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Abstract—In recent years, computing the eigenvalue decompo-
sition of a polynomial matrix has become increasingly essential in
many areas of adaptive signal processing. However, traditional
iterative algorithms, such as sequential matrix diagonalisation
(SMD), often incur high computational costs. This paper pro-
poses two artificial neural network (ANN)-based approaches
for computing polynomial eigenvalues estimated by the SMD.
By utilizing feed-forward and convolutional neural network
models, we significantly reduce computational costs, including
CPU time and floating-point operations per second (FLOPS).
The results demonstrate that ANN-based polynomial eigenvalue
decomposition (PEVD) offers a more efficient solution for large
matrix computations compared to traditional methods.

Index Terms—Efficient polynomial Eigenvalue Decomposition,
Artificial Neural Networks, Computational efficiency, floating-
point operations per second (FLOPS).

I. INTRODUCTION

The space-time covariance matrix, R[τ ], is crucial in ad-
dressing various issues related to broadband signal process-
ing [1], [2], [3], [4]. For an M -element broadband array
capturing signal samples x[n] ∈ CM at discrete time n ∈ Z,
R[τ ] = E

{
x[n]xH[n− τ ]

}
describes the second-order statis-

tical dependencies between the signals x[n] across different
time delays τ ∈ Z. This explicit characterization of delays
between array sensors using the lag parameter τ allows
extraction of information regarding the direction of incoming
signals. Additionally, akin to the Hermitian symmetry in the
conventional covariance matrix R[0], the z-transform of R[τ ],
known as the cross-spectral density (CSD) matrix, exhibits
parahermitian symmetry, i.e., RP(z) = RH(1/z∗) = R(z),
where [·]P denotes the parahermitian operator [1].

Optimal solutions in many array-processing problems have
traditionally relied on the eigenvalue decomposition (EVD) of
R[0]. For broadband-array processing, however, a polynomial
EVD (PEVD) is essential to effectively diagonalize R[τ ] →
R(z). PEVD methods such as the second-order sequential
best rotation (SBR2) [1], sequential matrix diagonalization
(SMD) [5], DFT-based smooth decomposition [6], and ana-
lytic PEVD algorithms [7], [8] have been developed. These
iterative, time-domain approaches, like SBR2 and SMD, have
been successfully applied to various applications, including
subband coding [2], broadband beamforming [9], blind source
separation [3], [10], MIMO communications [11], [12], [13],

[14], and speech enhancement [15], [16]. Given the high com-
putational demands of these applications, recent research has
focused on developing computationally efficient techniques for
PEVD calculation [17], [18], [19], [20] to minimize CPU time
and reduce computational costs.

The rise of artificial neural networks (ANNs) in machine
learning has led to their application in tasks requiring advanced
pattern recognition, such as speech, image, and language
processing. Notably, ANNs have been applied to the EVD
of scalar matrices R[0] [21], [22], [23], [24], [25]. These
studies indicate that ANN-based EVD is more computationally
efficient and offers greater utility compared to traditional
algorithms. For instance, [24], [25] demonstrated significant
computational efficiency when using deep neural networks
for the EVD of symmetric matrices. The deep convolutional
neural networks (CNNs) in [24] showed improved eigenvalue-
estimation accuracy and high data efficiency, achieving high
accuracy with fewer samples than traditional neural network-
based methods.

Despite these benefits, the implementation of PEVD using
ANNs and the associated computational advantages remain
unexplored. Therefore, in this paper, we propose two ANN-
based solutions for computing the polynomial eigenvalues of
a parahermitian matrix and provide a detailed characterisation
of their computational performance. The two proposed neural-
network architectures, designed to generate the polynomial
eigenvalues estimated by the SMD algorithm, are as follows:
(i) a feed-forward neural network approach and (ii) a CNN-
based approach.

The remainder of this paper is organized as follows: Sec-
tion II describes the SMD-based PEVD. Section III presents
two neural network models for computing the polynomial
eigenvalues of R[τ ]. Simulation results are shown in Sec-
tion IV. Finally, conclusions are drawn in Section V.

II. POLYNOMIAL MATRIX EIGENVALUE DECOMPOSITION
(PEVD)

In this paper, we introduce two ANN architectures for com-
puting the polynomial eigenvalues of parahermitian matrices,
as estimated by SMD in [5], and explore the resulting benefits
in terms of accuracy and computational complexity.



The SMD algorithm is an iterative method in the time
domain designed for estimating the PEVD of a parahermitian
matrix R(z) : C → CM×M . SMD decomposes R(z) as:

Q(z)R(z)QP(z) ≈ D(z), (1)

where Q(z) and D(z) contain the approximate polynomial
eigenvectors and eigenvalues, respectively.

SMD starts by computing the unitary matrix Q(0) ∈ CM×M

through a scalar EVD that diagonalizes R[0] and transfers
energy to the main diagonal of S(0)(z). Initialization sets
H(0)(z) = Q(0). In each iteration (l = 1, 2, . . . , L), SMD
shifts a dominant off-diagonal row (or column) at lag τl
onto S(l−1)[0] using a time-shift matrix Λ(l)(z) and then
diagonalizes S(l−1)(z) through an ordered conventional matrix
EVD. The unitary matrix Q(l) is derived from the scalar
EVD of the zero-lag coefficient matrix S[0] and applied to
all order matrices S[τ ]. SMD iteratively transfers cross terms
of S(l−1)[0] to its main diagonal, computing the paraunitary
(PU) transformation:

S(l)(z) = U (l)(z)S(l−1)(z)UP (l)(z). (2)

In 2, U (l)(z) is a PU matrix satisfying U(z)UP(z) =
UP(z)U(z) = I , formed as the product of a unitary matrix
Q(l) and a PU time-shift matrix Λ(l)(z), selected based on
the location of the dominant off-diagonal column (row) in
S(l−1)(z). The algorithm identifies the dominant off-diagonal
column using the modified column vector ŝ(l−1)

k [τ ] defined by
excluding the diagonal s(l−1)

k,k [τ ]:

∥ŝ(l−1)
k [τ ]∥2 =

√√√√ M∑
j=1,j ̸=k

|s(l−1)
j,k [τ ]|2, (3)

where s
(l−1)
j,k [τ ] denotes the scalar coefficient in the jth row

and kth column of S(l−1)[τ ] at lag τ .
The SMD algorithm iterates until S(L)(z) is sufficiently

diagonalized, ensuring the largest norm of the off-diagonal
column satisfies:

max
k,τ

∥ŝ(L)
k [τ ]∥2 ≤ ρ, (4)

where ρ is a small value. After L iterations, SMD provides an
approximate PEVD.

For convergence proofs of the SMD algorithm, refer to [5].

III. NEURAL NETWORK FOR COMPUTING PEVD

This section introduces two architectures of artificial neural
networks (ANNs) designed to compute polynomial eigen-
values of parahermitian matrices. Specifically, we explore
feed-forward neural networks (FNN) and convolutional neural
networks (CNN). The setup and parameters for both FNN and
CNN models will be detailed.

A. Feed-Forward Neural Network (FNN)

A feed-forward neural network (FNN) is a type of artificial
neural network where connections between nodes do not
form cycles, unlike recurrent neural networks. It processes
information in a single direction, from input to output. In
FNNs, weights are adjusted through training using methods
like gradient descent and back-propagation, which refine the
network’s ability to produce accurate outputs. Multi-layer
perceptrons utilize back-propagation to adjust weights in each
hidden layer based on output from the final layer [26].

B. Convolutional Neural Network (CNN)

Convolutional neural networks (CNNs) are deep learning
models particularly suited for analyzing visual data such as im-
ages and videos. They employ layers that automatically learn
and detect patterns and features within the input data. CNNs
are pivotal in tasks like image classification, object detection,
and facial recognition, leveraging convolutional layers for
feature extraction, pooling layers for dimensionality reduction,
and fully connected layers for making predictions. CNNs have
revolutionized computer vision and are foundational in deep
learning [27].

C. ANN-based PEVD

Our ANN architecture takes as input the polynomial eigen-
values extracted from the diagonalized matrix D(z), estimated
using the SMD algorithm on the parahermitian matrix R(z)
(see Eq. 1). These eigenvalues are fed into both our FNN and
CNN models.

The CNN employs hierarchical feature extraction through
convolutional and pooling layers. Specifically, we use two
convolutional layers with ReLU activation functions, each
employing 64 and 32 filters respectively. A max-pooling
layer of size (2 × 2) with a stride of (2 × 2) follows to
downsample features, enhance computational efficiency, and
prevent overfitting. For the FNN, which employs multiple
hidden layers for complex decision-making, we configure two
fully connected layers with 64 and 32 neurons to capture
intricate relationships within the polynomial matrices. ReLU
activation functions in the hidden layers facilitate nonlinear
transformations, while linear activation is applied in the output
layer for regression and eigenvalue estimation. The model’s
effectiveness is evaluated iteratively using Mean Square Error
(MSE) to minimize prediction errors. Figure 1 depicts a
block diagram of our ANN-based SMD architecture used
for training, and Algorithm 1 provides the pseudocode for
implementing this architecture.

D. Performance Evaluation Metrics

Performance metrics provide measurable criteria for assess-
ing the effectiveness of an ANN model. Key evaluation metrics
used in this study include mean squared error (MSE) and
mean absolute error (MAE). These metrics are crucial for
quantitatively evaluating how well ANN models predict PEVD
values, guiding iterative improvements and optimization ef-
forts in regression tasks.



Fig. 1. Proposed ANN- based SMD architectures

MSE is computed as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (5)

where n denotes the number of samples, yi represents the
actual PEVD values, and ŷi denotes the predicted PEVD
values. MSE values are calculated during the training phase.

Mean absolute error (MAE) is calculated as:

MAE =
1

n

n∑
i=1

|yi − ŷi|, (6)

where ȳ represents the mean of the observed data. MAE is
used to assess the agreement between actual and predicted
polynomial eigenvalues.

E. Computational Efficiency: CPU time for Algorithm Com-
putation

The computational efficiency of algorithms is crucial for
their practical applicability, especially in resource-constrained
environments like those relying on traditional CPUs. This
study evaluates the CPU time required to execute the proposed
algorithm compared to iterative time-domain approaches such
as the SMD algorithm. CPU time, measured in seconds,
quantifies the total processing time required by the processor to
complete the algorithm’s execution on a given dataset or input
size. It encompasses not only the algorithm’s computational
complexity but also the efficiency of its implementation and
hardware utilization[28], [29].

To accurately assess CPU time, we conducted extensive
experiments across various datasets and input configurations.

Algorithm 1 ANN-based SMD for calculating polynomial
eigenvalues of a parahermitian matrix.

NET: Choose Neural Network Model (FFN, CNN)
num samples = N
matrix size = M
Lag = L
D eff length = Lag + 2
Initialise D as a matrix of zeros
Generate N random matrices with dimension M × M
denoted as XM×M .
Step 1: Prepare the train data
for i = 1 to num samples do

R(z) = Compute the space-time covariance matrix(X)
[U(z),D⟩(z)] = Apply SMD(R(z))
D eff = Extract Effective Polynomial Coefficients(Di)
Store D eff in the D matrix

end for
Step 2: Define the architecture
if NET = FFN then

Define a feed-forward neural network ‘net’ with input
and output sizes

input size = matrix size×matrix size× Lag
output size = matrix size×D eff length
hidden size = H where H is an arbitrary number >

(2× input size)
else

Define a convolutional neural network ‘net’ with input
and output sizes

Input layer: Matrix Input Layer with size
[matrix size×matrix size× Lag]

Convolutional layer with MxM filters and K output
channels, followed by ReLU activation

Max-pooling layer with 2x2 pooling and a 2x2 stride
Convolutional layer with MxM filters and 32 output

channels, followed by ReLU activation
Fully connected layer with 64 Neurons, followed by

ReLU activation
Fully connected layer with 32 Neurons, followed by

ReLU activation
Output layer with (matrix size×D eff length) units

end if
Step 3: Train the network
Train the network ‘net’ using the input data X and target
data D
Step 4: Test the network
num test samples = Tn
Initialise predicted eigenvalues as a matrix of zeros
Initialise actual eigenvalues as a matrix of zeros
Generate a random test matrix X test
Calculate actual eigenvalues for the test data using SMD
Predict the polynomial eigenvalue with the ANN model
Determine the precision of predicted polynomial eigenval-
ues in relation to the actual values.



F. Floating-Point Operations per Second (FLOPS)

FLOPS serve as a fundamental metric for evaluating the
computational performance of algorithms, particularly in nu-
merical computation and machine learning. FLOPS quantifies
the rate at which a processor performs arithmetic opera-
tions involving floating-point numbers, providing crucial in-
sights into an algorithm’s efficiency in utilising computational
resources[30], [31]

From [12], it is determined that the number of FLOPS
required to perform an SMD on the matrix R(z) is estimated
as approximately

SMDFLOPS = M3
L∑

l=0

(
2len{R(l)}+ len{U (l)}

)
, (7)

where M denotes the size of the input matrix, and len
represents the length of a matrix.

To calculate the FLOPs for a feedforward neural network,
follow these steps:

1. Calculate FLOPs for Each Layer

For fully connected (dense) layers, the FLOPs can be
calculated using the formula:

FNNFLOPs = 2×N ×M, (8)

where N is the number of input neurons and M is the
number of output neurons. The factor of 2 accounts for both
multiplication and addition operations.

2. Sum FLOPs for All Layers

Sum the FLOPs for all layers in the network to obtain the
total FLOPs.

To calculate the FLOPs for a convolutional neural network
(CNN), determine the FLOPs for each layer and sum them up
as follows:

1. Calculate FLOPs for a Convolutional Layer

CNNFLOPs = 2×Hout×Wout×Cout×(K×K×Cin+1), (9)

where:
• Hout and Wout are the height and width of the output

feature map.
• Cout is the number of output channels.
• K is the kernel size.
• Cin is the number of input channels.
• The term (K ×K × Cin + 1) includes the bias term.

2. Calculate FLOPs for Fully Connected Layers

CNNFLOPs = 2× (N ×M +M), (10)

where N and M are the number of input and output neurons,
respectively.

3. Calculate FLOPs for Other Layers

Pooling and activation functions contribute minimally to the
total FLOPs.

4. Sum FLOPs for All Layers

The total FLOPs across all layers determine the computa-
tional load.

This paper analyses the FLOPs achieved by our proposed
algorithm compared to the SMD algorithm. By measuring the
total number of FLOPS executed per second during algorithm
execution, we assess its computational efficiency.

IV. RESULTS AND DISCUSSION

To demonstrate the benefits of the proposed ANN archi-
tecture, we present results pertaining to the efficacy of the
polynomial eigenvalues and the computational demand in
generating these polynomial eigenvalues.

In constructing and analysing the performance of the pro-
posed ANN architecture, we used the Deep Learning Toolbox
made available in Matlab. To train and test the proposed
models, 10,000 samples of a synthetic dataset containing
3 × 3 matrices are generated from zero-mean, i.i.d. random
processes. After computing the space-time covariance matrix
for each data matrix, the SMD algorithm is applied to obtain
the polynomial eigenvalues for testing the proposed model.
SMD is allowed to run until a normalised off-diagonal energy
of Enorm ≤ −20 dB is achieved, with a truncation parameter
set to µ = 10−7. Following this, the order of polynomial
eigenvalues is truncated to an arbitrary effective length that
enforces constraints on the property of Dl(z). This truncation
is necessary because the size of the output array of the neural
network needs to be fixed over all iterations. For adaptive
learning, the Adam optimiser was selected. The initial learning
rate, number of epochs, and maximum iteration were set to
0.001, 100, and 500, respectively. Training and testing were
completed after 100 epochs with an average MSE value of
0.18.

Fig. 2 depicts the relationship between the MAE accuracy
of the estimated polynomial eigenvalues and the number of
data matrices used to train the neural network model. The
maximum accuracy for CNN and FNN is 85.6% and 74.9%,
respectively. It is clear that, overall, the CNN outperforms the
FNN. This superiority can be attributed to the CNN’s ability
to process input as a scalar matrix and better feature extraction
through convolution. In our approach, we feed slices (lags) of
the polynomial matrix as input data into the CNN. In contrast,
the FNN requires a vector of data, necessitating the reshaping
of the polynomial matrix into a vector matrix before feeding it
into the system. This process disrupts the spatial relationships
between the lags, diminishing the effectiveness of the FNN in
capturing the inherent structure of the polynomial matrix.

In Figure 3, the time complexity is evaluated for calculating
the polynomial eigenvalues of a matrix concerning varying
sizes of input matrices. It is observable that increasing the
size of the matrix necessitates more time for computation.
Moreover, it is evident that the SMD algorithm requires more
time to calculate the eigenvalues compared to the neural
network approaches. Among the ANN methods, the FFN is
noted to be faster in computation compared to CNN.



Fig. 2. The MAE accuracy of the PEVD calculation is assessed using both
FFN and CNN, as a function of the number of data matrices utilized for
training the system.

Fig. 3. Time complexity analysis to calculate the eigenvalues across FFN,
CNN, and SMD algorithm relative to varying input matrix sizes

In Figure 4, the complexity in terms of FLOPS for cal-
culating the polynomial eigenvalues of a matrix is evaluated
with respect to varying input matrix sizes. It is evident that
as the size of the matrix increases, the number of FLOPS
required for computation also increases. Additionally, the
SMD algorithm demands significantly more operations to
compute the eigenvalues compared to the neural network
approaches. Among the ANN methods, the FNN demonstrates
faster computation times compared to the CNN. On the other
hand, the ANN approach demonstrates lower accuracy in
predicting eigenvalues compared to the SMD algorithm.

V. CONCLUSION AND FUTURE WORK

This paper introduces two innovative artificial neural net-
work (ANN)-based methods for computing polynomial eigen-
values: the feed-forward neural network (FNN) and the convo-

Fig. 4. Floating-point operations per second (FLOPS) analysis to calculate
the eigenvalues across FFN, CNN, and SMD algorithm relative to varying
input matrix size

lutional neural network (CNN). These models are trained using
polynomial eigenvalues obtained from the sequential matrix
diagonalisation (SMD) algorithm. Our results indicate that
ANN-based methods, particularly the CNN model, provide a
promising alternative to traditional iterative PEVD algorithms,
achieving high accuracy in polynomial eigenvalue estimation
while maintaining favorable computational efficiency. The
CNN model significantly surpasses the FNN in accuracy due to
its enhanced capability to process input data as scalar matrices
and effectively extract features through convolution, preserv-
ing the spatial relationships inherent in the polynomial matrix.
While the FNN demonstrates marginally faster computation
times, it compromises significantly on accuracy, underscoring
the trade-off between computational speed and precision in
polynomial eigenvalue estimation. Moreover, the proposed
ANN-based methods require fewer operations for polynomial-
eigenvalue computation compared to the more traditional SMD
algorithm.
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