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Abstract—Understanding what is normal is a key aspect of pro-
tecting a domain. Other domains invest heavily in observational
science to develop models of normal behavior to better detect
anomalies. Recent advances in high performance graph libraries,
such as the GraphBLAS, coupled with supercomputers enables
processing of the trillions of observations required. We leverage
this approach to synthesize low-parameter observational models
of anonymized Internet traffic with a high regard for privacy.

Index Terms—Internet traffic, anonymized analysis, streaming
graphs, traffic matrices, network models

I. INTRODUCTION

Anomaly detection and signature detection both play im-
portant roles in detecting adversarial activities on the Internet
and both approaches are increasingly being enabled by big
data and machine learning techniques [1]–[6]. A core chal-
lenge to creating effective anomaly detection systems is the
development of adequate models [7] of typical activity

The concept of normality It is one of the main steps to
build a solution to detect network anomalies. The question
“how to create a precise idea of normality?” is what has
driven most researchers into creating different solutions
through the years. This can be considered as the main
challenge related to anomaly detection and has not been
entirely solved yet. [2]

Other domains (land, sea, undersea, air, and space) rely on
detailed observational science models of their environment to
understand what is normal [8]–[13]. Accordingly, reproducible
observations of cyberspace [14]–[17] have been recommended
as a core foundation for the science of cyber-security

The highest priority should be assigned to establishing
research protocols to enable reproducible [observations].
[14]

Significant early results from analyzing the Internet helped
establish the emerging field of Network Science [18]–[25].
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Fig. 1. Network Traffic Messages to Anonymized Traffic Matrix. Network
traffic uses numbers to the denote source and destination addresses of
messages. Network traffic messages can be aggregated and summarized into
traffic matrices for analysis. These traffic matrices, when coupled with data
sharing agreements, can be anonymized by relabeling source addresses (e.g.,
4.4.4.4 → 1.1.1.1) and destination addresses (e.g., 8.8.8.8 → 2.2.2.2) using
various anonymization schemes.

Improving these results requires ever larger data sets. A
priority for expanded observation of the Internet is the need
to maintain a high regard for privacy.

The Center for Applied Internet Data Analysis (CAIDA)
based at the UC San Diego Supercomputer Center operates
the largest Internet telescope in the world and has pioneered
trusted data sharing best practices that combine anonymization
[26] with data sharing agreements. These data sharing best
practices include the following principles [27]

• Data is made available in curated repositories
• Standard anonymization methods are used where needed
• Recipients register with the repository and demonstrate a

legitimate research need
• Recipients legally agree to neither repost a corpus nor

deanonymize data
• Recipients can publish analysis and data examples nec-

essary to review research
• Recipients agree to cite the repository and provide pub-

lications back to the repository
• Repositories can curate enriched products developed by

researchers
In the broader networking community (commercial, federal,

and academia) anonymized source-to-destination traffic ma-
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Fig. 2. Streaming Network Traffic Quantities. Internet traffic streams of
NV valid packets are divided into a variety of quantities for analysis: source
packets, source fan-out, unique source-destination pair packets (or links),
destination fan-in, and destination packets. Figure adapted from [33].

trices with standard data sharing agreements have emerged
as a data product that can meet many of these requirements
(see Figure 1) [27]–[30]. Focusing on anonymized source and
destination addresses has helped alleviate privacy concerns
because the non-anonymized addresses of Internet packets
are already handled by many entities as part of the normal
functioning of the Internet.

While an anonymized traffic matrix provides very little
information about individual communications on a network,
the ability collect trillions of observations over years across
the Internet provides a unique opportunity for developing high-
precision, low-parameter observational models of anonymized
Internet traffic while maintaining a high regard for privacy.
These data are particularly useful for addressing the funda-
mental observational science question for determining what is
normal in a domain: Given two observers at different locations
and/or times what can they both expect to see?

The organization of the rest this paper is as follows. First,
some fundamental network quantities are presented along
with how these quantities can be readily computed from
anonymized traffic matrices. Second, the statistical properties
of these network quantities are examined from of largest
available network data sets in the world (CAIDA, MAWI,
GreyNoise, ...). Next, these statistical results are synthesized
into a low-parameter model of anonymized Internet traffic.
Finally, the papers concludes with a summary and a discussion
of potential future directions.

II. TRAFFIC MATRICES AND NETWORK QUANTITIES

Network traffic data can be viewed as a traffic matrix
where each row is a source and each column is a destination
(see Figure 1). A primary benefit of constructing anonymized
traffic matrices with high performance math libraries, such
as, the GraphBLAS [31], is the efficient computation of a
wide range of network quantities via matrix mathematics
that enable trillions of events to be readily processed with
supercomputers [32]. Figure 2 illustrates essential quantities
found in all streaming dynamic networks. These quantities are
all computable from anonymized traffic matrices created from
the source and destinations found in Internet packet headers.

TABLE I
NETWORK QUANTITIES FROM TRAFFIC MATRICES

Formulas for computing network quantities from traffic matrix At at time t
in both summation and matrix notation. 1 is a column vector of all 1’s, T is
the transpose operation, and | |0 is the zero-norm that sets each nonzero value
of its argument to 1. These formulas are unaffected by matrix permutations
and will work on anonymized data. Table adapted from [34].

Aggregate Summation Matrix
Property Notation Notation
Valid packets NV

∑
i

∑
j At(i, j) 1TAt1

Unique links
∑

i

∑
j |At(i, j)|0 1T|At|01

Link packets from i to j At(i, j) At

Max link packets (dmax) maxij At(i, j) max(At)

Unique sources
∑

i |
∑

j At(i, j)|0 1T|At1|0
Packets from source i

∑
j At(i, j) At1

Max source packets (dmax) maxi
∑

j At(i, j) max(At1)
Source fan-out from i

∑
j |At(i, j)|0 |At|01

Max source fan-out (dmax) maxi
∑

j |At(i, j)|0 max(|At|01)
Unique destinations

∑
j |

∑
i At(i, j)|0 |1TAt|01

Destination packets to j
∑

i At(i, j) 1T|At|0
Max destination packets (dmax) maxj

∑
i At(i, j) max(1T|At|0)

Destination fan-in to j
∑

i |At(i, j)|0 1T At

Max destination fan-in (dmax) maxj
∑

i |At(i, j)|0 max(1T At)

The network quantities depicted in Figure 2 are computable
from anonymized origin-destination traffic matrices. It is com-
mon to filter network packets down to a valid subset of packets
for any particular analysis. Such filters may limit particular
sources, destinations, protocols, and time windows. At a given
time t, NV consecutive valid packets are aggregated from the
traffic into a hypersparse matrix At, where At(i, j) is the
number of valid packets between the source i and destination
j. The sum of all the entries in At is equal to NV∑

i,j

At(i, j) = NV

All the network quantities depicted in Figure 2 can be
readily computed from At using the formulas listed in Ta-
ble I. Because matrix operations are generally invariant to
permutation (reordering of the rows and columns), these
quantities can readily be computed from anonymized data.
Furthermore, the anonymized data can be analyzed by source
and destination subranges (subsets when anonymized) using
simple matrix multiplication. For a given subrange represented
by an anonymized hypersparse diagonal matrix Ar, where
Ar(i, i) = 1 implies source/destination i is in the range, the
traffic within the subrange can be computed via: ArAtAr.
Likewise, for additional privacy guarantees that can be imple-
mented at the edge, the same method can be used to exclude
a range of data from the traffic matrix

At −ArAtAr

One of the important capabilities of the award-winning
SuiteSparse GraphBLAS [31] library is direct support of
hypersparse matrices where the number of nonzero entries is
significantly less than either dimensions of the matrix [36]. If
the packet source and destination identifiers are drawn from
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Fig. 3. Scaling with Packet Window Size. Network quantities vary with packet window size NV . This example is derived from 100 billion packets collected
at a large enterprise gateway. (left) Unique external sources seen over time as a fraction of total packets for different window sizes illustrating the decreasing
uniqueness as window size increases from NV = 217 to 227. (middle) Data on the left divided by N

4/5
V indicates that the number of unique sources is

proportional to NV /N
4/5
V = N

1/5
V . (right) Scaling of other network quantities from the same data set (see Table II in [34]): unique sources ≈ 5×N

1/5
V ,

unique destinations ≈ 2×N
1/2
V , and max link packets ≈ 0.03×N1

V . [Note: while these scaling relationships are broadly observed the specific parameters
are often site specific but stable over time [34], [35].]

a large numeric range, such as those used in the Internet pro-
tocol, then a hypersparse representation of At eliminates the
need to keep track of additional indices and can significantly
accelerate the computations [37].

III. INTERNET STATISTICAL PROPERTIES

When considering what is normal in a particular domain
from an observational science perspective a core question to
address is

Q Given two observers at different locations and/or times
what can they both expect to see?

Answering this question sets the foundation for observational
reproducibility that is essential for scientific understanding. To
simplify the investigation in the specific context of Internet
traffic the above question can be decomposed into several
narrower questions that can be explored individually

Q1 Given a sample of NV Internet packets what are the
expected values of various network quantities?

Q2 What is the probability of seeing a specific value of a
network quantity?

Q3 Having seen a source of Internet packets what is the
probability of seeing that source at a later time?

Q4 What is the probability that two observers will see the
same source at a given time?

Q1 deals with number of packets or the size of a packet
window in a given sample of network data. Q2 focuses on
the probability distributions obtained from the histograms
of the network quantities. Q3 deals with the temporal self-
correlations within a specific Internet traffic sensor while Q4
deals with the temporal cross-correlations of separate Internet
traffic sensors.

Exploring these questions requires big data. The subsequent
analysis draws from the following Internet traffic data sets
which are among the largest available for scientific research

• CAIDA Telescope: over 40 trillion mostly malicious
packets collected on an Internet darkspace over several
years [35]

• MAWI: several billion mostly benign packets collected
at multiple sites as part the day-in-the-life of the Internet
project [33], [38]

• GreyNoise: hundreds of millions of mostly malicious web
interactions collected over several years from thousands
of honeypot systems spread across the Internet [39], [40]

• Enterprise gateway: over 100 billion mostly benign pack-
ets collected at a large organization [34]

A. Sample Window Size

One of the first questions encountered when analyzing
Internet traffic is how many samples (packets) to collect and
at what level of granularity. It is common to filter network
packets down to a valid subset of packets for any particular
analysis so that at a given time t, NV consecutive valid packet
have been collected for analysis in a traffic matrix. Statistical
fluctuations between samples are significantly reduced if NV

is held fixed and the sample time window is allowed to vary.
As NV increases, the network quantities in Figure 2 and

Table I will all increase. How will the network quantities
increase as a function of NV ? For small values of NV

starting at 1 the network quantities may increase linearly. For
sufficiently large values of NV the packets may fill the entire
allowed range of sources and/or destinations of the network
sensor and the network quantities may level off. Exploring
this question with the various large data sets indicates that for
intermediate values of NV the network quantities are often
proportional to

Nγ
V

where 0 ≤ γ ≤ 1. Figure 3 illustrates a specific example
derived from 100 billion packets collected at a large enterprise
gateway [34]. These scaling relationships are broadly observed
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Fig. 4. Power Law Distribution of Network Quantity Probabilities. (top) Probability distributions of 5 representative measured network quantities (source
packets, source fan-out, link packets, destination fan-in, and destination packets) spanning different locations, dates, and packet windows from the multi-billion
packet MAWI data set. Blue circles are measured data with ±1-σ error bars. Black lines are the best-fit modified Zipf–Mandelbrot models with parameters
δ and λ. (bottom) Model fit parameters of the same 5 network quantities for 350 measured probability distributions for all locations, times, and sample
windows sizes in the MAWI data sample; illustrating the relatively stability over time of model parameters at a given site. Figure adapted from [33], [38].

with the specific values of the parameters being site specific
but stable over time [34], [35].

B. Probability Distributions

Perhaps one of the most significant early results from ana-
lyzing the Internet, which helped establish the emerging field
of Network Science, was the observation that many network
quantities follow a power-law or heavy-tail distribution [24],
[41]. In terms of Internet traffic, an example would be that
a few destinations on the Internet receive packets from many
sources while most destinations receive packets from a few
sources. This question is readily explored by the looking at the
histograms or probability distributions of network quantities
computed from anonymized traffic matrices. The availability
of larger data sets have allowed the observations of these
probability distributions to become more precise [33], [38].
Specifically, the probability of a particular network quantity

having a value or degree d is often well-described by the Zipf-
Mandelbrot distribution

1

(d+ δ)λ

where typically −1 ≲ δ ≲ 3 and 1 ≲ λ ≲ 3. Given sufficient
observations, δ and λ can be determined with high-precision.
Figure 4 illustrates the Zipf-Mandelbrot behavior observed
from billions of packets from the MAWI data set [33], [38].
Similar to the window size scaling relationships, the Zipf-
Mandelbrot distribution is broadly observed with the specific
values of the parameters being site specific but stable over
time.

Historically, it is worth noting that initial interest in these
distributions focused on the power-law parameter λ, as this pa-
rameter described the behavior of the largest and most popular
sources on the Internet [24]. More recently δ has emerged as
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maximum time thalf = β1/α are shown illustrating the significant difference between benign and malicious traffic. Figure adapted from [40].

a way of describing large numbers of less popular sources that
may be collectively involved in adversarial network activity.

C. Temporal Self-Correlations

If an observer sees a source on the Internet what is the
probability that the source will be seen again at a later time?
This is the essential question that self-correlations seek to
answer. The network traffic data sets can be used to address
this questions by measuring the probability of seeing a source
again at time t. Figure 5 illustrates these probabilities for the
CAIDA and GreyNoise data sets over months and years [40].
Intriguingly the source self-correlations are well approximated
by the modified Cauchy distribution

β

β + tα

where typically 0 < α ≲ 1 and β > 0. These parameters
are site specific and differ significantly between benign and
malicious data. The modified Cauchy distribution can be
characterized by the time it takes for the probability to drop
to one half

thalf = β1/α

In the case of the GreyNoise benign data this timescale is
years while the malicious data has much shorter times scales
of days, hours, and minutes.

D. Temporal Cross-Correlations

Similar to self-correlations, it is likewise possible to explore
the probability that a second observer will see a source at the
same or a different time. If the self-correlations of two network
sensors are observed to follow a modified Cauchy distribution
it is not surprising that their cross-correlations in time are
also observed to follow a modified Cauchy distribution [39].
Perhaps more fundamental is the probability that a source
seen by one observer will even be seen by another observer.
Figure 6 plots the probability of a source seen by the CAIDA
telescope also being seen in the same month by the GreyNoise
honeyfarm. This probability is strongly dependent upon the
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number of packets the source has sent to the CAIDA telescope
and is well approximated by the formula

log2(d)

log2(N
1/2
V )

for d < N
1/2
V . Simply put, if a source emits a lot of packets

it is more likely to be seen.

IV. MODEL SYNTHESIS

The empirically motivated models from the previous section
allow the core question to be refined around the variables
that directly impact the observability of network traffic. These
variables include the window size NV , the number of packets



d observed from a source, and the time t between observations.
The more pricess question then becomes

Q Given a window with NV incoming packets, what is the
probability of a source sending d packets being observed
by a second observer at time t

Based on prior observations, the empirical formula for this
probability can be hypothesized to be proportional to

Nγ
V

1

(d+ δ)λ
β

β + tα
log2(d)

log2(N
1/2
V )

where γ, δ, λ, β, and α are site specific parameters that tend
to be stable over time.

The above expression is an empirically motivated formula.
Ideally, theoretical models derived from underlying first-
principles will be found which are then approximated by the
above formula under appropriate conditions. While such a
theoretical model does not yet exist, certain logical deductions
can be made about the reasonableness of the terms in the above
formula.

By definition network quantities grow monotonically with
window size and the term Nγ

V is one the simplest formu-
las satisfying this condition. The power-law dependence of
network quantities on their observed value d has been well-
observed and the successful preferential attachment model
remains a reasonable underlying theoretical framework for
these observations [24]. Temporal self-correlation and cross-
correlation measurements require continuous long-duration
coeval observations from multiple observers and are subse-
quently rarer. The correlation function is defined to have a peak
value of 1 at t = 0 and it seems intuitive that the probability
of seeing a source again would slowly drop-off over time.
The modified Cauchy distribution satisfies these conditions.
Finally, it is also intuitive that the probability of an observer
seeing a source is related to the ratio of the number of packets
from the source and the size of the observation window.

V. CONCLUSIONS AND FUTURE WORK

Modern Internet telescopes and high-performance sensors
are capable of collecting trillions of observations. Supercom-
puters and high performance graph analysis libraries, such
as the GraphBLAS, allow these big data observations to be
analyzed to develop high-precision, low-parameter observa-
tional models of Internet traffic. These models provide detailed
predictions on the visibility of Internet sources of a given
intensity over time and the likelihood such sources will be
seen by an observer at a different location. For a given location
the parameters of the model tend to be stable over time. Using
these models, it is possible to predict in detail many statistical
properties of Internet traffic seen at a given location and
time. These predictions can assist in correctly placing network
sensors by comparing what is expected with what is observed,
ensuring zero trust configurations are maintained by revealing
when networks have changed, and detecting anomalies due to
malicious activity.

Going forward there should be an expansion of Internet
observatories like CAIDA and MAWI. The globe currently

depends upon a small dedicated community to operate and
maintain current network observatories. These lookouts are
our only means for obtaining consensus empirical answers to
critical questions. These capabilities should be significantly
expanded. Furthermore, the underlying network science at
scale needs enhancement. Understanding of the underlying
processes in any field is discovered by painstaking science.
Early efforts on small data sets revealed significant new
discoveries and established the field of Network Science [24].
Current observations are a much larger and are calling out for
scientific exploration.
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