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Abstract—Large language models (LLMs) demonstrate strong
capabilities across various tasks. However, in latency-sensitive
scenarios, a small batch or even one batch is usually required.
This leads to the prefill and the decode stage of LLM infer-
ence being computational and memory bottlenecks, respectively.
Therefore, it is difficult for a homogeneous FPGA or GPU system
to simultaneously address different computational bottlenecks in
different stages of LLM inference, resulting in long prefill latency
on FPGAs and low utilization during the decode stage on GPUs.

This paper proposes GLITCHES, GPU-FPGA LLM inference
through a collaborative heterogeneous system. In this paper, we
analyze the different characteristics of GPUs and FPGAs and
employ GPUs for the prefill stage and FPGAs for the decode
stage, leveraging the strengths of GPUs and FPGAs. Based on
HBM profiling results, we apply the data prefetching technique
to further improve the off-chip memory bandwidth utilization
during the decode computations on FPGAs. Experiments demon-
strate that a GLITCHES heterogeneous LLM inference system
with an A100 GPU and seven U280 FPGAs achieves a 1.28/1.34
times improvement in system throughput and a 2.38/1.90 times
improvement in cost efficiency compared to a homogeneous
system with 8-card A100/V100S GPUs.

Index Terms—Large language model, Heterogeneous system

I. INTRODUCTION

Large language models (LLMs), such as ChatGPT, have
gained significant attention over the past few years and have
demonstrated strong capabilities across a variety of tasks [1]–
[3]. In latency-sensitive scenarios, like real-time chatbots [4],
[5] or code completion applications [6]–[8], it is crucial
to minimize the inference latency to guarantee user experi-
ence [9]. Therefore, small batch inference, even with only
one batch, is commonly used in these scenarios. Numerous
inference frameworks [10]–[12] and hardware designs [13],
[14] have emerged to accelerate LLM inference.

LLMs are based on the transformer architecture [15],
and the inference process can be divided into two stages:
prefill and decode. The prefill stage understands the input
prompts and extracts the information, while the decode stage
generates the response token by token. However, from the
computational perspective, the prefill and decode stages are
intrinsically different. The prefill stage processes all input
tokens simultaneously. Thus, the computation mainly consists
of matrix-matrix multiplication operations, with computing
being the performance bottleneck. Meanwhile, the decode
stage processes only one token at a time (with batch size
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one), and its computation mainly consists of matrix-vector
multiplications, which leads to severe bandwidth bottlenecks.

The different characteristics of the prefill and decode stages
lead to inefficiency in LLM inference on existing hardware
platforms like GPUs or FPGAs, failing to fully exploit the
performance of the hardware platforms. For GPUs, the matrix-
matrix multiplication in the prefill stage can effectively utilize
the high computing power and parallelism of modern GPUs.
However, the decode stage is severely limited by off-chip
memory bandwidth [16], resulting in extremely low utilization
of the GPU computing power, with only 0.19% on the A100
GPU. At the same time, the power consumption of GPUs is
usually high, with a typical power of 256.6 W for the LLM
of inference on an NVIDIA A100 GPU. For FPGAs with
specific hardware architectures, current FPGAs equipped with
high-bandwidth memory (HBM) (e.g., Xilinx Alveo U280 and
Versal VHK158) have been proven to have the potential to
outperform GPUs in the decode stage with significant cost
efficiency and energy efficiency [14]. However, due to the
limited computational resources and frequency of FPGAs,
FPGAs encounter computing bottlenecks in the prefill stage,
resulting in long first token latency [13], [16]. For example,
the latency to pre-fill 1536 tokens on the U280 FPGA is about
5 seconds, 28.44 times that of an A100 GPU. In addition, we
found that the HBM bandwidth in current FPGA-based LLM
accelerators can be additionally developed to further enhance
the inference performance of the decode stage.

To address these challenges, we propose a heterogeneous
system consisting of FPGAs and GPUs called GLITCHES to
realize end-to-end LLM inference with higher performance
compared to a homogeneous system. The key contributions of
this paper are as follows:

• Leveraging the distinct characteristics of GPUs and FP-
GAs, we propose a heterogeneous LLM inference system
that maps prefill computations to GPUs and decode com-
putations to FPGAs, enhancing system throughput and
cost efficiency by up to 1.34 and 2.39 times, respectively.

• Based on the HBM profiling results on FPGAs, we
propose a data prefetching and memory access merging
technique, improving the decode stage inference perfor-
mance by up to 1.20 times on FPGAs.

• Based on the throughput of GPUs and FPGAs, we
propose a scalable heterogeneous system solution for
multiple GPUs and FPGAs within a single node, enabling
data transmission during LLM inference.
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Fig. 1. Structure of a transformer block in the LLaMA series of LLMs during
(a) the prefill stage and (b) the decode stage.

II. BACKGROUND AND RELATED WORK

A. Background

Transformer-based LLMs. Popular LLMs today are com-
monly built on decoder-only transformer architecture [15],
consisting of multiple transformer blocks. Input prompts are
first converted to tokens and then embedded into input hidden
states and fed to transformer blocks. The hidden states, after
being processed sequentially by all the transformer blocks, go
through a linear layer called lm head to get the logits of the
next token. By sampling the distribution of logits, the index
of the next token can be obtained.

Taking the popular LLaMA series of LLMs [17] as an
example, the structure of each transformer block is shown in
Fig. 1. Each transformer block contains a self-attention block
and a feed-forward network (FFN). The self-attention block
first normalizes the input hidden state and then obtains the
query (Q), key (K), and value (V ) by linear projection layers.
The rotary position embedding (RoPE) is then applied to Q
and K, then the self-attention computation is performed within
each attention head, as shown in Eq. 1.

Attention(Q,K, V ) = Softmax
(
QKT

√
d

)
V (1)

Notably, the attention computation grows quadratically with
the input token length N , so the computation increases signif-
icantly when the input token is longer. The FFN consists of
several linear projection layers, nonlinear activation functions,
and element-wise computation to obtain the output hidden
states.

As shown in Fig. 1(a), in the prefill stage, LLMs process
all the input tokens, computing the corresponding K cache
and V cache to obtain the logits of the first generated token.
At this point, the input shape of each transformer block is
(bsz,N, d), where bsz stands for the batch size, N stands for
the input token length, and d represents the hidden dimension
size, so the computations in the prefill stage are matrix-matrix
multiplications, where the matrix size is determined by N .

As shown in Fig. 1(b), the input shape of each transformer
block is (bsz, 1, d) since the token generated in the previous
prefill or decode is used as an input during this round of
decode. In each transformer block, the K and V of the
current token are concatenated with the KV cache, and then
self-attention computation is performed. Consequently, in the
decode stage, we have N = 1, and computations are memory-
bound matrix-vector multiplications.

B. Related Work

GPU-based Inference Engines. GPUs have now become
the most popular hardware for LLM inference. Many GPU-
based inference engines have emerged, such as FlashAtten-
tion [18], FlashDecoding [19], DeepSpeed [11], FlexGen [20],
TensorRT-LLM [12], vLLM [10], and FlashDecoding++ [21].
These works improve the performance of LLM inference by
optimizing computational graphs, attention and FFN kernels,
etc., to fully utilize the hardware resources on GPUs. However,
the decode stage is heavy memory bottlenecked in small batch
scenarios, leading to low utilization and difficulty in leveraging
the high computing power of modern GPUs.
FPGA-based Accelerators. FPGA-based LLM accelerators
can be divided into single-FPGA based [14], [16] and multi-
FPGA designs [13], [22]. These works design specialized
hardware architectures for efficient LLM inference, focusing
on accelerating the decode stage. Most of them design efficient
matrix-vector multiplication architectures, utilizing the multi-
channel HBMs on FPGAs for higher off-chip memory band-
width as much as possible. However, due to the limited DSP
resources on FPGAs, the peak computing power of current
HBM-equipped FPGAs struggles to meet the computational
demands of the prefill stage for long input scenarios (e.g.,
longer than 2k tokens), resulting in very long first token
latency for FPGA-based LLM inference.

III. SYSTEM ARCHITECTURE OF GLITCHES

A. Challenge

The prefill and decode stages of LLM inference exhibit dis-
tinctly different computational characteristics. Prefill compu-
tations are matrix-matrix multiplications with high data reuse,
demanding massive computing power. Decode computations
are matrix-vector multiplications, which have very poor data
reuse and require high bandwidth and little computing power.

Existing single hardware platforms, whether GPUs or FP-
GAs, struggle to achieve high performance and high utilization
across both the prefill and decode stages, leading to long
latency or low efficiency. GPUs are highly underutilized during
the decode stage due to the low computational demands. As
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Fig. 2. The roofline model for processing prefill and decode stages by A100,
V100S GPU and U280 FPGA, where the operational intensity of prefill and
decode takes the values on GPU platforms.

shown in Tab. I and Tab. II, when processing the prefill of 1536
tokens for LLaMA2-7B on an NVIDIA A100 GPU, the prefill
latency is 175.85 ms. However, during the decode of 512
tokens, the average time for decode each token is 24.26 ms.
Compared to the prefill stage, the operational intensity in the
decode stage is reduced by 432.88 times, while the latency
is only reduced by 7.25 times. This indicates that the GPU
tensor core is significantly underutilized in the decode stage,
at only 0.19%.

Although FPGAs show better performance than V100S in
the decode stage, FPGAs are significantly slower than GPUs
in the prefill stage due to the limited peak computing power.
For example, the prefill latency of U280 FPGA is as long as
5 seconds, which is 28.44 times that of A100 and 12.54 times
that of V100S. Such a long first token latency may lead to a
degraded user experience.

Therefore, using only GPUs for LLM inference leads to
significant computing power waste during the decode stage,
while using only FPGAs results in excessive first token latency
in the prefill stage, thus diminishing the user experience.

B. Insight

By leveraging the strengths of GPUs and FPGAs, it is
expected to maximize throughput by assigning different com-
putational tasks to different hardwares. Based on the data
in Tab. I and Tab. II, we can analyze the three hardware
platforms by the roofline model, as shown in Fig. 2. Regarding
operational intensity, the prefill stage is far beyond the roofline
turning point of all three hardware platforms, so GPUs with
higher peak performance should be employed to reduce the
prefill latency for a better user experience. The operational
intensity of the decode stage is much lower than the roofline
turning point of all the three hardware platforms, severely
limited by the memory access, so that even with far inferior
peak computing power, FPGAs can still achieve comparable
performance to GPUs in decode computations. The roofline
model indicates that GPUs are better suited for compute-
intensive tasks, whereas FPGAs are relatively more efficient
for memory-intensive tasks.

Therefore, by combining the preferences of both GPU and
FPGA platforms, we can assign prefill computations to GPUs
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Fig. 3. The overall architecture of GLITCHES, including host CPU, GPU
and multiple FPGAs

and decode computations to FPGAs, thereby achieving higher
overall system throughput and efficiency.

C. Solution

To address these problems, we propose GLITCHES, a het-
erogeneous GPU-FPGA system designed to effectively support
LLM inference, capable of interconnecting multiple GPUs
and FPGAs through the PCIe interface. By handling prefill
computations on GPUs, decode computations on FPGAs, and
transferring the KV cache during prefill from GPUs to FPGAs,
we achieve collaborative LLM inference between the GPUs
and FPGAs.

The overall system architecture is shown in Fig. 3. The
system comprises a host CPU, GPUs, and multiple FPGAs.
Since each GPU and FPGA needs to perform the LLM
inference process independently, the whole model weights
need to be stored on each GPU and FPGA.

In GLITCHES, when the CPU receives a LLM inference
request, it assigns the corresponding prefill computation to
the GPU. The GPU processes the prefill stage inference using
complete FP16 precision. Each self-attention layer during the
prefill stage computes K and V matrices as KV cache. These
FP16-format KV caches are first stored in the GPU’s memory,
then quantized and transferred back to the host CPU’s memory
via the PCIe interface. Once the host CPU receives the KV
cache data, it forwards it directly to a specific address in
the HBM of the specified FPGA via the PCIe interface. This
HBM address is reserved during the offline FPGA instruction
compilation, specifically for storing the KV cache generated
during the prefill stage.

As shown in Fig. 4, the prefill computations for multiple
transformer blocks on the GPU and KV cache transmissions
occur in a pipeline, so most of the data transmission latency
can be overlapped. Once the GPU finishes the prefill stage
inference, the logits results generated by the prefill stage are
also sent back to the CPU memory, and then the first generated
token index is sampled from logits. The CPU transmits the
sampled token indexes to the FPGA where the KV cache data
is located, and ensures that all of the KV cache data has been
transferred to the HBM of this FPGA, then raises the start
register and launches the decode computation of the FPGA.



TABLE I
THE COMPUTATION, MEMORY ACCESS, POWER, AND LATENCY OF LLAMA2-7B INFERENCE ON GPUS AND FPGAS WITH PREFILL AND DECODE TOKEN
LENGTHS OF [1536, 512], RESPECTIVELY. THE GPU IMPLEMENTATION IS BASED ON HUGGINGFACE (FP16), WHILE THE FPGA IMPLEMENTATION USES

THE FLIGHTLLM [14] (APPROXIMATELY W4A8)

Prefill (1536 tokens) Decode (512 tokens, per token on average)

Hardware
Platform

Computation
(GFLOPs
or GOPs)

Memory
Access
(GB)

Operational
Intensity

(OP/Byte)

Power
(W)

Latency
(ms)

Computation
(GFLOPs
or GOPs)

Memory
Access
(GB)

Operational
Intensity

(OP/Byte)

Power
(W)

Latency
(ms)

A100 GPU 21137.01 48.38 406.91 256.6 175.85 14.16 14.08 0.94 167.3 24.26

V100S GPU 21137.01 48.38 406.91 239.8 398.80 14.16 14.08 0.94 222.5 29.52

U280 FPGA 21137.01 21.29 924.47 46.0 5001.20 14.16 3.96 3.33 46.0 21.50

TABLE II
THE BANDWIDTH UTILIZATION, COMPUTING UNIT UTILIZATION, ENERGY EFFICIENCY, AND COST EFFICIENCY OF LLAMA2-7B INFERENCE ON GPUS

AND FPGAS WITH PREFILL AND DECODE TOKEN LENGTHS OF [1536, 512], RESPECTIVELY

Parameters Prefill (1536 tokens) Decode (512 tokens, per token on average)

Hardware
Platform

Peak Perf.
(TFLOPS
or TOPS)

Band-
width
(GB/s)

Cost
($)

Band-
width
Util.

Compute
Util.

Energy
Efficiency

(token/s/W)

Cost
Efficiency
(token/s/$)

Band-
width
Util.

Compute
Util.

Energy
Efficiency

(token/s/W)

Cost
Efficiency
(token/s/$)

A100 GPU 3121 1935 17000 14.22% 38.52% 2.22E-02 3.35E-04 29.99% 0.19% 2.46E-01 2.42E-03

V100S GPU 1301 1134 12000 10.70% 40.77% 1.05E-02 2.09E-04 42.06% 0.37% 1.52E-01 2.82E-03

U280 FPGA 6.912 460 8000 0.93% 61.15% 4.35E-03 2.50E-05 40.08% 9.53% 1.01E+00 5.81E-03
1 Peak computing power of tensor core in GPUs.
2 The peak INT8 computing power of the U280 FPGA is 24.5 TOPS, but the peak computing power of FlightLLM is only 6.91 TOPS.
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Fig. 4. An example of the timeline of a GLITCHES system running with a
GPU and two FPGAs. The scheduler distributes the decode tasks to the idle
FPGAs, and the GPU will handle the decode tasks when all FPGAs are busy.

Upon receiving the start signal, the FPGA initiates the
decode stage inference based on the KV cache computed by
the GPU. The final logits output from each decode iteration
is transmitted back to the host CPU via PCIe, where the next
token index is sampled and sent back to the FPGA for further
decode processing until a special stop token is encountered
or the maximum token length is reached. Once the FPGA
starts to process the decode stage, no further data exchange
between the FPGA and GPU occurs, so the GPU does not
need to retain a copy of the KV cache and can release the
corresponding memory for other computations.

The number of cards for FPGAs and GPUs is determined by
the ratio of prefill and decode throughput requirements. Since
the decode latency usually accounts for most of the end-to-end
inference, a single GPU for prefill computation can typically
match the multiple FPGAs for decode computations. To avoid
leaving the GPU idle, if all other FPGAs are busy, the GPU
can act as an FPGA substitute to assist the decode computation

if no other prefill tasks are available.
We designed a scheduler on the host side to manage the

resources of GPUs and FPGAs for multiple inference requests.
The scheduler distributes decode tasks to different FPGAs
based on a first-come-first-served strategy. When all FPGAs
are busy, new decode tasks will be processed on the GPU.
In this case, the KV cache data computed by the GPU in
the prefill stage does not need to be transferred to the host
CPU but remains in the GPU memory for subsequent decode
computations. If the incoming inference request exceeds the
GPU memory, the task will not be executed immediately;
instead, it will enter a task queue, waiting for the GPU to
finish the previous tasks and free enough memory.

Additionally, GLITCHES supports further scale-up. There
are typically Ethernet interfaces on FPGAsthat can connect
to external Ethernet cables. This allows KV cache data to be
transferred over the network between multiple nodes, enabling
multi-node scaling and larger interconnections. For hetero-
geneous multi-GPU and multi-FPGA systems (e.g., different
models of GPUs or FPGAs), a more complex and accurate
scheduler can be trained to achieve resource scheduling for
the heterogeneous GPUs and FPGAs. However, this will be
explored in future work and will not be discussed in detail in
this paper.

IV. DATA PREFETCHING FOR FPGAS

GLITCHES applies FlightLLM as the baseline design for
decode computation on FPGAs. Although FlightLLM lever-
ages the HBM on U280 FPGA to provide high bandwidth for
the decode stage, the HBM bandwidth utilization could still
be further improved to get better decode performance.
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A. Challenge

FlightLLM is an instruction-driven FPGA-based accelerator,
accessing HBM through load (LD) and store (ST) instructions,
sending read and write requests to the datamover. Therefore,
the memory access performance depends not only on the HBM
itself but also on the overhead of the instruction scheduler
inside the accelerator. For instance, if a large number of
LD or ST instructions with small memory access volume
are frequently sent, the instruction decode and issue latency
may become the performance bottleneck, preventing timely
read/write requests to the HBM, resulting in worse memory
access performance than expected. Consequently, existing di-
rect modeling for HBM on FPGAs (Shuhai [23], etc.) cannot
accurately model the instruction decode and issue latency
and the instruction pipeline in the instruction scheduler. In
scenarios with a large number of fine-grained memory access
instructions, this may lead to large deviations in memory
access performance evaluation.

FlightLLM reduces the volume of model parameters by
grouped mixed-precision quantization, thus enhancing the
inference performance. However, grouped mixed-precision
quantization introduces additional quantization parameters,
such as zero points and scaling factors. Although these
quantization meta-data are relatively small compared to the
weights (about 4∼6% of the weights), they need to be stored
in different on-chip buffers from the weights in the FPGA
accelerator. This leads to a large number of fine-grained LD
instructions to load both weights and quantization meta-data
from HBM to the on-chip buffers, resulting in low HBM
bandwidth utilization, only around 40%.

B. Insight

To provide an accurate performance evaluation of the HBM
and optimize the HBM bandwidth, we develop a profiler
for instruction-based accelerators. The profiler generates a
series of memory access instructions and measures the la-
tency, obtaining actual HBM performance with the instruction
scheduler overhead. As shown in Fig. 5, the profiling results
demonstrate that the additional overhead for instruction decode
and issue in the instruction scheduler considerably degrades
the performance for small volume memory access instructions.
Therefore, merging small data memory access requests into
larger requests (e.g., >32KB) can significantly improve band-
width utilization.
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Fig. 6. Data prefetching merges multiple fine-grained memory access instruc-
tions into a single instruction with larger memory access volume, improving
bandwidth utilization and reducing memory access time.

C. Solution

To minimize the fine-grained memory access requests,
GLITCHES applies the data prefetching technique to improve
HBM bandwidth utilization. As shown in Fig. 6, we prefetch
the weights and quantization meta-data required for the fol-
lowing multiple matrix-vector multiplication (MV) instructions
in advance, thereby merging the fragmented memory access
requests. Although prefetching does not reduce the overall
memory access volume, it reduces the number of memory
access instructions and increases the memory access volume
per instruction. Therefore, data prefetching not only lowers
the extra overhead of instruction decode and issue in the
instruction scheduler, but also helps HBM provide higher
bandwidth by sending coarse-grained memory access requests.

Although prefetching can improve memory bandwidth uti-
lization, the prefetched data size should not be excessively
large or small. When the prefetched data size is too large,
it is challenging to pipeline between memory access and
computations to overlap the latency. When the prefetched
data size is too small, no substantial bandwidth utilization
improvement can be achieved. GLITCHES utilizes an accurate
performance simulator (with an error <5%) to find the optimal
data prefetching ratio for each layer in the network to achieve
the best end-to-end performance.

V. EVALUATIONS

A. Evaluation Setup

In GLITCHES, the GPUs used are the NVIDIA V100S
and A100, which are commonly used for LLM inference, and
the FPGAs used are the Xilinx Alveo U280 with HBM. The
peak performance, bandwidth, and price of these hardware
platforms are shown in Tab. II. The GPUs are running the
LLaMA2-7B model from HuggingFace at FP16 accuracy,
while the FPGAs are running a quantized LLaMA2-7B (about
4-bit weights and 8-bit activations, similar to FlightLLM).

In the data transmission latency experiment, we repeatedly
measure the transmission latency of the KV cache 50 times
to derive the average transmission latency and its standard
deviation. The GPU to FPGA latency is obtained by adding
the latency from GPU to CPU and from CPU to FPGA.
The performance of the FPGA comes from a cycle-accurate
simulator based on FlightLLM running at 225MHz, with data
prefetching technique applied.
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B. Evaluation Results

Data transmission latency. The volume of the KV cache
grows linearly with sequence length N in LLMs. To evaluate
the performance of GLITCHES, we measure the latency of
KV cache data transmission from GPU memory to the HBM
on FPGAs. As shown in Fig. 8, in most cases (especially with
longer input tokens), even considering the standard deviation
of the data transmission latency fluctuations, the data transmis-
sion latency is less than the GPU prefill latency. The reason is
that the prefill computation grows quadratically with sequence
length N . Since the data transmission is spread out over the
computation of each transformer block, the data transmission
latency can be easily overlapped by the prefill computation,
introducing little additional latency.
Data prefetching. Based on FlightLLM, we evaluate the per-
formance improvement brought by data prefetching on U280
FPGA, and the results are shown in Fig. 9. The prefetch ratio
M indicates that each memory access instruction provides the
required data for the subsequent M computational instructions.
The performance is optimal when the prefetch ratio is four.
For example, in the q proj linear layer, the single memory
access volume of weight data increased from 8KB to 32KB,
and the single memory access volume of quantization meta-
data increased from 256B to 1KB. Therefore, data prefetching
improved the end-to-end decode performance by 1.20 times
and 1.16 times when the sequence length is 128 and 1024,
respectively. Prefetching accelerates smaller sequence lengths
more significantly because the memory access volume of
the attention computation is smaller in these cases, while
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Fig. 9. The speedup of up proj, q proj linear layer and end-to-end decode
in LLaMA2-7B with different prefetch ratios. The optimal performance is
achieved when the prefetch ratio is four.

prefetching greatly increases bandwidth utilization.
System throughput and Cost Efficiency. We simulate a
single-node 8-card heterogeneous system for GLITCHES
based on A100 and V100S GPU. We compare GLITCHES to a
GPU-only and FPGA-only homogeneous system and measure
the system throughput and cost efficiency (throughput per
dollar) under different prefill and decode token lengths. As
shown in Fig. 7, with an A100 GPU and seven U280 FP-
GAs, GLITCHES improves the average system throughput by
1.28/1.23× and cost efficiency by 2.38/1.08× compared to an
8-card A100/U280-only system. In comparison, with a V100S
GPU and seven U280 FPGAs, GLITCHES achieves an average
throughput of 1.34/1.21× and cost efficiency of 1.90/1.14×
compared to an 8-card V100S/U280-only system, effectively
improving the system throughput and cost efficiency.

VI. CONCLUSIONS

In this paper, we propose GLITCHES, GPU-FPGA LLM
inference through a collaborative heterogeneous system. To
address the challenges of long prefill latency on FPGAs and
low utilization in the decode stage on GPUs, GLITCHES
employs a heterogeneous system using GPUs for the prefill
stage and FPGAs for the decode stage. GLITCHES also
introduces the data prefetching technique to improve the band-
width utilization on FPGAs further. Experiments show that
the GLITCHES heterogeneous system with a GPU and seven
FPGAs improves system throughput by 1.28/1.34× and cost
efficiency by 2.38/1.90× compared to an 8-card A100/V100S
homogeneous GPU system.



ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (No. 62325405, 62104128, U21B2031,
62204164), the National Key R&D Program of China
(2023YFB4502200), Tsinghua EE Xilinx AI Research Fund,
Tsinghua-Meituan Joint Institute for Digital Life, and Beijing
National Research Center for Information Science and Tech-
nology (BNRist).

REFERENCES

[1] J. Wei, Y. Tay, R. Bommasani, C. Raffel, B. Zoph, S. Borgeaud,
D. Yogatama, M. Bosma, D. Zhou, D. Metzler et al., “Emergent abilities
of large language models,” arXiv preprint arXiv:2206.07682, 2022.

[2] A. J. Thirunavukarasu, D. S. J. Ting, K. Elangovan, L. Gutierrez, T. F.
Tan, and D. S. W. Ting, “Large language models in medicine,” Nature
medicine, vol. 29, no. 8, pp. 1930–1940, 2023.

[3] J. Yang, H. Jin, R. Tang, X. Han, Q. Feng, H. Jiang, S. Zhong, B. Yin,
and X. Hu, “Harnessing the power of llms in practice: A survey on
chatgpt and beyond,” ACM Transactions on Knowledge Discovery from
Data, vol. 18, no. 6, pp. 1–32, 2024.

[4] S. K. Dam, C. S. Hong, Y. Qiao, and C. Zhang, “A complete survey on
llm-based ai chatbots,” arXiv preprint arXiv:2406.16937, 2024.

[5] S. Chen, M. Wu, K. Q. Zhu, K. Lan, Z. Zhang, and L. Cui, “Llm-
empowered chatbots for psychiatrist and patient simulation: application
and evaluation,” arXiv preprint arXiv:2305.13614, 2023.

[6] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[7] D. Nam, A. Macvean, V. Hellendoorn, B. Vasilescu, and B. Myers,
“Using an llm to help with code understanding,” in Proceedings of
the IEEE/ACM 46th International Conference on Software Engineering,
2024, pp. 1–13.

[8] D. Guo, C. Xu, N. Duan, J. Yin, and J. McAuley, “Longcoder: A long-
range pre-trained language model for code completion,” in International
Conference on Machine Learning. PMLR, 2023, pp. 12 098–12 107.

[9] H. Naveed, A. U. Khan, S. Qiu, M. Saqib, S. Anwar, M. Usman,
N. Barnes, and A. Mian, “A comprehensive overview of large language
models,” arXiv preprint arXiv:2307.06435, 2023.

[10] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,
H. Zhang, and I. Stoica, “Efficient memory management for large
language model serving with pagedattention,” in Proceedings of the 29th
Symposium on Operating Systems Principles, 2023, pp. 611–626.

[11] R. Y. Aminabadi, S. Rajbhandari, A. A. Awan, C. Li, D. Li, E. Zheng,
O. Ruwase, S. Smith, M. Zhang, J. Rasley et al., “Deepspeed-inference:
enabling efficient inference of transformer models at unprecedented
scale,” in SC22: International Conference for High Performance Com-
puting, Networking, Storage and Analysis. IEEE, 2022, pp. 1–15.

[12] N. Vaidya, F. Oh, and N. Comly, “Optimizing inference on large lan-
guage models with nvidia tensorrt-llm, now publicly available.[online],
2023.”

[13] S. Hong, S. Moon, J. Kim, S. Lee, M. Kim, D. Lee, and J.-Y. Kim, “Dfx:
A low-latency multi-fpga appliance for accelerating transformer-based
text generation,” in 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO). IEEE, 2022, pp. 616–630.

[14] S. Zeng, J. Liu, G. Dai, X. Yang, T. Fu, H. Wang, W. Ma, H. Sun,
S. Li, Z. Huang et al., “Flightllm: Efficient large language model
inference with a complete mapping flow on fpga,” arXiv preprint
arXiv:2401.03868, 2024.

[15] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[16] H. Chen, J. Zhang, Y. Du, S. Xiang, Z. Yue, N. Zhang, Y. Cai, and
Z. Zhang, “Understanding the potential of fpga-based spatial accel-
eration for large language model inference,” ACM Transactions on
Reconfigurable Technology and Systems, 2024.

[17] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al.,
“Llama: Open and efficient foundation language models,” arXiv preprint
arXiv:2302.13971, 2023.

[18] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention: Fast and
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