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Abstract—Future telecommunication networks are expected to
deliver exponential performance increases across all domains
and with the increased prevalence of real-time IoT devices,
greater emphasis is placed on reducing the latency of network
links. Traditionally, wireless networking requirements have been
fulfilled primarily through use of the RF spectrum, which is
rapidly approaching saturation and will eventually very likely
become insufficient to meet all future network demands. The
optical spectrum however offers enormous amounts of unre-
stricted and unallocated bandwidth. Efficient high-modulation
indoor LED lighting fixtures could potentially integrate with
and complement the RF spectrum for short to medium distance
low latency applications. The Fast Fourier Transform (FFT) is a
ubiquitous operation in many communication network topologies.
Typically the FFT is computed via serial methods which are
optimised for low resource usage, however these architectures
fall short of the Ultra Low Latency (ULL) requirements for
optical wireless communication. Fully parallel FFT computa-
tions can achieve nanosecond latency and tens of gigasamples
of throughput, far surpassing serial methods. However, their
prohibitively high resource utilisation has limited their practical
use. In this work, we introduce a hardware optimised, fully
parallel architecture for optical wireless communication which
leverages hermitian symmetry characteristics within real-valued
optical signals and properties of the discrete DFT to reduce
the footprint of a fully parallel FFT on an FPGA. The final
architecture is implemented on an AMD RFSoC2x2 and requires
only 3 clock cycles to compute a 256-point real-valued FFT, a
290 fold reduction compared to an equivalent serial model. The
design was tested at 122.88 MHz, resulting in a 24 nanosecond
latency, demonstrating its potential for use in optical wireless
communication and other high-performance 5G+ networks.

Index Terms—Fast Fourier Transform, Hardware Optimisa-
tion, FPGA, Low Latency Communication, Optical Wireless
Communication
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I. INTRODUCTION

THE need for Ultra Low Latency (ULL) architectures has
grown substantially over the past two decades, driven

primarily by the explosive increase in the number of real-
time Internet of Things (IoT) devices. Remote access/control
or time-critical, multi-endpoint synchronisation applications
require reliable data transfer and could potentially benefit
much more from a sub-1ms ULL link over 100 Gbit/s of
data throughput. The RF spectrum has also become very con-
gested, with limited available bandwidth driving up operating
costs. Achieving ultra-high data rates (10s to 100s of Gbit/s)
at higher RF bands presents significant challenges for RF
engineers, such as propagation path loss or increased signal
processing complexity. The optical spectrum encompasses a
vast range of frequencies, from infrared (IR) to ultraviolet
(UV), and also includes the visible light spectrum. Recent
research demonstrated that arrays of solid-state lighting fix-
tures are capable of gigabit-per-second data transmission using
Light Emitting Diodes (LEDs) as the source and photodetec-
tors as receivers [1]. Thus, optical wireless systems can be
integrated inexpensively with existing LED lighting elements
in modern buildings, requiring minimal extra infrastructure to
implement. Data transmission using LEDs is limited by one
key drawback: they are an incoherent source of light, which
bears no discernible phase information. This limits modulation
techniques to being both positive and real-valued. A number of
single-carrier techniques exist for optical communication, such
as on-off keying, pulse amplitude modulation, and pulse width
modulation. However, the dispersive nature of the optical chan-
nel requires more complex equalisation techniques with longer
convergence times, increasing latency. Real-valued multi-
carrier Orthogonal Frequency Domain Multiplexing (OFDM)
based techniques, such as asymmetrically clipped optical
ACO-OFDM [2], DC offset DCO-OFDM [3], and unitary



checkerboard preceded UCP-OFDM [4], are tailored models
of OFDM commonly used in RF to take advantage of its
inherent multi-path resistance and less complex equalisation
that only requires single-tap equalisers. The aforementioned
OFDM models infer Hermitian symmetry of the data frames,
producing an FFT that is symmetric, with each side equal to
the complex conjugate of the other [5]. This can be leveraged
to reduce the computational complexity and the number of
operations within the digital signal processing components of
optical wireless transceivers. In [6], this behaviour is used to
reduce the overall number of sub-carriers within the signal to
increase spectral efficiency. The primary focus of this work is
on the Fast Fourier Transform (FFT) and its inverse (IFFT).

TABLE I
CLOCK CYCLE LATENCY OF RADIX-2 AND RADIX-4 MODELS OF XILINX

FFT V9.1 IP VS. HYPOTHETICAL PARALLEL EQUIVALENTS

FFT size R-2 Serial R-4 Serial R-2 Parallel R-4 Parallel

16 141 82 4 2
64 429 248 6 3

256 1677 859 8 4
1024 7341 3438 10 5
4096 32973 14465 12 6

Typically, off-the-shelf FFT solutions, such as the Native
FFT v9.1 IP block from AMD [7], infer a serial computation
of the FFT with latency in the hundreds to thousands of clock
cycles. Parallel computation of the FFT, where all samples are
read and processed simultaneously, significantly reduces the
clock cycle latency (see Table I). While serial computation
of the FFT achieves the lowest resource usage, full parallel
architectures are capable of tens of gigasamples of throughput
with sub-100-nanosecond latency that equivalent serial models
are incapable of producing with current FPGA fabric speeds.
A fully parallel architecture requires just one extra clock cycle
per additional radix stage but consumes exponentially more re-
sources as the FFT size increases due to the growing number of
stages and number of butterflies/dragonflies in each stage [8].
This is a prohibitive factor for implementations of full parallel
architectures in FPGA applications [9], [10]. In [11], a 256-
point 5-bit input full parallel FFT is demonstrated but required
over 200,000 Look-Up Tables (LUTs). Our research details
a full parallel FFT for optical wireless communication with
a number of optimisation strategies that significantly reduce
fabric resources. In summary, the contributions of this paper
are:

• A 3 clock cycle latency, 256-point 31Gsps FFT for
IM/DD systems capable of running on relatively inex-
pensive hardware, such as the AMD Xilinx RFSoC2x2.

• The minimisation of FPGA resource usage through lever-
aging Hermitian symmetry within the real-valued DFT.

• Experimentally validated solutions compared with float-
ing point references.

• A proposed architecture which is validated at a global
clock frequency of 122.88MHz to achieve a latency of
24 nanoseconds.

II. BACKGROUND

A. Ultra Low Latency by Parallel Computation

FPGA fabric allows for concurrent parallel operations that
massively reduce latency and increase data throughput. Many
applications have taken advantage of this, including [12] and
[13], which demonstrate parallel FPGA implementations of
pulse amplitude modulation transmitters and receivers. These
works achieve massive amounts of data throughput that an
equivalent serial model would be incapable of, with the fastest
operational clock frequency of FPGAs being only in the 100s
of MHz [12]. Parallel FFT implementations have demonstrated
very low latency and high throughput architectures, albeit with
a prohibitively high resource cost [8], [11].

By utilising the simplified serial processes of mutually
independent functions, F , such as the operations within a FFT,
and running them concurrently, the latency of a system can
be greatly reduced by the number of paths, P , available. A
sub-400ns optical wireless transmitter instantiated on an AMD
RFSoC2x2 has been demonstrated [14], where the number of
clock cycles, CC, per process is sliced from a fully serial
system to a fraction of the clock cycles which is determined
by P in a partially parallelised design. For any parallelised
design with P paths, this equates to:

CCtotal =
⌈∑N

n=1 CCF

P

⌉
, (1)

where CCF is the number of clock cycles for any given
nth sample of N functions, F . The needs of a design can be
scaled to the hardware requirements of the specified platform,
but there is a trade-off between latency, resource utilisation and
precision. [15] explores this relationship for FPGA implemen-
tations of FFTs while presenting a flexible radix algorithm that
achieves a 14% decrease in latency compared to the Xilinx
FFT IP core albeit with an increased resource cost. These
kinds of trade-offs are ubiquitous within the field of FPGA
application engineering whereby any increase in performance
or accuracy usually comes with a larger resource cost or when
some accuracy is sacrificed to conserve resources. In this
paper, this trade-off is investigated while targeting ULL in full
parallel FFT architectures without incurring massive resource
costs or consequential reduction in accuracy.

B. Radix-4 Fast Fourier Transform

X[k] =

N−1∑
n=0

x[n]W kn
N

WN = e−j 2π
N

(2)

The formula for calculating an N -point DFT, defined in (2),
requires N2 complex multiplications and N(N − 1) complex
additions. This N2 complexity causes larger DFTs to become
very computationally expensive. The Cooley-Tukey FFT [16]
is a highly efficient technique for reducing the number of
operations by decimating the DFT into multiple shorter DFTs
(see Fig. 1 and Fig. 2).



Fig. 1. Radix-2 Vs Radix-4 stages for 16-Point DIF FFT

Fig. 2. Radix-4 Dragonfly for DIF FFT

The FFT also leverages simplifications, such as the period-
icity of WN , often referred to as the twiddle factor matrix, to
reduce complexity. The decimation of the DFT is typically in
orders of 2, 4, 8, etc. Higher order radix DFTs decrease com-
putation cycles but increase complexity and resource usage.

Decimation is the process of breaking down the DFT into
smaller DFT’s whereby A Radix-N FFT is broken down
into N point DFT’s or butterfly/dragonflies (see Fig. 2 for
radix-4 dragonfly). This decimation is conducted using two
main approaches, decimation in time (DIT) or decimation in
frequency (DIF). For a DIT FFT, the input time-domain indices
are in bit reversed order, while in a DIF FFT, the output
frequency-domain indices are in bit reversed order (see Fig. 1).
The order in which the butterfly/dragonfly stages are connected
is also reversed. Both the fixed point DIT and DIF suffer from
quantisation noise deriving from finite word length effects,
but due to the different order of calculation, the DIT and
DIF FFT produce differing noise effects. The DIT algorithm
produces an almost symmetrical error spectrum while a DIF
FFT results in an error spectrum that is asymmetrical with
increased errors in its lower half [17]. The individual errors
of the DIT method are larger than that of a DIF calculation
with the asymmetry weighing the error towards the lower half
producing a more accurate upper half (see Fig. 3). In certain
applications, such as real-valued signals with symmetric DFTs,
it may be advantageous to use a conjugate mirror of the upper
half of a DIF FFT discarding lower half. A DIF approach is
chosen here due to its versatility and higher overall accuracy.

Fig. 3. Errors Harmonics for DIT and DIF FFT, Szolik et al. [17]

III. HARDWARE DESIGN

The 256-point radix-4 FFT this paper details is implemented
on the AMD RFSoC2x2 FPGA. Traditionally, serial imple-
mentations of radix FFTs instantiate and reuse one single but-
terfly/dragonfly for all FFT stages [7]. For fully parallel FFTs,
every dragonfly in every stage is instantiated simultaneously.
The number of dragonflies Dcount in an N -point fully parallel
radix-4 FFT is

Dcount =
log4N ×N

4
(3)

The very large number of dragonflies necessitates careful se-
lection of any internal parameters or input-output word lengths
to ensure optimum accuracy while not over utilising the fabric
with redundant or unnecessary register width. This section
details the hardware architecture of a 256-point full parallel
radix-4 FFT including A) The bit resolution of the twiddle
factor expansion, B) Internal register width selection and C)
A process of back scaling at the output of each dragonfly
stage, curtailing the register word width expansion throughout
the FFT. A simple low latency rounding compensation of the
truncation induced by back scaling is also demonstrated.

A. Twiddle Factors

The twiddle factor matrix, or the expansion/phase factors
for an N -point FFT defined in Eq. (4) are the multiplicative
coefficients within the FFT. The sequential, compound fixed-
point multiplication increases the required internal register
widths to retain the output after each stage. Longer expansion
factor word lengths provide increased precision but require
increasingly more fabric resources, especially with full parallel
architectures wherein all dragonflies are instantiated simulta-
neously. An expansion factor word length of 10 bits equivalent
to the FFT input word length was chosen and provided a mean
absolute error of 1.4e−3 compared to a floating point reference
twiddle factor matrix.

W kn
N = e

−2πi
N kn (4)



B. Internal Register Widths

Similar to the twiddle factors, to ensure most efficient use
of resources, any internal register widths should be selected
appropriately such that no redundant bit width is allocated. For
an N -point DFT with a fixed point input sample word length
n bits, ωmax the maximum possible transform value is:

ωmax = N(2n − 1) (5)

A real-valued signal has a symmetric DFT mirrored about
DC. Thus in this case the maximum transform value will
appear as two mirrored impulses with:

ωmax =
N(2n − 1)

2
(6)

Translating this to the required register width, From Eq. (6)
and, for simplification, allowing 2n − 1, the maximum value
of any n length fixed point word equal to 2n, a generalised
equation to calculate the output width Owidth required for
an N -point real-valued DFT with input sample word length
Iwidth such that Owidth should not overflow, is defined as:

Owidth = log2(N) + Iwidth − 1 (7)

As shown in Fig. 2, the dragonfly is essentially a miniature
4-point DFT. Using Eq. (7) the 4-point dragonfly DFT requires
only one extra bit from input to output. The dragonflies in each
stage of an FFT however are scaled by the twiddle factors. The
expansion the twiddle factor multiplication has on the required
output register width of the dragonflies within a multiplication
stage is equal to the addition of the twiddle factor word length.
From Eq. (7), for a 4-point dragonfly DFT with twiddle factor
word length, Wwidth, the output register word length, Owidth,
for a multiplication stage dragonfly is:

Owidth = 1 + Iwidth +Wwidth (8)

The expansion within the parallel FFT induces considerably
more resource usage with each sequential stage requiring all
internal registers in every dragonfly to grow by (Wwidth+1).
In this work Wwidth = 10 equating to 11 bits per stage.

C. Post Multiplication Stage Back Scaling

Scaling and truncation is an operation used to conserve
resources in many FPGA applications. A full scale expansion
of the parallel FFT achieves the most accurate fixed point
transform. However, the design consumes massive amounts
of fabric resources. To reduce the expansion of the twiddle
factor multiplication, back scaling is applied by dividing all
output samples of each multiplication stage by the maximum
absolute value in the twiddle factor matrix. Dividing by this
value normalises the scale of the signal equivalent to a floating
point FFT. A smaller back scale allowing for larger expansion
can provide greater precision but requires more resources.
The maximum value however remains the maximum absolute
twiddle factor as anything larger over scales the signal greatly
reducing precision.

Back scaling by division does not translate well to hardware
however, especially when targeting ULL and low resource
requirements. A right bit shift of S for division by 2S is an
appropriate substitution. Using Eq. (8), Owidth for a dragonfly
with Iwidth, Wwidth, and now S, the bit shift equivalent to
dividing by the maximum absolute value of a signed twiddle
factor matrix with n bit word length for S = n− 1 is

Owidth = Iwidth +Wwidth − S + 1. (9)

In this paper, with Wwidth = 10 and S = 9, the expansion
of the input width Iwidth to Owidth of the dragonflies stages
has been reduced to 2 bits. The final stage of a radix-4 FFT
only consists of addition so no back scale here is necessary.
Bit shifting is still not a perfect equivalent to division however
as it truncates the remainder bits, imitating a divide then floor
operation which induced abnormal behaviour around DC and
considerably exaggerates the lower half errors of the DIF
FFT (See Fig. 3 and Fig. 8). When scaling back at each
stage, any small rounding error can propagate via chained
truncation and multiplications, magnifying throughout the FFT
and thus reducing overall accuracy. Rounding methods such
as convergent rounding is traditionally employed at a cost
of some latency. A very simple method of rounding can be
achieved by leveraging the inherent format of 2’s complement
notation, by adding the single most significant bit of the
truncated remainder after bit shifting. The only case for this
method where rounding occurs in the wrong direction is where
division results in exactly a negative one-half remainder. While
this method of fixed point rounding has a very small bias
towards rounding up, the effect is largely negligible and has
the added benefit of not requiring any extra clock cycles to
compute and only induces a small resource overhead cost.

IV. EXPERIMENTAL RESULTS

A number of architecture models were implemented on the
AMD ZYNQ UltraScale+ RFSoC2x2 XCZU28DR FPGA with
a global clock frequency of 122.88MHz. The performance of
each 256-point FFT model is validated in terms of Normalised
Mean Square Error (NMSE) between the output of the on-chip
fixed-point FFT and a floating point reference in MATLAB for
a set of 20, 256-point 10 bit word length input samples.

A. Architecture Model Details

This design computes each stage in one clock cycle with
the final addition/subtraction stage consolidated with the last
multiplication stage for a 3 clock cycle latency of the 256-point
FFT. This latter option could potentially impact timing closure
for larger designs however. In addition, with the instantiation
of all dragonflies in each stage, the architecture also allows
for continuous throughput with each stage operating concur-
rently with a new FFT read and output produced every clock
cycle providing a throughput of 31GSps at 122.88MHz (see
Eq. (10)) [18].

CC =
(SampleIN )(SampleRATE)

TCLK
(10)



Fig. 4. Dragonfly stage schematic with internal register widths, Top row =
scaled, Bottom row = full scale with scale back at last stage

The hardware test bench shown in Fig. 5 is composed of
three main modules; A generator block that cycles through
20 256-point data frames. The FFT module itself is instan-
tiated with configurable parameters for scale back intensity
and rounding type (more detail on these below). Finally, a
combiner at the FFT output is also included that concatenates
the output FFT samples into single real and imaginary bit
streams for probing convenience. Other modules include a
control module which sends appropriate start and reset signals
to each of the sub-modules and the Xilinx Integrated Logic
Analyser for probing the input and output samples.

Fig. 5. Hardware Test bench for RFSoc 2x2

B. Real-time Hardware Results

In this paper, 4 FFT models are investigated:
• FS: Full Scale expansion with back scaling at the very

last stage of the FFT.
• SB-NC: Scale Back at every stage with no truncation

compensation.
• SB-WC: Scale Back at every stage with truncation com-

pensation.
• SB-MNC: Scale Back at every stage with no truncation

compensation except the conjugate of the more accurate
upper half is now mirrored over lower half at output of
the FFT.

All FFT models have a 256-point 10 bit input and 17
bit output resolution derived from Eq. (7). Each FFT stage
contains 64 dragonflies with 4 stages. The per stage register
width growth defined by Eq. (9) for full scale and scale back
models is 11 and 2 bits, respectively (also shown in Fig 4).
A summary of the resource utilisation and average NMSE for
the set of 20 frames for each model is detailed in TABLE II
and Fig. 6. Block Ram utilisation not illustrated in figure for
parallel models is zero as twiddle factors are instead stored
in registers. The LUT count for the radix-4 serial method*
is obtained from a synthesized Xilinx v9.1 FFT model with
similar parameter configurations for input and twiddle factor
word length that would achieve equivalent fixed point NMSE
accuracy. All parallel computation models achieve a 290 fold
reduction in latency compared to the serial method. The LUT
usage of the FS model is significantly more than the serial
implementation, but the scaled models (SB-NC, SB-WC and
SB-MNC) reduce this to less than half while still retaining the
same latency and comparable NMSE error.

TABLE II
RESOURCE UTILISATION, CLOCK CYCLE LATENCY AND AVERAGE NMSE

OF DIFFERENT FFT MODELS

Method CC LUTs NMSE

R-4 Serial* 871 1200 -
Full Scale 3 145841 1.9× 10−6
Scale NC 3 59625 8.7× 10−6
Scale WC 3 67006 3.7× 10−6

Scale MNC 3 59962 3.9× 10−6

Fig. 6. FPGA resource utilisation of parallel models Vs. accuracy compared
to floating point references



One important point of note is that while the FS model com-
pleted implementation, routing congestion caused the design to
fail to meet timing requirements resulting in a non-functional
real-time hardware model. The LUT count is taken from the
implementation report and the NMSE of the FS model is
calculated using the HDL simulated results and thus serves
only as a reference. All other scale-back models passed timing
conditions and were implemented in hardware.

SB-NC has a much higher NMSE compared to SB-WC and
SB-MNC due to the truncation exaggerating the lower half
errors of the DIF FFT. A comparison of the NMSE of the
upper and lower halves separately for each model more clearly
illustrates this phenomenon (See Fig 7). SB-WC alleviates
the increased lower half errors equalising the signal. Fig. 8
compares the sample error between the compensated and
uncompensated back scaled models. Fig 7 also illustrates that
the upper half of SB-NC NMSE is almost equivalent to the full
width SB-WC NMSE. For a real-valued signal with symmetric
DFT such as the case with optical wireless signals, SB-MNC
can be used instead of SB-WC which takes the SB-NC model
discards the lower half and mirrors the complex conjugate
of the more accurate upper half at the output instead of using
truncation compensation which achieves almost the same level
of accuracy as SB-WC but without the extra resource cost
overhead.
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While this model is designed with real-valued optical sig-
nals in mind, it can be easily modified for complex input
signals by allowing the maximum DFT transform value equal
to Eq. (5) instead of Eq. (6), which after successive elaboration
via Eq 7-9, infers one extra bit of growth due to the asymmetry
within complex input FFTs. SB-MNC would not usable in this
case as symmetry is no longer inherent limiting options to SB-
NC, SB-WC or FS models.
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V. CONCLUSION

The increasing demand for ULL networks necessitates more
parallel signal processing methods arising due to current
speeds of FPGA fabric limiting serial processing models from
achieving the required latency and data throughput speeds
necessary for future-proofing such networks. Fully parallel
architectures offer extremely high speeds, but they have tradi-
tionally come with significant resource costs, making them
less feasible for widespread use. This paper demonstrates
a 256-point FFT that leverages hermitian symmetry within
multi carrier optical wireless signals and properties of the
discrete DFT along with a number of simple optimization
techniques to reduce resource costs by more than half for a
full parallel FFT while maintaining requisite precision. The
work presented three potential FFT models: SB-NC scale
back without truncation compensation, SB-WC scale back
with truncation compensation, and SB-MNC scale back with
mirrored upper half instead of truncation compensation for
real-valued optical signals. These models can achieve a data
rate of 31 gigasamples per second with a latency of just three
clock cycles. Importantly, these high-performance optical FFT
models are implementable on relatively inexpensive FPGA
hardware, such as the AMD RFSoC2x2. By showcasing these
models, the paper highlights the potential for highly efficient,
low-latency, and cost-effective parallel signal processing solu-
tions for optical wireless communication, paving the way for
more advanced and accessible ULL network technologies in
the future.



ACKNOWLEDGMENTS

This work was supported in part by MathWorks. The authors
would like to thank members of the Reconfigurable Comput-
ing Lab at Northeastern University as well as colleagues at
Maynooth University for useful discussions.

REFERENCES

[1] Z. Wei, Z. Wang, J. Zhang, Q. Li, J. Zhang, and H. Fu,
“Evolution of optical wireless communication for b5g/6g,” Progress in
Quantum Electronics, vol. 83, p. 100398, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0079672722000246

[2] J. Armstrong and A. J. Lowery, “Power efficient optical ofdm,”
Electronics Letters, vol. 42, pp. 370–372, 2006. [Online]. Available:
https://api.semanticscholar.org/CorpusID:44142725

[3] J. Carruthers and J. Kahn, “Multiple-subcarrier modulation for nondi-
rected wireless infrared communication,” IEEE Journal on Selected
Areas in Communications, vol. 14, no. 3, pp. 538–546, 1996.

[4] T. E. Abrudan, S. Kucera, and H. Claussen, “Unitary checkerboard
precoded ofdm for low-papr optical wireless communications,” Journal
of Optical Communications and Networking, vol. 14, no. 4, pp. 153–164,
2022.

[5] Zhang, Fuzhen, Hermitian Matrices. New York, NY:
Springer New York, 2011, pp. 253–292. [Online]. Available:
https://doi.org/10.1007/978-1-4614-1099-78

[6] C. McDonald, H. Claussen, R. Farrell, and J. Dooley, “Improved
spectral efficiency for optical wireless communications using hermitian
symmetry characteristics,” in 19th RIA/URSI Research Colloquium on
Radio Science and Communications, 2022.

[7] “Fast fourier transform v9.1 logicore ip product guide,” Amd
Xilinx, 2022. [Online]. Available: https://docs.amd.com/r/en-US/pg109-
xfft/Fast-Fourier-Transform-v9.1-LogiCORE-IP-Product-Guide
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