
Breakthrough low-latency, high-energy-efficiency
LLM inference performance using NorthPole

Rathinakumar Appuswamy†, Michael V. Debole†, Brian Taba, Steven K. Esser, Andrew S. Cassidy,
Arnon Amir, Alexander Andreopoulos, Deepika Bablani, Pallab Datta, Jeffrey A. Kusnitz,

Nathaniel J. McClatchey, Neil McGlohon, Jeffrey L. McKinstry, Tapan K. Nayak, Daniel F. Smith,
Rafael Sousa, Ignacio Terrizzano, Filipp Akopyan, Peter J. Carlson, Rajamohan Gandhasri,

Guillaume J. Garreau, Nelson M. Gonzalez, Megumi Ito, Jennifer L. Klamo, Yutaka Nakamura,
Carlos Ortega Otero, William P. Risk, Jun Sawada, Kai Schleupen, Jay Sivagnaname,

Matthew Stallone, Takanori Ueda, Myron D. Flickner, John V. Arthur, Rameswar Panda,
David D. Cox, Dharmendra S. Modha*

IBM Research, *dmodha@us.ibm.com, †Contributed equally.

Abstract—For a 3-billion-parameter LLM, a research proto-
type inference appliance with 16 IBM AIU NorthPole processors
delivers a massive 28,356 tokens / second of system throughput
and sub-1 ms / token (per-user) latency while consuming merely
672 W for 16 NorthPole cards in a compact 2U form factor.

With a focus on low latency and high energy efficiency,
when NorthPole (in 12 nm) is compared to a suite of GPUs
(in 7 / 5 / 4 nm) at various power consumptions, at the lowest
GPU latency, NorthPole provides 72.7⇥ better energy metric
(tokens / second / W) while providing better latency.

Index Terms—AI accelerators, large language model

I. INTRODUCTION

Large language models (LLMs) [1] have achieved signifi-
cant performance benchmarks across diverse AI tasks [2], such
as assisting in programming by offering code suggestions [3],
[4], excelling in standardized tests [5], and aiding in content
creation of articles, blogs, images, and videos [6].

There are two major and conflicting challenges emerging
in wide-scale deployment of LLMs in particular, and AI in
general, namely: energy consumption and latency of response.

First, because LLMs demand substantial energy resources
for both training and inference [7], [8], a sustainable future
computational infrastructure is needed to enable their efficient
and widespread deployment. Energy efficiency of data centers
is becoming critical as their carbon footprints expand, and
as they become increasingly energy-constrained. According to
the World Economic Forum,

“At present, the environmental footprint is split, with
training responsible for about 20% and inference
taking up the lion’s share at 80%. As AI models gain
traction across diverse sectors, the need for inference
and its environmental footprint will escalate.” [9]

Second, many applications such as interactive dialog and
agentic workflows require very low latencies. Decreasing
latency, within a given computer architecture, can be achieved
by decreasing throughput, however, that leads to decreasing
energy efficiency. To paraphrase a classic systems maxim,

Fig. 1: NorthPole (12 nm) performance relative to current
state-of-the-art GPUs (7 / 5 / 4 nm) on energy and system
latency metrics, where system latency is the total latency
experienced by each user. At the lowest GPU latency (H100,
point P2), NorthPole provides 72.7⇥ better energy metric
(tokens / second / W). At the best GPU energy metric (L4, point
P1), NorthPole provides 46.9⇥ lower latency.

“Throughput problems can be cured with money.
Latency problems are harder because the speed of
light is fixed.” (Paraphrased from [10] by replacing
“bandwidth” with “throughput.”)

GPUs can achieve lower latency by using smaller batch size,
at the expense of decreased throughput and decreased energy
efficiency. Also, GPU sharding, which uses data parallelism
across multiple GPUs, may reduce latency but only at the cost
of energy efficiency. Further, with or without sharding, GPUs
seem to hit a hard wall of latency lower bound. The trade-off
between energy efficiency and latency for GPUs can be seen
in Fig 1.

Therefore, a critical research question addressed in this
paper is to simultaneously achieve the dual and conflicting
objectives of low latency at high energy efficiency.



(a) 1 GPU card (b) 4 GPU cards

(c) 1 GPU card (d) 4 GPU cards

(e) L4 and NorthPole

Fig. 2: Panels (a)–(d) show NorthPole (12 nm) performance relative to current state-of-the-art GPUs (7 / 5 / 4 nm) on energy,
space, and system latency metrics, where system latency is the total latency experienced by each user. Panel (a) is the same as
Fig. 1 with notations added for point P3. Panels (a) and (c) use a single GPU and panels (b) and (d) use sharding, which may
decrease latency but only at the cost of energy and space efficiencies. At the lowest GPU latency (H100, point P2), NorthPole
provides 72.7⇥ better energy metric (tokens / second / W) and 15.9⇥ better space metric (tokens / second / transistor) while still
providing 2.5⇥ lower latency. At the best GPU energy metric (L4, point P1), NorthPole provides 46.9⇥ lower latency and
2.1⇥ better space metric while still providing 2.2⇥ better energy metric. At the best GPU space metric (A100, point P3),
NorthPole provides 20.3⇥ lower latency and 5.3⇥ better energy metric while still providing 1.4⇥ better space metric. Panel (e)
shows NorthPole (12 nm) performance relative to the L4 GPU (5 nm) on throughput (tokens / second / card) and system latency
metrics. At the lowest L4 latency (point P4), NorthPole provides 36.0⇥ higher throughput. At the highest L4 throughput with
a sub-50 ms / token latency (point P1), NorthPole provides 46.9⇥ lower latency. GPU power used to compute each energy
metric is shown in Table I. Because there is no instrumentation available to measure the actual power for different batch sizes,
the same power is used for all batch sizes and this may underestimate the energy metric but the qualitative picture still holds.



II. RESULTS

NorthPole is an inference accelerator chip and software
ecosystem co-designed from first principles to offer excep-
tional efficiency for neural network inference [11], [12]. De-
spite NorthPole not being specifically designed for LLMs,
surprisingly, this paper demonstrates that the novel NorthPole
architecture enables low-latency, high-energy-efficiency LLM
inference (Fig. 1, Fig. 2, and Table I).

The main results of this paper are as follows.
For a 3-billion-parameter LLM whose model structure is

derived from IBM Granite-8B-Code-Base model [4] and is
consistent with Llama 3 8B [13] as well as Mistral 7B [14], the
paper demonstrates a research prototype inference appliance
with 16 NorthPole processors.

In absolute terms, the appliance delivers 28, 356 tokens/sec
of system throughput and sub-1 ms / token (per-user) latency
while consuming 672 W for 16 NorthPole cards in a 2U form
factor.

In relative terms, when comparing NorthPole (in 12 nm)
to a suite of GPUs (A100 / L4 / L40S / H100, respectively, in
7 / 5 / 5 / 4 nm) at various power consumptions, it can be
seen from Fig. 2(a) and Fig. 2(c) that at the lowest GPU
latency (point P2), NorthPole provides 72.7⇥ better energy
metric (tokens / second / W) and 15.9⇥ better space metric
(tokens / second / transistor) while still providing 2.5⇥ lower
latency; at the best GPU energy metric (point P1), NorthPole
provides 46.9⇥ lower latency and 2.1⇥ better space metric
while still providing 2.2⇥ better energy metric; and at the best
GPU space metric (point P3), NorthPole provides 20.3⇥ lower
latency and 5.3⇥ better energy metric while still providing
1.4⇥ better space metric.

In particular, when comparing NorthPole (in 12 nm) to L4
GPU (in 5 nm) with comparable power, it can be seen from
Fig. 2(e) that at the highest (sub-50 ms / token) L4 throughput
(point P1), NorthPole provides 46.9⇥ lower latency while still
providing 1.3⇥ higher throughput and, at the lowest L4 latency
(point P4), NorthPole provides 36.0⇥ higher throughput in
tokens / second / card while still providing 5.1⇥ lower latency.

III. NORTHPOLE ARCHITECTURE

The NorthPole processor, shown in Fig. 3, is fabricated in
a 12 nm process technology, with 22 billion transistors in
a 795 mm2 area. Inspired by the brain and optimized for
silicon, its architecture is derived from ten complementary
design axioms spanning computation, memory, communica-
tion, and control that collectively enable NorthPole to vastly
outperform other architectures on standard AI inference tasks,
even compared to processors manufactured in more advanced
process technologies [11].

For details of the axiomatic NorthPole architecture, see
[11], [12]. In brief, NorthPole tiles 256 modular cores in a
16 ⇥ 16 two-dimensional array. Each core contains a vector-
matrix multiplier (VMM) that performs 2, 048, 4, 096, and
8, 192 operations per core per cycle at INT8, INT4 and INT2
precision, respectively. The core compute also includes a
4-way, 32-slice, FP16 vector unit and a 32-slice activation

Fig. 3: NorthPole processor: Silicon wafer (left), bare die
(center), packaged module (right).

function unit. The core array has a total of 192 MB of SRAM,
with 0.75 MB in each core. On-chip memory is tightly coupled
to the compute units and control logic, with an aggregate
bandwidth of 13 TB / s between core memory and compute. In
addition, 4, 096 wires cross each core in both horizontal and
vertical directions to communicate parameters, instructions,
activations, and partial sums over four dedicated networks-on-
chip (NoCs). To prevent stalls, an on-chip frame buffer with
32 MB of SRAM decouples off-chip communication of input
and output data from on-chip computation by the core array.

IV. APPLIANCE

NorthPole has been prototyped in a PCIe Gen3 ⇥ 8 card,
shown in Fig. 4, of which 16 were installed in an off-the-
shelf 2U server to assemble a research prototype inference
appliance, shown in Fig. 5. The server comprises 2⇥ Intel
Xeon Gold 6438M processors, each with 32 cores and 60 MB
cache, running at 2.2 GHz. The system also contains 512 GB
of 4800 MHz DDR5 memory. Two PCIe Gen5 ⇥ 16 buses
are attached to each of the two server processors, providing a
total of 256 GB / s of PCIe bandwidth across the four buses
(per direction). These four buses each fan out 4⇥ via PCIe
bridges, to the system’s 16 PCIe slots, each populated with
a NorthPole card. These 16 NorthPole cards use a maximum
of 1/2 the aggregated 256 GB / s PCIe bandwidth available.
The system runs Red Hat Enterprise 8.9 and NorthPole uses
the built-in VFIO kernel driver so that user-space software can
manage the hardware. The system uses the IOMMU to manage
address translation, as well as to enable security features such
as device isolation and virtualization to run applications using
virtual machines or container technologies.

Each NorthPole card receives and transmits data via DMA
engines resident on each card. Operating independently, these
DMA engines can simultaneously receive and transmit ten-
sors in multiple ways. The first method is a standard PCIe
endpoint model, where the host programs the DMA engines
to read inputs from host memory and write tensors back to
host memory after computation is completed. The second
method uses additional hardware features on each card to let



Fig. 4: NorthPole PCIe card.

NorthPole cards communicate directly with one another, via
PCIe, without requiring transfers to and from host memory
or additional software management at runtime. Using direct
NorthPole-to-NorthPole communication enables larger models
to span multiple NorthPole chips while reducing communica-
tion latencies and overheads from a purely software-managed
system.

V. MAPPING LLMS TO A NORTHPOLE APPLIANCE

The strategy for mapping LLMs, shown in Fig. 6, was
inspired by three key observations. First, for models that are
large enough to be useful, an entire transformer layer can fit
in the memory of a single NorthPole chip using INT4 for
weights, activations, and KV cache (“w4a4”), and the output
layer can fit in 2 chips. Second, if weights and KV cache
reside entirely on-chip, only the small embedding tensor needs
to be communicated between layers at run time, which is well
within the bandwidth of PCIe Gen3 ⇥ 8. Third, a prototype
NorthPole Appliance can readily be assembled by populating
an off-the-shelf server with 16 NorthPole PCIe cards.

This suggests a strategy that maps each transformer layer
onto its own NorthPole card, using pipeline parallelism in
the style of GPipe [15], and splits the output layer across
2 NorthPole cards, using tensor parallelism [16], [17], with
layers sending embedding tensors to each other via PCIe
Gen3 ⇥ 8. During inference, a mini-batch of, say, N user
requests is divided into, say, M equal micro-batches and the
micro-batches are pipelined through the 16 NorthPole cards.

While pipeline parallelism has been exploited for training
LLMs (with no latency constraints), its use during inference is
limited by the large mini-batch required to minimize the idle
time per pipeline stage, or pipeline bubbles. For example, it
was found [15] that efficient training required the number of

micro-batches M to be about four times the number of pipeline
stages. The mini-batch size N is limited by (a) the desired per-
token latency of the system, and (b) the memory available to
store the KV cache for the entire mini-batch. The low-latency
compute and 13 TB / sec of on-chip memory bandwidth enable
NorthPole to achieve extremely low per-token latency, so the
the limiting factor in choosing N is the memory available to
store the entire KV cache on-chip. In addition, we found that
a number of micro-batches M equal to the number of pipeline
stages was sufficient to keep the pipeline idle time negligible.

For the experiments reported in this paper, we chose a mini-
batch size of N = 28, divided into M = 14 equal micro-
batches, resulting in a micro-batch of size 2 being computed
by each NorthPole card. Our architectural design choices to
perform efficient computations at such a small batch size were
key to enabling the efficiencies demonstrated in Fig. 1 and
Table I.

VI. THE LLM MODEL AND THE TRAINING APPROACH

A. The LLM model

The model employed for testing our system was based on
the open-source IBM Granite-8B-Code-Base model [4], an
8-billion-parameter transformer decoder with 36 transformer
layers, 4096 hidden size, 14, 336 FFN intermediate size,
32 attention heads, 8 key-value heads using grouped-query
attention (GQA), and 49, 152 vocabulary size. To fit into a
single server with 16 NorthPole cards, a 3-billion-parameter
version of this model was used with 14 transformer layers and
one output layer, quantized to w4a4 precision but otherwise
preserving the original architecture.

Notably, this choice of model configuration matches that
of Llama 3 8B [13] as well as Mistral 7B [14] on a per-layer



Fig. 5: Exploded view of the research prototype appliance showing installation of the 16 NorthPole PCIe cards. NorthPole
cards can communicate via the standard PCIe endpoint model through the host or directly, and more efficiently, with one
another via additional hardware features on each card.

Fig. 6: Strategy for mapping the 3-billion-parameter LLM to the 16-card NorthPole appliance. Each transformer layer is
mapped to one NorthPole card and the output layer is mapped to two cards (left). For each layer, all weights and KV cache
are stored on-chip, so only the small embedding tensor produced by each card’s layer must be forwarded to the next card over
low-bandwidth PCIe when generating a token. Within each transformer layer (right), weights and KV cache are stored at INT4
precision. Activations are also INT4 except when higher dynamic range is needed for accumulations.



basis, which only differ from the model we benchmark in layer
count, model vocabulary size, and the training data used.

B. Training for Full-precision Accuracy

To recover the task accuracy of the original model after
quantization, the following procedure was used to create model
weights. First, a baseline model was trained from scratch at
full FP16 precision on 1 trillion tokens of code from 116 lan-
guages, following the recipe of [4]. Next, the baseline model
output layer weights and inputs, and the SiLU activations
were quantized to INT8, and all other weights, linear layer
inputs, and matmul inputs were quantized to INT4. Finally,
post-quantization accuracy was recovered using quantization-
aware training for a further 8.5 billion tokens from the Python-
language subset of the training data, with learning rate 8⇥10�5

and batch size 128, employing the LSQ algorithm [18]. The
activation quantizer step sizes were trained using a hot start
that boosted their learning rate 200⇥ for the first 250 steps of
training to help quickly adapt to the data.

The baseline FP16 model running on GPU and quan-
tized model running on NorthPole showed pass@10 accuracy
on HumanEvalSynthesize-Python within 0.01 of one another
(0.3001 GPU vs. 0.2922 NorthPole) [19]. Rather than push
the bounds of task accuracy, overall training was abbreviated
compared to the Granite-8B-Code-Base model to focus on
hardware performance characterization.

VII. RUNTIME APPLICATION

During inference, as shown in Fig. 6, tokens are generated
by a highly pipelined user application running on the host
CPUs that preprocesses text into input tensors by using the
tokenizer and embedding layer, puts input tensors into the first
NorthPole card in the appliance, receives the resulting output
tensors from the last NorthPole cards in the appliance, post-
processes output tensors using the decoder and detokenizer,
and recirculates the generated token as the next input. The
user application is also responsible for the user interface and
any higher-level optimizations like prompt prefilling.

To offload neural network workloads to NorthPole, the user
application calls a user-space runtime library with a simple
API to configure the NorthPole cards with layer weights and
KV caches at initialization time, and send and receive input
and output tensors at run time. Weights and KV cache stay
resident in on-chip memory after configuration, and do not
need to be streamed from off-chip at run time. The runtime
library also manages the on-chip frame buffer to prevent the
NorthPole cores from being stalled by lack of input data or a
recipient for output data. Intermediate tensors are passed from
card to card without host intervention, as described in Section
IV.

VIII. PERFORMANCE RESULTS

The NorthPole 16-card appliance achieved throughput of
28, 356 tokens / sec on the 3-billion-parameter LLM. The LLM
was configured for a sequence length of 2048 (1024 prompt

length, 1024 tokens generated) and the decoder used greedy
sampling.

To compare against GPUs, we measured the single-card
performance of two GPUs targeting low-power inference (L4
[20] and L40S [20]) and two GPUs targeting high-throughput
training (A100 [21] and H100 [22]). All systems ran the same
LLM model and configuration, except that NorthPole operated
at w4a4 precision and the GPUs at the best possible precision
of w4a16 since, to the best of our knowledge, no w4a4 CUDA
kernels were available. In our GPU experiments, we utilized
GPTQ quantized models and tested using vLLM (version
0.5.4) Marlin kernels for benchmarking against NorthPole.
The use of GPTQ quantization provided the best available
model inference performance for GPUs by reducing the
precision of weights while maintaining acceptable accuracy.
Additionally, the Marlin kernels were employed to optimize
matrix operations, particularly in handling sparse and dense
matrix multiplications in GPUs. Benchmarking with the vLLM
runtime enabled us to assess both throughput and latency,
ensuring optimal model performance on the given hardware
configuration. For experiments with more than one GPU card,
Tensor Parallelism equal to the available number of cards was
used to effectively obtain the minimal possible latency over
NVLink. From our experiments, sharding decreases latency
but leads to degraded throughput / card for GPUs. Importantly,
note that NorthPole’s outstanding performance is primarily
a result of massive on-chip memory bandwidth and only
secondarily a result of lower precision.

Table I shows the measured performance results for the
NorthPole and the GPU systems on a per-card basis. The
fundamental metrics are Throughput, Latency, Space, and
Energy metrics, which are defined as follows [11].

The total number of tokens generated in response to a mini-
batch of input prompts is:

tokens gen = micro batch size⇥M ⇥ tok seq len (1)

where M is the number of micro-batches and tok seq len is
the number of output tokens generated for a single user. The
system throughput is the total number of tokens generated
(tokens gen) in response to a mini-batch of input prompts
divided by the total time to process the prompts, including
both prompt prefill time (prompt time) and token generation
time (token gen time):

sys throughput =
tokens gen

prompt time+ token gen time
(2)

Throughput is compared on a per-card basis by dividing the
system throughput by the number of processing cards in the
system:

throughput =
sys throughput

sys cards
= (tok/sec/card) (3)

The latency is a measure of average time between generated
output tokens for a particular user, and it is the sum of the time
it takes for an embedding token to flow through the processing



TABLE I: Measured Performance Results
Measured performance of NorthPole and GPU systems, on a per-card basis. For each metric, # indicates lower is better, while " indicates higher is better.
For the NorthPole 16-card appliance, power was measured per card, while total system throughput was divided by 16 cards. NorthPole latency is measured
through all 16 cards. P1, P2, P3, P4, referencing the labeled points in Fig. 1 and Fig. 2, denote the highest GPU energy metric, the lowest overall GPU
latency, the highest GPU space metric, and the lowest energy-efficient GPU latency, respectively.

Processor Transistors # Power # Cards Mini-batch Throughput " Latency # Space Metric " Energy Metric "
(billions / card) (W / card) (tok / sec / card) (ms / tok) (tok / sec / card) / (tok / sec / card) /

(billion transistors / (W / card)
card)

L4 GPU
(5 nm)

[20]
35.8 72

1⇥
1⇥
2⇥
2⇥
4⇥
4⇥

1
64
1
64
1
64

108
1381
76

1092
49
726

9.26
46.34
6.58
29.32
5.08
22.05

3.02
38.58
2.12
30.49
1.38
20.27

1.50
19.18
1.06
15.16
0.68
10.08

-
P1
-
-

P4
-

L40S GPU
(5 nm)

[20]
76.3 350

1⇥
1⇥
2⇥
2⇥

1
64
1
64

241
3002
128
1754

4.15
21.32
3.89
18.25

3.16
39.34
1.68
22.98

0.69
8.58
0.37
5.01

-
-
-
-

A100 GPU
(7 nm)

[21]
54.2 400

1⇥
1⇥
2⇥
2⇥
4⇥
4⇥

1
64
1
64
1
64

282
3190
132
1858
62

1126

3.55
20.06
3.79
17.23
4.05
14.22

5.20
58.86
2.44
34.27
1.14
20.77

0.70
7.98
0.33
4.64
0.15
2.81

-
P3
-
-
-
-

H100 GPU
(4 nm)

[22]
80.0 700

1⇥
1⇥
2⇥
2⇥
4⇥
4⇥

1
16
1
64
1
64

406
3347
172
2204
94

1580

2.46
4.78
2.90
14.52
2.65
10.13

5.08
41.84
2.16
27.55
1.18
19.74

0.58
4.78
0.25
3.15
0.14
2.26

P2
-
-
-
-
-

NorthPole
(12 nm) 22.0 42 16⇥ 28 1772 0.988 80.55 42.19 -

pipeline and the prompt prefill time amortized over the total
number of generated tokens:

latency =
prompt time+ token gen time

tok seq len
= (sec) (4)

Equivalently, by combining equations 1, 2, and 4:

latency =
mini batch size

sys throughput
= (sec) (5)

where mini batch size = micro batch size⇥M . Note that
this is the system latency that is seen by each user.

Normalizing by the number of cards in a system, we
extend the space and energy metrics defined in [11] to be
able to compare systems with varying number of cards. The
resulting space and energy metrics are the throughput per card
normalized by the number of processor transistors per card and
the power per card, respectively:

space

metric
=

sys throughput/card

transistors/card
=

(tok/sec)

(transistor)
(6)

energy

metric
=

sys throughput/card

power/card
=

(tok/sec)

(W )
(7)

If the system throughput scales proportionally to the number
of pipelined cards in the system, the normalization by cards
cancels out, rendering the space and energy metrics invariant
to the number of cards in the system. In general, the system

throughput scales sub-linearly in the number of cards due to
communication and synchronization overhead.

IX. CONCLUSIONS

We present the following contributions:

• We have demonstrated a research prototype multicard
NorthPole appliance.

• We have demonstrated that large neural network mod-
els like LLMs can be effectively split across multiple
NorthPole processors, extending our earlier work that
showed single NorthPole processors outperforming other
architectures on vision inference tasks (ResNet50, Yolo-
v4) [11], [12].

• We have demonstrated that NorthPole’s unique architec-
ture is well-suited for LLM inference, leading NorthPole
to dramatically outperform edge and datacenter GPUs in
terms of dual objectives of low-latency and high-energy
efficiency.

Because the NorthPole appliance must be used as a whole,
it is most efficient for high-throughput applications.

This initial paper provides a springboard for research into
further energy-efficiency optimizations, into mapping larger
LLMs on correspondingly larger NorthPole appliances, into
new LLM models co-optimized with NorthPole architecture,
and into future system and chip architectures.



ACKNOWLEDGMENT

This work builds on previously published research [11]
that was supported by the United States Air Force under
Contract No. FA8750-19-C-1518. The authors are grateful to
Sam Skalicky for technical contributions.

REFERENCES

[1] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models are few-shot learners,”
2020. [Online]. Available: https://arxiv.org/abs/2005.14165

[2] J. Yang, H. Jin, R. Tang, X. Han, Q. Feng, H. Jiang, B. Yin, and X. Hu,
“Harnessing the power of LLMs in practice: A survey on ChatGPT and
beyond,” 2023. [Online]. Available: https://arxiv.org/abs/2304.13712

[3] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,
M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder,
B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba,
“Evaluating large language models trained on code,” 2021. [Online].
Available: https://arxiv.org/abs/2107.03374

[4] M. Mishra, M. Stallone, G. Zhang, Y. Shen, A. Prasad, A. M. Soria,
M. Merler, P. Selvam, S. Surendran, S. Singh et al., “Granite code
models: A family of open foundation models for code intelligence,”
arXiv preprint arXiv:2405.04324, 2024.

[5] O. (2023), “GPT-4 technical report,” 2024. [Online]. Available:
https://arxiv.org/abs/2303.08774

[6] D. McCandless, T. Evans, and P. Barton. (2024) The rise and rise of A.I.
large language models (LLMs) & their associated bots like ChatGPT.
[Online]. Available: https://informationisbeautiful.net/visualizations/the-
rise-of-generative-ai-large-language-models-llms-like-chatgpt/

[7] B. Cottier, R. Rahman, L. Fattorini, N. Maslej, and D. Owen,
“The rising costs of training frontier AI models,” arXiv preprint
arXiv:2405.21015v1, 2024.

[8] S. Samsi, D. Zhao, J. McDonald, B. Li, A. Michaleas, M. Jones,
W. Bergeron, J. Kepner, D. Tiwari, and V. Gadepally, “From words
to watts: Benchmarking the energy costs of large language model
inference,” 2023. [Online]. Available: https://arxiv.org/abs/2310.03003

[9] B. Ammanath, “How to manage AI’s energy demand
— today, tomorrow and in the future,” 2024. [Online].
Available: https://www.weforum.org/agenda/2024/04/how-to-manage-
ais-energy-demand-today-tomorrow-and-in-the-future/

[10] D. A. Patterson, “Latency lags bandwidth,” Commun. ACM,
vol. 47, no. 10, p. 71–75, Oct 2004. [Online]. Available:
https://doi.org/10.1145/1022594.1022596

[11] D. S. Modha, F. Akopyan, A. Andreopoulos, R. Appuswamy, J. V.
Arthur, A. S. Cassidy, P. Datta, M. V. DeBole, S. K. Esser, C. O. Otero
et al., “Neural inference at the frontier of energy, space, and time,”
Science, vol. 382, no. 6668, pp. 329–335, 2023.

[12] A. S. Cassidy, J. V. Arthur, F. Akopyan, A. Andreopoulos, R. Ap-
puswamy, P. Datta, M. V. Debole, S. K. Esser, C. O. Otero, J. Sawada
et al., “11.4 IBM NorthPole: An Architecture for Neural Network
Inference with a 12nm Chip,” in 2024 IEEE International Solid-State
Circuits Conference (ISSCC), vol. 67. IEEE, 2024, pp. 214–215.

[13] AI@Meta, “Llama 3 model card,” 2024. [Online]. Available:
https://github.com/meta-llama/llama3/blob/main/MODEL CARD.md

[14] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. de las Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier,
L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril, T. Wang,
T. Lacroix, and W. E. Sayed, “Mistral 7B,” 2023. [Online]. Available:
https://arxiv.org/abs/2310.06825

[15] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu, and Z. Chen, “GPipe: Efficient training
of giant neural networks using pipeline parallelism,” 2019. [Online].
Available: https://arxiv.org/abs/1811.06965

[16] N. Shazeer, Y. Cheng, N. Parmar, D. Tran, A. Vaswani, P. Koanantakool,
P. Hawkins, H. Lee, M. Hong, C. Young, R. Sepassi, and B. Hechtman,
“Mesh-TensorFlow: Deep learning for supercomputers,” 2018. [Online].
Available: https://arxiv.org/abs/1811.02084

[17] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper,
and B. Catanzaro, “Megatron-LM: Training multi-billion parameter
language models using model parallelism,” 2020. [Online]. Available:
https://arxiv.org/abs/1909.08053

[18] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S.
Modha, “Learned step size quantization,” in International Conference
on Learning Representations, 2020.

[19] N. Muennighoff, Q. Liu, A. Zebaze, Q. Zheng, B. Hui, T. Y. Zhuo,
S. Singh, X. Tang, L. Von Werra, and S. Longpre, “Octopack: Instruction
tuning code large language models,” arXiv preprint arXiv:2308.07124,
2023.

[20] NVIDIA Corporation, “NVIDIA ADA GPU Architecture
(V2.01),” 2023. [Online]. Available: https://images.nvidia.com/aem-
dam/Solutions/Data-Center/l4/nvidia-ada-gpu-architecture-whitepaper-
v2.1.pdf

[21] ——, “NVIDIA Ampere GA102 GPU Architecture (V2.1),”
2021. [Online]. Available: https://images.nvidia.com/aem-
dam/en-zz/Solutions/geforce/ampere/pdf/NVIDIA-ampere-GA102-
GPU-Architecture-Whitepaper-V1.pdf

[22] ——, “NVIDIA H100 Tensor Core GPU Architecture (V1.04),”
2023. [Online]. Available: https://resources.nvidia.com/en-us-tensor-
core/gtc22-whitepaper-hopper


