce (...) {
// In addition to global BARRIER
// at the end of BSP super cycle ,
// we do this for all collectives
MPI Request request; // Declare request
MPI Request status; // Declare status

int done;
int ret = PMPI Iallreduce (... &request) ;
while not done:

do extrawork() ;
MPI Test(&request, &done, &status) ;

// EW execution as user− level function ,
// its duration specified by timer .
return ret ;

}

Fig. 3: Illustration of TL-Func. While there are no system calls
and, therefore, lower overheads, there is also no preemption.
We cannot save context; extra work must reach a stopping
point and explicitly return control at the end of execution.

Therefore, TL-FUNC is suitable for simple tasks with a fixed
set of operations.

For this approach, the API exposes two functions for the
user to define, setup_extrawork and do_extrawork,
that initializes their extra work and performs its execution.
As illustrated in Figure 3, the do_extrawork function
and PMPI_test is invoked in a loop until PMPI_test
detects completion of the collective communication. Conse-
quently, the worst-case overhead for TL-FUNC is the length
of do_extrawork because of its atomicity.

C. TL-Proc

To exploit the time-slicing feature from the operat-
ing system (§II-B), we must disable polling for block-
ing collectives (§II-A). In fact, this is supported in main-
stream MPI distributions. For example, Open MPI accepts
mpi_yield_when_idle as a launch option, and Intel
MPI has I_MPI_THREAD_YIELD. Figure 4 illustrates the
necessary steps to set up TL-PROC. This method imple-
ments a straightforward augmentation to the MPI_Init
and MPI_Finalize procedures. At initialization, we call
MPI_Comm_spawn to spawn an extra work process on
each of the ranks. The over-subscription ratio is 2:1, such
that the number of spawned processes matches the initial
number of MPI ranks (equivalent to the number of launched
CPUs in mpiexec). The extra work must explicitly use the
SCHED_IDLE policy for scheduling to become a background
process. Additionally, it should also handle the SIGINT signal
to exit gracefully. At program termination, we propagate the
SIGINT signal to kill the child processes.

In contrast to TL-FUNC, TL-FUNC is capable of context-
saving. As a result, it is able to support a more diverse set of
complex programs. Moreover, as a side effect, by allowing the
OS to handle the extra-work scheduling we also utilize time
slices outside the communication layer.

// Yield & Preemption −− OS

export I MPI THREAD YIELD=2
// set Intel MPI to yield control to OS.

Fig. 4: Alternative to TIMELORD. Intel MPI can yield control
to the OS during internal wait when the environmental variable
I_MPI_THREAD_YIELD=2 is set. Extra work is scheduled
by the OS and executed until the waiting ends. OS preempts
the extra work, and returns control of the MPI process. We
can resume at any time since the context is saved.

// Prediction & Preemption −− Hybrid TimeLord

int MPI Allreduce (...) {
MPI Request request;
MPI Status status ;
int id = get call id () ;
// described by its return address

int done;
int ret = PMPI Iallreduce (...) ;
auto x ns = ADE[id].predict (η, ϵ) ;

nanosleep(x ns) ;
// EW execution duration is specified by
// timer − which is then preempted

while not done:
MPI Test(&request, &done, &status) ;

return ret ;
}

Fig. 5: Illustration of executing extra work for a predicted
amount of time, as calculated by ADE. The input ψ is a tunable
parameter for step size, and ϵ is a threshold to determine if the
computation is beneficial. The process releases the resource for
x_ns nanoseconds. The extra work context is saved, and we
can stop and start at any time.

D. TL-Hybrid

TL-HYBRID inherits concepts from TL-PROC. As illus-
trated in Figure 5, we enable asynchronous communication
mode in order to estimate the waiting time and preemptively
relinquish the cores. The time taken by MPI communication
primitives can be divided into two parts: the skew between the
initial senders spent waiting, and the duration for messages to
be received. This approach minimizes the former, using the
system call nanosleep, in order to preempt the extra work
process before the message is completely received, effectively
reducing the preemption overhead towards the application.
To achieve this, we employ a prediction scheme, adaptive
deadline estimation (ADE), that requires only a small number
of cycles relative to the potential benefits.

Each collective call at a unique location of the application
code is independent of other instances in the same program.
Therefore, the skew between processes originates from the
inherent communication patterns and external sources of noise.
This requires TIMELORD to provide each collective with
its own predictor object. To achieve zero application-level



instrumentation, we use the function return address as its
unique identifier.

1) Adaptive Deadline Estimation: The prediction scheme
is defined in Algorithm 1. ADE monitors the skew duration
from the previous iteration while maintaining a sleep time
variable that adapts to the performance. This variable is
initialized to zero nanoseconds. If the skew decreases, as a
result of nanosleep, we enter the first increment phase,
in which the sleep time is doubled. Otherwise, we enter
the first decrement phase, which halves the estimated sleep
time. In subsequent iterations that trigger either condition, we
increment or decrement the value by η nanoseconds . Also,
an ϵ value is used as a threshold to filter out any noise in the
measurements where ϵ << η.

2) Behavior: The predicted sleep time pessimistically
chases optimality and continues to oscillate under it. The
benefits of the estimation are determined by the median of
the skew between the current process and the laggard; if the
current process is the laggard, there is no skew. The worst case
overhead is characterized by the quantity N(η/2)× 1

t , where
N is the total number of iterations the primitive is invoked and
t is the program execution time. In general, this is sufficiently
small to have minimal impact on the performance, similar to
what we expect in TL-PROC. If η < 1/2m, where m is the
median of the skew, then η has been is appropriately chosen.

Algorithm 1 ADE (η: step size, ϵ: threshold)
if Wait Time decreases by ϵ then

if First Increment Phase then
sleep time← sleep time× 2

end
else

sleep time← sleep time+ η
end

end
else

if First Decrement Phase then
sleep time← sleep time÷ 2

end
else

sleep time← sleep time− η
end

end

IV. APPLICATIONS

We evaluate TIMELORD against a set of HPC applications
on a production supercomputer (Section V). Applicatoins
were chosen to represent a range of communication patterns
and workloads, and because they have significant collective
communication (Section III).

A. LAMMPS–Molecular Dynamics

LAMMPS is a classical MD code [23] with substantial
fine-grained communication. Collectives are used to distribute
particle dynamics and collect, sum, and apply forces.

B. MiniAMR–Structured Grid

MiniAMR performs a 3D-stencil calculation with Adaptive
Mesh Refinement (AMR) [24]. It applies stencil computa-
tions on a cubic domain which is divided into blocks. More
specifically, MINIAMR uses 3D meshes with an octree struc-
ture. Each block communicates ghost values with neighboring
blocks. Refining a block involves splitting it into eight cubic
sub-blocks. When coarsening a block, the eight adjacent sub-
blocks are replaced with the parent block [25]. The major
phases are refinement/coarsening, load balancing (repartition-
ing after refinement/coarsening), and a 7-point stencil.

C. MiniFE–Unstructured Grid

MiniFE is a proxy application for unstructured implicit finite
element methods. The finite element generation, assembly, and
solution are performed on a 3D-box physical domain [26]. The
important MINIFE kernels are element operator computation
(diffusion matrix and source vector), assembly (scattering el-
ement operators into sparse matrix and vector), sparse matrix-
vector multiplication (the main kernel of a conjugate gradient
solver) [27], and miscellaneous vector operations including
dot-product and norm.

D. Potential Idle Time

To understand the potential benefit, we measured the total
time spent in MPI collective communication for the described
applications with respect to process count. As shown in Figure
6, load-imbalanced programs have a higher wait time to
benefit from the cycle-stealing approach, while load-balanced
configurations have significantly fewer wasted cycles. Also,
the wait ratio, i.e. the percentage of the runtime spent waiting,
gets amplified as communication complexity increases. Here,
miniFE has two scenarios, where the ∗-suffix denotes the
problem with equal dimensions. Results from the latter shows
lower wait-ratio. We observe that application configuration
may drastically change the potential slack. For the following
experiments, we do not optimize the input settings shown in
Table II.

V. EVALUATION

A. Experimental Setup

The experiments presented in this section were conducted
on the TACC Stampede II cluster. The system is configured
with Intel Xeon Platinum 8160 CPUs, based on the Skylake
(SKX) architecture, with 48 cores (2 sockets) per node and
100 GB/s Intel Omni-Path Architecture (OPA) fabric for
supporting inter-node communications. We use Intel libraries
and compilers (version 18.0.2), e.g., MPI or Math Kernel
Libraries (MKL), for all applications. To minimize noise
for the scope of this work, we set the number of OpenMP
threads to one per MPI process. Our evaluations are done
on exclusive hardware resources, using the maximum number
(48) of available physical cores in the CPU, and the number
of extra work processes matches this amount.



TABLE II: Experimental configurations for the applications. The suffix ∗ implies the workload is well-balanced.

Application # Processes

48 192 768 1536

LAMMPS-lj 500000 atoms 2048000 atoms 8788000 atoms 16384000 atoms
miniFE 512× 512× 192 1024× 1024× 192 2048× 2048× 192 4096× 2048× 192

miniFE ∗ 364× 364× 364 577× 577× 577 916× 916× 916 1154× 1154× 1154
miniAMR 6× 4× 2 8× 6× 4 16× 8× 6 16× 12× 8

Fig. 6: We measure the elapsed time once asynchronous com-
munication begins to progress until all processes synchronize.
We report the program’s total percentage (average of three
runs) that are spent waiting for laggard completion.

B. Extra work

While different forms of extra work demand varying
amounts of resources and CPU time, the scope of this paper
considers compute-bound workloads that have low memory
requirements in order to minimize memory overhead and
focus on CPU resource sharing. Cryptographic hash com-
putations showcase high CPU utilization while being less
memory intensive. In our extra work, we settled on AES
encryption, which runs on each MPI rank and repeatedly
computes subsequent encryptions on a single 128-bit block
cipher. To standardize our approach, we use the popular AES
implementation from OpenSSL [28] and kept count of how
many times the encryption operation took place. This is then
combined for each MPI process that performed the extra work
to obtain a cumulative total. From this point, we assume any
reference to extra work as the AES encryption.

C. Overheads & How much extra work?

Communication patterns vary among applications and plat-
forms. Therefore, to compare the extra work performance with
various applications, a baseline was obtained by executing the
extra work as a standalone baseline for a fixed time period
and counting the number of iterations to determine a standard
value of extra work iterations per unit time for our machine
configuration. We assume that the amount of time taken for
each iteration of a CPU-bound extra work amortizes over the

course of any program’s execution. It is then appropriate to
normalize the number of extra work iterations by this baseline
to obtain a percentage of its runtime.

Fig. 7: Comparison of different TIMELORD methods. The
experiment is configured with 1,536 processes using the re-
spective input values in Table II. We represent the extra work
in gray as a percentage of the baseline and show the overhead
added to the runtime of each program.

We report the geometric mean of three trials in Figure 7. In
terms of overheads, we observe TL-FUNC has a nominal im-
pact on the overall performance because of their user-level in-
vocation. As for TL-PROC (§III-C) and TL-HYBRID (§III-D,
both methods rely on system calls; that is, sched_yield or
nanosleep that has a higher context-switching cost to the
OS. Both LAMMPS and miniAMR maintain a comparable
execution time to the baseline. We observe higher overheads
for TL-PROC and TL-HYBRID in memory-bounded applica-
tions such as miniFE. This is because of inteference caused
by multiple processes sharing cache (e.g, SRAM and TLB).
As a consequence, we can infer a positive correlation between
their memory intensity and resource sharing.

In terms of utilization, we observe that both TL-PROC and
TL-HYBRID are able to perform extra work in at least 30%
of the application time. On the other hand, TL-FUNC suffers
from polling; it is only able to extract a small fraction of
the workload imbalance. Although the benefit from TL-FUNC
seems little, in the grand scale of HPC workloads, the low-
overhead cost for a fraction of a large number of cores may
redeem the performance.



VI. RELATED WORK

Goldrush [29] is another system that seeks to harvest idle
cycles from HPC programs. Their emphasis is on the large
time quanta available during I/O and on a particular form of
(what we here call) extra work: data analytics. Our focus is on
general methods, on much more fine-grained quanta (through
collectives), and on investigating basic mechanisms such as
preemption and prediction.

Hoefler and Lumsdaine [30], among others [31], discuss
the strategies for asynchronous communication in MPI im-
plementations. Since MPI_Test loop methods have a lower
chance of being late to receive the message, it has been used
in applications to synchronize non-blocking communication.
However, in the oversubscribed environment, it forces user
threads to share resources with the progression threads; as
a result, it can be harmful to overall efficiency. Therefore,
preemption is an undervalued technique for the focus of
our study. This point was reinforced by the findings of
Bierbaum et al. [12], they describe an event-driven model
for communication, in which sched_yield is used in the
progress loop to release resources. Their work shows that using
interrupts during non-blocking calls incurs latency costs for a
balanced workload; however, it is helpful to load-imbalanced
applications and reduces energy consumption.

We are also aware of work, such as [10], [32], that reduces
power consumption originating from wasted resources because
of skew in communication. That work focuses on minimiz-
ing energy spent during the time CPU when is waiting for
communication completion; and achieves this by dynamically
reducing the CPU frequency and increasing it back to normal
soon as messages are received. However suitable, the lower
bound of the CPU frequency for stable operation, without
incurring high overheads, limits the advantage of voltage
scaling. In addition, it can also be affected by hardware
variations such as the unavailability of per-core voltage scaling
in multi-core CPUs.

VII. DISCUSSION

In Figure 7, we observe TL-FUNC for LAMMPS and
TL-HYBRID for miniAMR have lower runtimes than the
baseline. One explanation is that this is the result of inefficient
implementation of the MPI progress engine. We show in
Figure 6 that non-blocking communication allows TIMELORD
to claim the hidden available slack time. This means we not
only improve over the baseline but also get more utilization.
Another possibility is that there is Dynamic Voltage Scaling
(DVS) in response to less idle time in the CPU. These
observations warrant future studies.

Progress that is purely polling is assuredly not supporting
efficient overlap of communication and computation. Com-
paratively, blocking completion steps ought to do a reasonable
amount of polling before descheduling user processes in order
to balance arrival rates of messages vs. freeing resources from
excessive polling. These types of tradeoffs are well known,
but have been hard to exploit in Open MPI, MPICH, and Intel
MPI, prior to availability of descheduling services. Other MPI

implementations, such as MPI/Pro and ExaMPI [31], [33],
[34], have supported strong progress all along, and have shown
the ability to overlap communication and computation.

VIII. CONCLUSION AND FUTURE WORK

Several areas of future work appear promising. First Co-
scheduling: It is possible there is an additional global skew
within the extra work. We speculate that this can be addressed
with multiple levels of extra work recursively, where the
subsequent skew can be filled by extra work from the level
below. However, the potential benefit diminishes. Formally,
we characterize co-scheduling as a knapsack optimization
problem. Given C units of idle time, suppose there are N
extra work timeslices, and the i-th slice has ti amount of cost.

argmax
S

∑
i∈S

ti ≤ C (1)

Second, we would like to implement TIMELORD in con-
junction with the ExaMPI [34] implementation of MPI; this
is because of ExaMPI’s properties with respect to strong
progress.

To conclude, this work shows that it is practical to steal
cycles for HPC workloads. We propose three methods to
accomplish this by joining existing features of the kernel and
MPI. On average, for three applications, we found 40% of
the runtime was used to run extra work with only 4% of the
overhead cost. This demonstrates that the latency incurred for
system calls required for time-slicing (sched_yield and
sleep), have minimal runtime overheads in load-imbalanced
HPC applications. In particular, TIMELORD effectively un-
leashes the cycles that have been trapped in the MPI commu-
nication layer, and improves resource utilization for modern
HPC clusters. Finally, our results highlight potential ineffi-
ciencies of MPI progress engines. Nevertheless, we are able
to exploit this defect to increase benefit per cost.
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