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Abstract—The default data structure for storing sparse graphs
is Compressed Sparse Row (CSR), which enables efficient algo-
rithms but is not designed to accommodate changes to the graph.
Since many real-world graphs are dynamic (i.e., they change
over time), there has been significant work towards developing
dynamic-graph data structures that can support fast algorithms
as well as updates to the graph.

This paper introduces Batch-Parallel Compressed Sparse Row
(BP-CSR), a batch-parallel data structure optimized for storing
and processing dynamic graphs based on the Packed Mem-
ory Array (PMA). At a high level, Batch-Parallel Compressed
Sparse Row extends Packed Compressed Sparse Row (PCSR,
HPEC ’18), a serial dynamic-graph data structure built on
a PMA. However, since the original PCSR runs only on one
thread, it cannot take advantage of the parallelism available in
multithreaded machines. In contrast, Batch-Parallel Compressed
Sparse Row is built on the batch-parallel Packed Memory
Array data structure (PPoPP ’24) and can support fast parallel
algorithms and updates.

The empirical evaluation demonstrates that Batch-Parallel
Compressed Sparse Row supports fast parallel updates with
minimal cost to algorithm performance. Specifically, Batch-
Parallel Compressed Sparse Row performs up to 420 million
inserts per second. Across a suite of 10 graph algorithms and
10 input graphs, Batch-Parallel Compressed Sparse Row incurs
1.05× slowdown on average and about 1.5× slowdown at most
compared to Compressed Sparse Row (CSR), a classical static
graph representation. Furthermore, the empirical results show
that Batch-Parallel Compressed Sparse Row outperforms existing
tree-based and PMA-based dynamic-graph data structures on
both algorithms and updates.

Index Terms—Packed Memory Array, batch updates, dynamic
graphs, graph data structures, storage formats.

I. INTRODUCTION

There has been significant research effort devoted to de-
veloping dynamic-graph data structures (or containers) and
their associated systems on a single large shared-memory
machine [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],
[12], [13], [14], [15]. Systems built for storing and processing
dynamic graphs must accommodate changes to the graph.
Therefore, they have been designed to quickly process both
updates (e.g., edge inserts/deletes) and queries (e.g., graph
algorithms).

Packed Compressed Sparse Row (PCSR) [6] is an example
of a dynamic-graph container built on the Packed Memory
Array (PMA) [16] data structure. The PMA stores elements
in one contiguous memory allocation, enabling fast traver-
sals through the edges, which is a core primitive in graph
algorithms [17]. Furthermore, it supports insertions much
faster than the theoretical bounds suggest due to its cache-
friendliness [12].

The original paper that introduced PCSR [6] used a se-
quential PMA to implement all the operations, leaving perfor-
mance on the table by not taking advantage of thread-level
parallelism. Modern dynamic-graph systems on multicores
use multithreading to achieve good performance for both
algorithms and updates.

Recent work makes progress towards addressing this issue
with a batch-parallel PMA [12] and a PMA that supports
concurrent updates [8]. Multithreaded PMAs support updates
much faster than the serial PMA. On graph workloads, the
batch-parallel PMA can support up to hundreds of millions
of edge updates per second with multiple threads without
sacrificing algorithm performance compared to other state-of-
the-art dynamic-graph systems [12].

However, directly storing a graph in a single batch-parallel
PMA without optimizing for graph-structured data adds over-
head to algorithms because a standard PMA for graphs does
not support accessing the start of a vertex’s neighbor list in
O(1) time. To understand this issue, let us first consider how to
process graphs in Compressed Sparse Row (CSR) format [18],
a classical method for storing sparse graphs. CSR stores m
neighbor IDs in an edge array of size m. The neighbors
of each vertex v are stored contiguously in the edge array.
Additionally, the CSR format stores the start of each vertex’s
neighbors in a vertex array of size n, where n is the number
of vertices. Iterating through the neighbor list for a vertex v
in CSR requires an O(1) lookup in the vertex array for the
start offset, and then O(degree(v)) steps to traverse the edges
in the edge array. In contrast, finding the start of the neighbor
list in a single PMA takes O(log(m)) time, where m is the
number of edges in the graph, to perform a binary search for
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Fig. 1: A small example graph and how to store it in Com-
pressed Sparse Row (CSR) and a single PMA. CSR, a classical
graph storage format, represents the graph with two arrays: a
vertex array and edge array. In contrast, the single PMA only
needs one array, as it stores all the data in the edge array as
edge pairs.

the correct position in the PMA. When the average degree of
the graph is small, as is common in real-world graphs, the
cost to find the start of the neighbor list in the PMA may be
higher than the cost to traverse the edges. Figure 1 illustrates
this distinction.

To address this issue, previous work proposed speeding
up algorithms by building an ad-hoc copy of the vertex
array on demand to avoid unnecessary PMA searches during
the algorithms [12]. However, this approach requires entirely
rebuilding the entire vertex array upon any update, which adds
unnecessary overhead in the presence of dynamic updates. As
we will detail in Section IV, pre-computing the vertex array
takes between 1% and 50% of the algorithm time (averaged
across all the graphs). In this work, we show how to avoid
rebuilding the entire vertex array in the presence of updates.

This paper introduces Batch-Parallel Compressed Sparse
Row, a dynamic-graph data structure built on the batch-parallel
PMA that avoids the overhead of rebuilding entire the vertex
array upon updates. Batch-Parallel Compressed Sparse Row
combines the strengths of CSR and the batch-parallel PMA by
maintaining a vertex array in addition to an edge PMA. The
batch-parallel PMA enables Batch-Parallel Compressed Sparse
Row to support fast multithreaded updates without giving up
on algorithm performance.

Contributions

The main contributions of this paper are as follows:
• The design of Batch-Parallel Compressed Sparse Row

(BP-CSR), a dynamic-graph system that extends PCSR
using the batch-parallel PMA.

• An implementation of BP-CSR in C++.
• An evaluation of state-of-the-art dynamic-graph systems

in terms of their algorithm performance, insert through-
put, and space usage.

Results summary

We evaluate Batch-Parallel Compressed Sparse Row com-
pared to other PMA-based graph representations: Packed Com-
pressed Sparse Row (PCSR) [6], Parallel Packed Compressed
Sparse Row (PPCSR) [8], F-Graph [12], as well as CPAM [5],
a tree-based dynamic-graph representation. We compare all
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Fig. 2: Performance profile of each container compared to
CSR. Each point (x, y) for a given graph container means
that the container was at most x times slower than CSR on
y% of problem settings (i.e., one configuration of algorithm
and input graph).
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Fig. 3: Insert throughput as a function of batch size.

systems in terms of algorithm performance, update throughput,
and space usage.

Figure 2 shows the slowdown that different dynamic-graph
data structures incur relative to CSR in various experiment
settings. Comparing dynamic data structures to CSR illustrates
the cost to algorithm performance that they incur to support
updates. Specifically, we evaluate data structures on a suite of
10 algorithms and 10 graphs (for a total of 100 problems).
The results demonstrate that BP-CSR incurs the smallest
average slowdown of 1.05× compared to CSR. It achieves
smaller slowdowns on more experiment settings (graphs and
algorithms) compared to the other dynamic data structures.

Figure 3 evaluates dynamic-graph data structures in terms
of batch-insert throughput and shows that BP-CSR does
not give up update performance for algorithm performance:
it achieves similar insertion performance compared to F-
Graph [12] and about 2.4× speedup over CPAM [5].

II. PRELIMINARIES

This section describes the Packed Memory Array
(PMA) [19], [16] data structure used to store edges in Batch-
Parallel Compressed Sparse Row. Specifically, it will review
the PMA’s structure and operations. The discussion focuses
on the batch-parallel insert algorithm for PMAs as the basis
for efficient batch inserts in Batch-Parallel Compressed Sparse
Row. Finally, this section will provide background about
primitives in graph processing.



We will limit the discussions in this paper to inserts for
simplicity, but deletes are implemented symmetrically.

A. Packed Memory Array

The PMA maintains elements in sorted order in a contiguous
array with a constant factor of empty spaces between its
elements. The empty cells facilitate sublinear dynamic updates
by reducing data movement during inserts. Furthermore, since
the PMA stores all elements in one single memory allocation,
it supports fast cache-efficient iteration through the data.

A PMA exposes three operations:
• batch_insert(S): inserts elements in a batch S into

the PMA. The batch S is a set of elements of the same
type of the elements in the PMA.

• search(x): returns a pointer to the smallest element
that is at least x in the PMA.

• range_map(start, end, f): applies the function
f to all elements in the range [start, end). One can
think of range_map as an iterator that processes all
elements in a given range.

To maintain the appropriate number of empty spaces to
support efficient updates, the PMA array with N elements
defines an implicit binary tree with leaves of size Θ(log(N))
cells. That is, the implicit tree has Θ(N/ log(N)) leaves and
height Θ(log(N/ log(N))). Each node corresponds to a region
of cells that encompasses all of its descendants. Each level of
the tree has density bounds on the number of empty spaces
that must be present in each of the nodes at that level.

Point inserts: PMA inserts use the implicit tree to maintain
the overall structure. An insert first searches for the target leaf
that the element should go in the sorted order. It then places
the element at the correct location in that leaf. The density
bounds guarantee that there is always at least one free cell to
place an element in each leaf. Next, it counts the cells in all
necessary nodes in the PMA implicit tree, traversing up until
it finds a node that does not violate its density bound. Finally,
based on the results from the count, the PMA redistributes
elements equally among leaves in the node it counted up to,
resolving the density bounds in all of its descendants.

Batch inserts: PMAs can also algorithmically support par-
allel batch inserts, which applies an entire batch of elements
to a PMA [12]. Formally, the batch_insert function takes
as input a PMA with N elements and a batch of k elements,
and inserts all elements in the batch into the PMA. Batch
inserts are more efficient than point inserts because they can
share work and more efficiently achieve parallelization. The
batch-insert algorithm for PMAs has three phases (similar to
the steps of a point insert):
Merge: Examine the midpoint of the batch, search for the
corresponding target leaf in the PMA, and merge all relevant
elements from the batch into that leaf. If some elements
overflow, the algorithm modifies the PMA to store those
elements temporarily out-of-place. For the next level of the
recursion, split the PMA and batch into halves, excluding the
elements merged in at this level.

Count: Just like in the point-insert case, count the cells in
PMA nodes, traversing from leaves that violate their density
bounds, until we find nodes that respect their density bounds.
Redistribute: Evenly distribute elements in the nodes found
from the count phase so that their descendants have the correct
spaces to respect their density bounds.

In practice, batch updates in PMAs are often faster than the
worst-case theoretical bounds suggest because they can also
reduce redundant work in searching and counting if multiple
elements are destined for the same leaf in the PMA.

Growing factor: When the PMA becomes too dense, the
underlying array must grow by a constant factor, called the
growing factor, to accommodate the new elements and respect
the density bounds. Any constant realizes the theoretical
bounds, but the growing factor is often implemented as be
2× for simplicity in the literature [6], [8].

B. Graph Processing

A graph is an abstraction that represents entities as vertices
and connections between those entities as edges. In the un-
weighted case, edges can be represented as pairs (u, v) for
given vertices u, v. In the weighted case, the edges may have
an additional value w and be represented as tuples (u, v, w).

Sparse graph representations (e.g., CSR) save space and
computation over implicit representations such as adjacency
matrix by explicitly storing the edge tuples. They take space
proportional to O(n+m), where n is the number of vertices,
and m is the number of edges. Given a vertex v, they support
iteration over its neighbors in O(degree(v)).

Prior work showed that the range_map primitive is suffi-
cient for graph data structures to express a wide range of graph
algorithms [17]. For example, Ligra [20], a popular graph-
algorithm framework, can run many algorithms including
breadth-first search, connected components, PageRank, and
others, with abstractions based on the range_map primitive.
Therefore, how fast a graph container can support algorithms
is directly related to how fast it can support range_map.

III. BATCH-PCSR STRUCTURE AND ALGORITHMS

This section describes 1) the high-level structure of the
Batch-Parallel Compressed Sparse Row (BP-CSR) graph data
structure and 2) how it supports batch updates and the map
primitive. It details how BP-CSR avoids rebuilding the vertex
array with a modification of the batch-parallel insert algorithm
for PMAs [12].

A. Structure

At a high level, the structure of Batch-Parallel Compressed
Sparse Row is very similar to PCSR [6] (and by extension,
CSR). There are two arrays - the vertex array and the edge
PMA. The vertex array stores two entries per vertex: the offset
pointing to the start of the vertex’s edges in the edge PMA, and
the degree of each vertex. Just as in CSR, the edge PMA stores
the destinations of the edges explicitly. Furthermore, just like
in PCSR, the edge PMA also stores one sentinel per vertex.
A sentinel is a special value at the beginning of each vertex’s
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Fig. 4: An example of how BPCSR can store the graph
from Figure 1(a). The high bit denotes whether or not an
element in the PMA is a sentinel (denoted by *). 0 is a special
value for empty spaces, so we 1-index the graph vertices. In
the vertex array, the start offsets are pink, and the degrees are
yellow. In the PMA, the sentinels are colored blue, while the
edges and PMA empty spaces are tan.

neighbor list that denotes the corresponding source vertex. The
implementation sets the top bit to denote that an entry in the
edge PMA is a sentinel and stores the source vertex ID in the
lower bits. As we will explain later in this section, the sentinels
are used to keep the relevant entries in the vertex array up-to-
date during insertions to the edge PMA. Figure 4 illustrates
an example of how Batch-Parallel Compressed Sparse Row
stores a graph in a vertex array and a PMA.

Weighted graphs: For simplicity, we focus on describing
how to store the graph topology (edge information), but BP-
CSR supports edge weights with an additional weights PMA
that mirrors the structure and layout of the edge PMA. The
sentinels in BP-CSR differ from those in other PMA-based
graph data structures such as PCSR and PPCSR because
previous systems store the sentinels in the weights PMA. In
contrast, BP-CSR uses the top bit to denote sentinels in the
edge PMA. This design change enables BP-CSR to save space
in the unweighted case, because previous data structures must
always store the weight PMA (even in the unweighted case)
due to the sentinel structure.

B. Algorithms

Map in BP-CSR: To perform the range_map primitive,
we first use the vertex array to determine the offset of the start
of the given vertex’s neighbors in the edge PMA. We then
iterate forward until the next vertex’s offset, skipping over the
sentinel and any empty spaces. BP-CSR supports a map over a
vertex v’s neighbors in O(1+degree(v)) time. It takes O(1)
time to find the start of a vertex’s neighbors in the edge PMA
using the vertex array, and O(degree(v)) time to iterate over
the neighbors.

Batch updates in BP-CSR: Next, we will describe
how BP-CSR adapts the batch-insert algorithm for a single
PMA [12] to a two-level structure. The batch-insert algorithm
for BP-CSR takes as input a set of edges sorted by source and
destination vertex ID and adds the set of edges to the graph.
All edges not currently in the graph will be added after the
algorithm is completed. We will describe the algorithm for
the unweighted case for simplicity, but the algorithm can also
accommodate weights with the same layout duplicated in the
weights PMA.

At a high level, the batch-insert algorithm for BP-CSR
follows almost the same structure described in Section II. The

three phases of the batch-insert algorithm in BP-CSR are the
same as in the single PMA: 1) batch merge, 2) count, and
3) redistribute. The main changes are that 1) the vertex array
enables the algorithm to skip some searches with lookups for
the start offset, and 2) the vertex array may need to be updated
after the batch has been added to the edge PMA. Figure 5
illustrates an example of a batch insert in BP-CSR.

In the standard PMA case, the batch-merge phase first
performs a search for the midpoint of the batch in the PMA
and merges elements into the relevant PMA leaf. Similarly,
the first step in batch inserts for BP-CSR is to choose the
midpoint of the batch and find the correct leaf corresponding
to the selected edge. Since every edge in the batch already has
a source vertex ID, we can bypass the search into the PMA for
the target leaf and instead use the vertex array to find the offset
(and therefore leaf) of the midpoint edge. We use the vertex
array to determine the graph vertex that corresponds to the first
sentinel in the target leaf. Finally, we find the first edge in the
batch corresponding to the target leaf (which may be different
from the originally chosen midpoint) and perform a merge just
like in the original batch algorithm. During the merge, we can
update the vertex array with any changed degrees. We then
recurse on the remaining left and right “halves” of the batch
and edge PMA.

The counting phase is exactly the same as in the original
batch-insert algorithm, since it only depends on the positions
of elements in the edge PMA. The output of the counting
phase is the ranges of the edge PMA to redistribute.

Finally, the redistribute phase is almost the same as in the
original algorithm, but with a slight change of updating the
vertex array with any changed sentinel locations. To determine
which sentinel locations have changed, we can check every
element being written during the redistribute (i.e., all elements
that are changing locations) for whether or not it is a sentinel
by just checking whether the top bit is set. If a sentinel is
moving locations, the algorithm simply updates the vertex
array with its new location.

These changes do not affect the worst-case asymptotic
bounds for the batch-insert algorithm for PMAs. In the best
case, the bounds may improve because some of the searches
become array lookups.

IV. EVALUATION

This section empirically evaluates Batch-Parallel Com-
pressed Sparse Row (BP-CSR) compared to state-of-the-art
dynamic-graph data structures in terms of algorithm perfor-
mance, update throughput, and space usage. We find that BP-
CSR achieves the best of all worlds: it supports algorithms and
updates faster than other optimized dynamic-graph systems.
Furthermore, BP-CSR uses less space to store the graphs
compared to other data structures.

A. Experimental setup

All experiments were run across all cores of a machine
with 2 48-core 2-way hyper-threaded Intel R© Xeon R© Platinum
8488C CPU @ 3.20GHz, for a total of 192 threads, with 384
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Fig. 5: An example of a batch insert in BP-CSR. In this
example, the density bound in the leaves is 0.9. Just as in the
regular batch-parallel PMA, the batch insert first has a merge
phase where it recursively merges the batch into the PMA, then
a count and redistribute phase to resolve the density bounds. In
the vertex array, the start offsets are pink, and the degrees are
yellow. In the PMA, the sentinels are colored in blue, while
the edges and PMA empty spaces are tan. After the second
merge, the batch has been fully merged in. The red X over
some leaves denotes that leaves violate their density bound
and therefore must be redistributed with neighboring leaves.

Category Problem

Shortest-path
problems

Breadth-First Search (BFS)
Single-Source Betweenness Centrality (BC)
O(k)-Spanner (Spanner)

Connectivity Low-Diameter Decomposition (LDD)
Connectivity (CC)

Substructure Approximate Densest Subgraph (ADS)
k-core

Covering Graph Coloring (Coloring)
Maximal Independent Set (MIS)

Eigenvector PageRank (PR)

TABLE I: Graph algorithms tested in this paper via BYO [17].

GB of memory from AWS [21]. Across all the cores, the
machine has 4.5 MiB of L1 data cache, 192 MiB of L2 cache,
and 210 MiB of L3 cache. The code is all implemented in c++
and is compiled with g++-13. Each experiment (algorithm,
graph, data structure) is run 3 times and the times are averaged.

B. Systems

The evaluation includes the proposed system, Batch-Parallel
Compressed Sparse Row (BP-CSR), as well as several
PMA-based graph representations: Packed Compressed Sparse
Row (PCSR) [6], Parallel Packed Compressed Sparse Row
(PPCSR) [8], F-Graph [12], and CPAM [5], a tree-based
dynamic-graph representation. All data structures were run in
uncompressed mode for a fair comparison.

Graph Vertices Edges Avg. Degree

Road (RD) [24] 23,947,347 57,708,624 2
LiveJournal (LJ) [25] 4,847,571 85,702,474 18
Com-Orkut (CO) [26] 3,072,627 234,370,166 76
rMAT (RM) [27] 8,388,608 563,816,288 67
Erdős-Rényi (ER) [28] 10,000,000 1,000,009,380 100
Protein (PT) [29] 8,745,543 1,309,240,502 150
Twitter (TW) [22] 61,578,415 2,405,026,092 39
papers100M (PA) [30] 111,059,956 3,228,124,712 29
Friendster (FS) [23] 124,836,180 3,612,134,270 29
Kron (KR) [31] 134,217,728 4,223,264,644 31

TABLE II: Sizes of (symmetrized) graphs used.

For simplicity, all data structures were run in unweighted
mode if they support it (BP-CSR, F-Graph, and CPAM). Some
of the systems (PCSR, PPCSR) only support weighted storage
of graphs, so we ran those in weighted mode. This will impact
the size but should have a negligible impact on algorithm
performance and a small impact on insert performance.

To run graph algorithms, we integrated all the data structures
with BYO [17], a general graph-algorithm framework based
on the Ligra abstraction [20]. BYO enables apples-to-apples
comparisons of data structures by standardizing the algo-
rithm implementation and infrastructure (e.g., programming
language, parallelization library, compiler, etc.). All systems
can support algorithms in parallel via BYO, and all systems
besides PCSR can support multithreaded updates. Table I lists
the algorithms tested in the evaluation.

All algorithms were run in unweighted mode, that is, they
only read over the edge information in the graph.

C. Graphs

Table II details the graphs used in the evaluation. The
graphs come from different domains including social net-
works, road networks, and computational biology. They range
in size from tens of millions up to billions of edges. The inputs
come from the popular GAP benchmark suite [22] and SNAP
dataset [23], as well as others. We refer the interested reader
to the BYO paper on graph benchmarking for more details
about the datasets [17].

D. Algorithm Performance

Table III reports the average, 95th percentile, and maximum
slowdown over CSR for each data structure across all 100
experiment settings (10 algorithms × 10 graphs). The results
show that BP-CSR incurs only 1.05× slowdown on average
and at most 1.5× slowdown compared to CSR, a cache-
optimized static-graph representation.

BP-CSR supports algorithms faster than all the tested data
structures in almost all cases. Specifically, we found that it
was the fastest data structure on 72 out of 100 experiment
settings. Figure 2 shows that BP-CSR achieves within 1.2×
slowdown over CSR on 94 out of 100 experiment settings.

BP-CSR resolves two issues in F-Graph, a state-of-the-art
PMA-based dynamic-graph system: 1) the cost of scans, and 2)
inefficient space usage (in the uncompressed case). F-Graph is
a dynamic-graph data structure that directly stores the edge list



in a single PMA in sorted order. Since there is no vertex array,
F-Graph supports finding the start of a vertex’s neighbor list in
O(log(m)) time, where m is the number of edges. In contrast,
BP-CSR reduces the time to find the start of a neighbor list to
O(1) using the vertex array. As an optimization to avoid this
cost, F-Graph builds a vertex array in an ad-hoc way upon the
start of algorithms. We do not count this time in the reported
times for F-Graph, but, averaged across all the graphs, we find
that it takes up to 50% of the time for cheaper algorithms (BFS
and LDD) and down to 1% of the time for more expensive
algorithms (kcore, BC, PR, and coloring). Additionally, F-
Graph stores the graph as a list of (source, destination) pairs.
Without compression, the sources are repeated in every edge
incident to a given vertex. In contrast, BP-CSR uses the vertex
array to avoid storing the source vertices. As a result, BP-CSR
supports faster algorithms on average compared to F-Graph
(improvement from 1.23× to 1.05× average slowdown over
CSR) by avoiding redundant space usage.

BP-CSR outperforms PCSR and PPCSR, two other PMA-
based dynamic-graph systems, by reducing the growing factor
and space usage. Both PCSR and PPCSR use a growing factor
of 2×, while BP-CSR uses a growing factor of 1.2× by
default. We found that PCSR ran into implementation limits
on all but the smallest graphs, we report the results for those
graphs in Table IV. For comparison, we include BP-CSR2, a
variant of BP-CSR with a growing factor of 2×. As expected,
BP-CSR2, PCSR, and PPCSR experience similar algorithm
times because they all have similar memory layouts. When
limiting to the small graphs, PCSR incurs 1.36× slowdown
on average over CSR, while BP-CSR incurs 1.05× slowdown.

Finally, BP-CSR outperforms CPAM, a dynamic-graph data
structure based on cache-optimized trees, because the PMA
stores edges contiguously in memory, while CPAM stores one
tree per vertex separately in memory. CPAM incurs 1.18×
slowdown over CSR on average and about 2× at most.

To demonstrate the benefit of storing all edges in a single
PMA, we compare BP-CSR with a similar toy system that
stores a graph as a vector of PMAs (one per vertex). We call
this system “PMAs (V)” in Table III. On average, the vector
of PMAs incurs 1.29× slowdown compared to CSR and at
most about 2× slowdown because it incurs additional cache
misses between vertex neighbor lists.

E. Batch-Insert Performance

To evaluate insertion throughput, we first insert all edges
from the Twitter graph. We then add a new batch of directed
edges (with potential duplicates) to the existing graph in both
systems. To generate edges for inserts, we sample directed
edges from an rMAT generator [27] (with a=0.5; b=c=0.1;
d = 0.3 to match the distribution from prior work [5]). We
do not include PCSR because it is single threaded. All other
systems support multithreaded insertions.

Figure 3 and Table III show that BP-CSR does not sacrifice
insertion throughput for improved algorithm performance:
it matches F-Graph and achieves about 2.4× speedup over

Container Slowdown over CSR Bytes per edge Insert TP
Avg 95% Max Min Avg Max Max

CSR 1.00 1.00 1.00 4.05 4.44 7.32 —
BP-CSR 1.05 1.23 1.46 5.21 6.25 12.54 4.2E8
BP-CSR2 1.21 1.57 1.77 8.71 12.99 23.59 4.2E8
PPCSR 1.22 1.69 2.22 8.99 14.22 35.21 0.5E8
F-Graph 1.23 1.63 1.81 10.00 11.59 24.16 4.3E8
CPAM 1.18 1.94 2.51 4.12 5.53 21.58 2.5E8
PMAs (V) 1.29 1.94 2.38 7.58 12.12 64.74 2.6E8

TABLE III: Algorithm performance, space usage, and max-
imum insert throughput (TP, in inserts/s) of the different
containers. PMAs (V) is a vector with a PMA per vertex.
Each container’s algorithm time is normalized to CSR’s time
averaged over all 100 settings of 10 algorithms × 10 graphs
(closer to 1 is good).

Container Slowdown over CSR Bytes per edge
Average 95% Max Min Average Max

CSR 1.00 1.00 1.00 4.10 5.29 7.32
PCSR 1.36 2.04 2.47 13.70 19.28 25.58
BP-CSR 1.05 1.20 1.46 5.71 8.01 12.54
BP-CSR2 1.17 1.55 1.59 9.32 15.37 23.59
PPCSR 1.19 1.52 1.92 9.69 19.89 35.21

TABLE IV: Algorithm performance (normalized to CSR) and
space usage on the graphs (RD, LJ, CO) that the original PCSR
can run without errors on.

CPAM on average across batch sizes. The batch insert al-
gorithm in BP-CSR is very similar to the one in F-Graph,
and we find their performance to be similar as well. BP-CSR
outperforms CPAM in batch inserts because of the PMA’s
cache-friendliness.

Finally, we evaluate PPCSR, a concurrent dynamic-graph
data structure, and find that BP-CSR ranges from 4× slower
on small batches (1k) to 10× faster on the largest batch
size (10M). This disparity comes from the two systems’
fundamentally different parallelization schemes - PPCSR uses
locks for concurrency control, while BP-CSR applies the entire
batch as one operation in a lock-free manner. The lock-based
parallel PMA in PPCSR does not scale as well with the
batch size (i.e., the number of insertions) because of increased
contention. On the other hand, the batch-insert algorithm is
well-suited for large batches due to increased opportunities
for shared work between updates.

F. Scalability

a) Experimental Setup: To measure the strong scaling
with increasing thread counts, we tested breadth-first search
(BFS), PageRank (PR), and batch inserts on the Twitter graph.
Since the machine has two sockets each with 96 threads
(for a total of 192 threads), we measured the times with all
power-of-two numbers of threads from 1, 2, . . . , 64, then all
threads on one socket (96 threads), then the entire machine
(192 threads). We omit the original PCSR because it does
not support multithreaded insert. For batch inserts, we set the
batch size to 1 million and generated the inserts in the same
way described earlier. All times are the average of three trials.
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Fig. 6: Strong scaling of BFS on the TW graph.
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Fig. 7: Strong scaling of PR on the TW graph.

b) Discussion: Figures 6, 7, and 8 illustrate the strong
scaling of BFS, PR, and batch inserts (resp.) of the tested
systems. We chose BFS and PR to illustrate two extremes
of graph algorithms - BFS is a lightweight algorithm that
traverses each edge at most once, while PR is more work-
intensive and traverses all of the edges multiple times through-
out the algorithm. Across the workloads, BP-CSR achieves
competitive parallel speedup when compared to the other
systems. In many cases across workloads, systems may incur
slowdown when going from one to two NUMA nodes despite
additional threads because of additional data movement.

Table V provides the data for sequential time, parallel time
on all threads, and speedup on all threads. The workloads are
memory-bound, so the maximum parallel speedup that any
system achieves on 192 threads is about 57. On algorithms,
BP-CSR improves the parallel speedup of PMA-based systems
by reducing data movement with a two-level structure. How-
ever, on inserts, it achieves less parallel speedup compared to
F-Graph because it is more sequentialized on inserts due to
updating both the vertex and the edge level. However, their
absolute parallel times are similar.

G. Space Usage

Tables III and IV report the space usage of the different
graph data structures in terms of bytes per edge. We report the
size with weights for systems that only have weighted mode
(PCSR, PPCSR), and the unweighted size otherwise (BP-CSR,
F-Graph, CPAM, vector of PMAs).

On average, BP-CSR uses about 6.3 bytes per edge, CSR
uses 4.4 bytes per edge, and CPAM uses 5.5 bytes per
edge. BP-CSR uses the smallest space of all the PMA-based
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Fig. 8: Strong scaling of batch inserts with batch_size =
1M on the TW graph.

Container BFS PageRank Batch Insert
T1 T192

T1
T192

T1 T192
T1

T192
T1 T192

T1
T192

BP-CSR 5.56 0.10 57.2 315 8.9 35.4 0.22 0.006 34.2
PPCSR 4.97 0.16 31.8 353 10.8 32.6 0.47 0.021 22.4
F-Graph 5.50 0.14 39.3 316 10.2 31.2 0.25 0.005 48.1
CPAM 3.80 0.12 31.1 340 8.4 40.7 0.57 0.017 34.7
PMAs (V) 8.37 0.16 51.4 343 12.0 28.6 0.56 0.016 35.9

TABLE V: Sequential time (T1), parallel time on all 192
threads (T192), and parallel speedup ( T1

T192
) of BFS, PR, and

batch inserts (batch_size = 1M) on the TW graph.

structures because 1) it has the smallest growing factor and
2) it does not need to store weights or duplicated sources.
Since the PMA memory layout is a simple array, most graph
algorithms are translated into scans over this array, so reducing
the memory usage maximizes the useful memory bandwidth.

V. CONCLUSION

This paper introduces BP-CSR, a dynamic-graph data struc-
ture built on the PMA. BP-CSR achieves the best of all worlds
in terms of algorithm performance, update throughput, and
space usage compared to other dynamic-graph data structures.
It demonstrates the potential for optimizing cache-friendly data
structures to target graph-structured data.
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