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Abstract—We present preliminary results demonstrating AI
(artificial intelligence) inference using the IBM AIU NorthPole
Chip [1], [2] incorporated into a compact, rugged 3U VPX form
factor module (NP-VPX) [3]. NP-VPX allows NorthPole to be
used in edge applications with stringent cooling requirements,
high-speed switch fabrics, and rugged environments. NP-VPX
processes 965 frames per second (fps) with a Yolo-v4 network
with 640× 640 pixel images at 73.5 W at full-precision accuracy,
achieving 13.2 frames / J (fps / W). NP-VPX processes over 40,300
fps with a ResNet-50 network with 224× 224 pixel images at 65.9
W at full-precision accuracy, achieving 611 frames / J.

Index Terms—VPX, AI accelerator, Yolo, ResNet, HPEC

I. INTRODUCTION

Today, high-performance AI runs primarily in the datacenter
and—while training may remain there—great opportunity ex-
ists to migrate inference out to the edge, reducing transmission
energy as well as bandwidth, mitigating concerns regarding
privacy as well as security, and enabling previously impossible
applications. To enable inference outside the datacenter, users
need AI accelerators with both high performance and high
energy efficiency, embodied in a form factor optimized for
deployment at the edge.

To address the need to widely deploy inference, we have
developed the research prototype NorthPole VPX board (NP-
VPX), which embeds the IBM AIU NorthPole inference
processor in a 3U VPX form factor module (Figs. 1 &
2). Compared to NorthPole’s earlier PCIe form factor board
[1], [2], NP-VPX achieves similar throughput with improved
energy efficiency due to a lower power FPGA (Fig. 2), leading
the shift from “train and deploy in the datacenter” to “train in
the datacenter and deploy everywhere.”

II. NP-VPX BOARD

3U VPX is a standard and flexible form factor for modular
rugged systems [3], often used in defense, aerospace, and other
applications that must operate in challenging environments [4].
Numerous modules have been developed previously in this
form factor to implement computational and signal processing

Fig. 1. Top: Exploded-view rendering of NorthPole VPX assembly. Bottom:
Photo of the fully functional, fabricated, and assembled NorthPole VPX
module, inserted into a VPX chassis with a single-board computer.



Fig. 2. Top: NorthPole VPX board, optimized for area and density in the 3U
VPX form factor. Bottom: NorthPole PCIe board, designed for a server and
datacenter form factor [1].

functions, using conventional CPUs, GPUs, and FPGAs. The
NP-VPX board enables the novel NorthPole processor to
be used in 3U VPX systems for high-performance, high-
efficiency neural network inference.

A. AIU NorthPole

The NorthPole inference processor has demonstrated ex-
ceptional performance and energy, space, and time efficiency
[1], [2]. Its architecture is based on a parallel, distributed
core array, emphasizing on-chip distributed memory, high
parallelism, low-precision compute, and deterministic control
as well as data locality (Fig. 3). Further, NorthPole control
is fully encapsulated on-chip, in the sense that it runs an
entire neural network without orchestration from a host CPU.
It enables a simple Put–Run–Get interaction model:

1) Put input tensor (such as an image)
2) Run inference model (such as a ResNet network)
3) Get output tensor (such as a classification)

To expand the scope for exploiting NorthPole’s capabilities
in edge deployments, we migrated the design to the 3U VPX
form factor, providing an unmatched size, weight, and power
(SWaP) system.

B. NP-VPX Design & Layout

The board includes the NorthPole Chip, a Xilinx Kintex
Ultrascale+ FPGA, 3U VPX backplane connector and guide
sockets, power, measurement, and (passive and active) support
components (Fig. 1) in a 32-layer, 100 mm× 160 mm printed
circuit board compliant with the 3U VPX standard (with a

Fig. 3. NorthPole chip micrograph. Each NorthPole core (left) has a vector-
matrix multiplication (VMM) unit, a vector unit, unified memory, and control
logic. Cores are tiled (middle) in a 16×16 array on the NorthPole die (right).

usable area for components and routing of approximately 80
mm× 160 mm due to the cutout to accommodate the cover
and wedgelocks). The FPGA acts as a bridge between the
NorthPole Chip and the PCIe Gen 3 ×8 bus that links to a
host over the VPX backplane. It also allows control of power
and measurement components via I2C. The FPGA can also
perform pre- and post-processing if required.

The power control system taps off the 12 V power do-
main and provides all of the voltage domains needed by
the board. A Lattice MachXO3 FPGA controls the power
bring-up sequence, observes fault signals, and—if detected—
controls power-down. A power measurement analog-to-digital
converter measures the voltage drop across a shunt resistor on
the 12 V PCIe power input, sampled at approximately 1 kHz,
enabling whole-board power to be calculated.

The NP-VPX board design is based on a previous research
prototype PCIe form-factor board (described in [1]), which
used a larger FPGA with more I/O pins and a larger board area
of 100 mm× 192 mm plus PCIe connector (Fig. 2 Bottom).
Shrinking the design’s usable area by nearly one third involved
aggressive reduction of NorthPole-to-FPGA connections to the
minimum required for operation. For example, as chips are
previously tested before assembly, all connections to design-
for-test pins were removed. Further, components had to be
moved closer and routing compressed into the smaller area.

Because the board is intended for deployment in a
conduction-cooled VPX chassis, we performed thermal mod-
eling to guide the design of aluminum covers that are used
with standard commercial wedgelocks to conduct heat from
components on the board to the chassis.

C. NP-VPX Performance and Efficiency

We have previously demonstrated NorthPole’s unsurpassed
energy efficiency on benchmark neural network inference [1]
while maintaining high throughput. Here we show that effi-
ciency is maintained and even improved, showing the highest
throughput and energy efficiency in the 3U VPX form factor.



Fig. 4. Measured NorthPole VPX board power, throughput, and energy efficiency. Left: Running Yolo-v4 at 350 MHz, the board processed 969 fps at
640× 640 pixels per image, consuming 73.5 W for a board-level efficiency of 13.2 frames / J. Right: Running ResNet-50 at 400 MHz, the board processed
40, 340 fps at 224× 224 pixels per image, consuming 65.9 W for a board-level efficiency of 612 frames / J.

We characterized NP-VPX’s operation by running two
benchmark neural networks: Yolo-v4 [5] and ResNet-50 [6],
trained to match full-precision accuracy. For this initial testing,
we connected the board through a VPX-to-PCIe interface
board to a standard server. In this arrangement, power is
provided through the PCIe slot and is limited to 75 W (NP-
VPX supports higher power operation in a VPX chassis,
powered through the backplane.) We ran a mixed 4b / 8b-
precision Yolo-v4 model with a batch size of two, at NorthPole
clock frequencies ranging from 25 to 350 MHz, which was the
maximum given the power limit (Fig. 4 Left). We started with
a NorthPole core voltage of 0.8 V and raised it as needed for
higher speeds, reaching 0.825 V at 350 MHz. At 350 MHz,
the board processed 969 frames per second (fps) at 640×640
pixels per image, consuming 73.5 W for an efficiency of 13.2
frames / J (fps / W) (at the board level). NorthPole performance
at 350 MHz is sufficient to process 32 real-time (30 fps)
image streams on a single board. For highly power-constrained
systems, limited to 25 and 50 W, we estimate throughput of
225 and 621 fps, respectively.

We ran a mixed 2b/4b/8b-precision ResNet-50 model with a
batch size of 32, at NorthPole clock frequencies from 25 to 400
MHz (Fig. 4 Right). We started with a NorthPole core voltage
of 0.76 V and raised it as needed for higher speeds, reaching
0.82 V at 400 MHz. At 400 MHz, the board processed
40, 340 frames per second (fps) at 224×224 pixels per image,
consuming 65.9 W for an efficiency of 612.0 frames / J (at
the board level). Again, for highly power-constrained systems,
limited to 25 and 50 W, we estimate throughput of 11, 115 and
31, 574 fps, respectively.

To estimate SWaP, in a power-constrained application, we
retrained the Yolo-v4 network on a subset of the xView Dataset
[11]. NP-VPX has a throughput of 225 (1280 × 1280 pixel
images) fps in 70.7 W with the NorthPole clock at 300 MHz
(see Fig. 5).

III. NORTHPOLE SOFTWARE STACK

The NorthPole Software Development Kit (SDK) provides
NorthPole users with standard workflows for training, com-
piling, and running neural network inference models [1]. No
changes were necessary to the SDK to use NorthPole in the
VPX form factor.

The SDK supports quantization-aware training (using a
GPU), compiling the resulting neural network into a hardware-
compatible binary file, and running the network with the
simple Put–Run–Get interface that minimally loads the host
CPU.

A. SDK Training

The SDK provides a training flow (run on a GPU) to
quantize models for NorthPole supported 2b, 4b, and 8b
precisions, as well as tools to select precisions to retrain
without loss of accuracy. Training is done in PyTorch [7]
and can quantize existing models or train from scratch. Two
quantization-aware training algorithms are provided: Fine-
tuning After Quantization (FAQ) [8] and Learned Step-size
Quantization (LSQ) [9]. Additional algorithms guide precision
selection to optimize network performance, memory usage,
and throughput [10].

B. SDK Compiling

Once a model is trained to NorthPole precisions, PyTorch
exports the model to the compiler, which generates a hardware-
compatible binary file in the standard Executable and Linkable
Format (ELF). The ELF file includes all model parameters and
all instructions to sequence all memory, communication, and
compute operations.

C. SDK Runtime

After model compilation, a runtime application interacts
with the board. It loads the ELF file onto the NorthPole Chip,
loads input tensors (such as images) into the on-chip frame



Fig. 5. Examples of frames processed by a NorthPole VPX board running a Yolo-v4 network trained on the xView dataset. Labeled classes include buildings
(yellow), aircraft (white), trucks (green), boats (magenta), and cars (orange).

buffer memory, and sends application packets to start opera-
tion. Then, after execution, the runtime application receives the
neural network results. The runtime application (and thus the
host CPU) does not schedule any layer-by-layer operations;
instead, it puts input tensors into the device, starts execution
of the entire network, and gets the resulting output tensors.

IV. SUMMARY

The NorthPole VPX Board provides high-performance and
high-efficiency embedded AI inference acceleration in an

optimized SWaP form factor. It provides a platform that can
deliver previously impossible neural network compute power
to VPX-based systems [4], bringing AI inference out of the
datacenter.
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