
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Optimization Strategies to Accelerate BLAS

Operations with ARM SVE

Aniket P. Garade, Sushil Pratap Singh, Juliya James, H V Deepika, Haribabu P, S A Kumar, S D Sudarsan

Centre for Development of Advanced Computing, Bengaluru, India

{aniketpg, sushilpratap, juliyaj, deepikahv, hari, sakumar, sds}@cdac.in

Abstract— Optimized mathematical libraries designed for

specific hardware platforms are critical for achieving maximum

performance in scientific and engineering applications. These

libraries play a key role in accelerating computations and

improving code efficiency. The Scalable Vector Extension (SVE)

for the ARM architecture is a recent development that enhances

vectorization capabilities, with wide vectors, leading to significant

performance improvements. This paper explores vector

optimizations for Basic Linear Algebra Subprograms (BLAS)

routines, targeting both single and double precision data. It details

the strategies for vectorizing BLAS operations using SVE. The

approach is implemented with OpenBLAS, and experimental

results reveal notable performance gains, demonstrating the

efficacy of SVE in accelerating computational tasks on ARM

platforms.

Keywords— Math Libraries, SVE, ARM, Vectorization, BLAS,

OpenBLAS, High Performance Computing

I. INTRODUCTION

In various scientific and engineering fields, the

computational capabilities of advanced processors are

essential for solving complex mathematical problems.

Advanced processors based on x86 and ARM architectures,

utilized in servers and supercomputers, demonstrate their

ability to execute computationally intensive tasks. However,

to fully leverage these platforms, the choice of mathematical

libraries is paramount. Math libraries serve as fundamental

components in computational environments, providing a wide

array of mathematical and computational functions necessary

for the execution of complex numerical operations. Math

libraries contain optimized routines for linear algebra, fourier

transforms, differential equation solvers, and statistical

functions which are exhaustively used for scientific

computations. Basic linear algebra libraries [4, 5] can be

categorized as Level-1 which solves vector-vector operations,

Level-2 covers matrix-vector operations and Level-3 resolves

matrix-matrix operations [15,16,17]. The popular

implementations of BLAS operations found are ATLAS [1],

GotoBLAS [2], OpenBLAS [14], Reference BLAS [20] [21],

BLIS [23], Intel MKL [3] [18] and ArmPL [19].

Optimization of these libraries enhance productivity by

simplifying code development, offering a broad range of

operations and enabling code reusability across various

hardware architectures. This efficiency in mathematical

computation is crucial for advancing research and innovation,

making these libraries integral to computational ecosystems.

Vectorization, is a key optimization technique, that

leverages on Single Instruction Multiple Data (SIMD) type of

data parallelism [6]. By executing the same operation across

a data vector in parallel, vectorization reduces instruction

count and maximizes processor throughput, significantly

boosting performance in tasks like numerical computations

and image processing. Compiler and library support, along

with hardware features such as SIMD registers and execution

units, are essential for effective vectorization. Different

vectorization techniques include:

A. Advanced Vector Extensions

Advance Vector Extensions is a set of instructions for

doing SIMD operations for x86 architectures. These

instructions enhance and extend the capabilities of SIMD

instruction sets, such as MMX and SSE [7,8,9]. The

instruction set expanded from 256 bits AVX2 [10] to more

advance AVX-512 [8], supporting 512-bit wide SIMD

registers (ZMM0-ZMM31). AVX significantly enhances

floating-point operations by widening the 16 XMM registers

from 128 bits to 256 bits, and further extending them to 512

bits with AVX-512. It paves the way for future advancements

in instruction set functionality and vector lengths through its

efficient instruction encoding scheme, three and four-operand

instruction syntax, and the inclusion of the Fused Multiply-

Add (FMA) extension. Additionally, AVX supports load and

store masking, gather operations for improved data access,

and enhanced integer arithmetic. AVX features efficient

broadcast instructions for replicating scalar values across

vector registers, optimizing data initialization. Additionally,

masked load/store operations selectively access and update

memory based on conditions, enhancing efficiency in

irregular data processing. These features collectively improve

the computational efficiency.

B. Scalable Vector Extension

Scalable Vector Extension (SVE) is a next-generation

SIMD extension for the Armv8-A aarch64 instruction set,

designed to enhance the vectorization of loops that are

challenging or inefficient to vectorize [11]. SVE is Vector

Length Agnostic (VLA), allowing hardware implementors to

choose vector register sizes that best fit their workloads

[12]13]. SVE supports scalable vector lengths up to 2048 bits

and includes 32 scalable vector registers (Z0-Z31) and 16

predicate registers (P0-P15). This adaptability means

software can seamlessly adjust to different vector lengths

without requiring new instruction encodings or

recompilation.

SVE introduced several advanced features, including per-

lane predication for precise control over which vector

elements are active, gather-load and scatter-store for efficient

data transfer from non-contiguous memory addresses, and

vector partitioning for dynamic loop progression. It also

supports fault-tolerant speculative vectorization, ensuring

safe vector operations even with memory faults. Horizontal

vector operations such as summation and logical reductions

are enhanced, along with serialized vector operations that

efficiently handle pointer-chasing loops, improving

performance in tasks with irregular data access patterns.

The SVE programming model reduces development costs

and effort in SIMD code optimization by providing a flexible

approach and wider vectors, beneficial for math libraries. The

VLA model ensures optimal performance across different

SVE implementations, reducing deployment costs and

enhancing compatibility. SVE's support for full floating-point

features, compliant with the IEEE 754 standard, ensures

accurate and consistent numerical computations, making it

particularly advantageous for applications in scientific

simulations, data analytics, and machine learning.

These advancements offer significant potential for

optimizing BLAS routines. This research focuses on using the

OpenBLAS library as a baseline and aims to improve the

efficiency of Level 1 and Level 2 BLAS routines through

optimization with SVE. The further sections of the document

are classified as follows: Section 2 reviews related works,

while Section 3 provides a detailed explanation of our

approach used to implement SVE. Section 4 presents the

experimentation and analysis. Finally, Section 5 concludes

the paper, offering insights into our findings and suggesting

avenues for future research.

II. RELATED WORKS

Christian Fibich, et al. [22] thoroughly evaluated various

open-source BLAS libraries optimized for ARM and RISC-V

architectures on Linux-capable embedded platforms. They

highlighted BLAS as a critical standard for efficient linear

algebra operations, crucial as IoT devices increasingly utilize

powerful processors. Their findings indicate that optimized

BLAS implementations offer significant performance

advantages over plain C alternatives. ARM platforms

demonstrate better performance compared to RISC-V

platforms in their tests. This study underscores the

importance of optimized libraries in enhancing computational

efficiency on embedded systems and suggests future

optimizations for RISC-V architecture.

Xiuwen Wan, et al. [16] presented a method to leverage

ARM’s SVE and its FCMLA instruction to accelerate Level

2 BLAS routines. Their approach focused on exploiting VLA

programming and wider vector capabilities introduced by

SVE for the ARMv8-A architecture, aimed at enhancing

vectorization efficiency. They implemented these features

using simulations on ARM Instruction Emulator (ARMIE)

and Gem5. Their findings demonstrate that SVE can

significantly optimize Level 2 BLAS operation, such as

matrix-vector multiplication.

Yi Wei, et al. [17] optimized Double Precision General

Matrix Multiplication (DGEMM) on Phytium processors

using ARM SVE instructions. Their approach integrates

adjustments to data block sizes within the OpenBLAS library

to enhance processor storage efficiency. They developed a

mathematical model for determining optimal kernel sizes and

implement an efficient assembly kernel to reduce memory

access delays. Experimental validation underscores

significant performance enhancements in DGEMM due to

these optimizations with SVE instructions on Phytium

processors.

III. OUR APPROACH

This section details our ongoing implementation of SVE

within the OpenBLAS-0.3.26 [24] math library. We are

optimizing Level 2 BLAS routines such as Single Precision

General Matrix-Vector Multiplication (SGEMV) and Double

Precision General Matrix-Vector Multiplication (DGEMV).

These routines are internally utilized by Single Precision

Symmetric Matrix-Vector Multiplication (SSYMV) and

Double Precision Symmetric Matrix-Vector Multiplication

(DSYMV). For detailed optimization strategies, please refer

to section (III.A). Additionally, we are addressing the

optimization of Level 1 BLAS routines, including Single

Precision Swapping (SSWAP), Double Precision Swapping

(DSWAP), Single Precision Scaling (SSCAL), Double

Precision Scaling (DSCAL), Single Precision Rotation

(SROT), and Double Precision Rotation (DROT). These

routines are fundamental components called internally by

various BLAS operations such as symmetric and triangular

matrix-vector multiplications in different formats (banded,

packed, and triangular). For a thorough exploration of

optimization strategies for Level 1 routines, please see

sections III.B, III.C, and III.D, respectively. This research

explores the implementation of SVE into BLAS routines to

enhance computational performance on ARM architectures.

The primary objective is to leverage SVE's scalable

vectorization capabilities to improve parallelism in vector

operations. The key design principles considered are

• Loop unrolling to maximize parallel iterations and exploit

SVE's ability to handle multiple elements concurrently.

• Varying vector lengths allow adaptable optimization,

enhancing computational efficiency and scalability in

SVE-enabled operations.

• Conditional compilation to ensure compatibility with

different data types such as FLOAT and DOUBLE.

• Leveraging vector load (svld) and store (svst) operations

for efficient data movement, complemented by SIMD

capabilities to boost computational throughput.

A. SVE Implementation for Matrix-Vector Multiplication

1) Algorithm Overview

• Initialization: Initialize two accumulator variables

(acc_a and acc_b) to zero. These accumulators store

partial sums during the computation.

• Loop Over Columns: Iterate over the columns of

matrix A in chunks of size sve_width * 2. This takes

advantage of SVE's dual-issue capability, allowing

simultaneous processing of two segments of data per

iteration. The sve_width is computed using svcntw()

or svcntd() SVE intrinsic.

• Data Loading: Load segments of matrix A (x_vec_a,

x_vec_b) and vector x (y_vec_a, y_vec_b) into SVE

vector registers using svld instruction. This

instruction fetch data from memory into the SVE

registers, enabling vectorized operations.

• Vectorized Multiplication and Accumulation:

Perform vectorized multiply-accumulate operations

using svmla_m instruction on the loaded segments.

Here, svmla_m multiplies each element of x_vec_a

(or x_vec_b) with the corresponding element of

y_vec_a (or y_vec_b) and adds the result to acc_a

(or acc_b) which is shown below.

acc_a = svmla_m (pg_a, acc_a, x_vec_a, y_vec_a)

acc_b = svmla_m (pg_b, acc_b, x_vec_b, y_vec_b)

The masks pg_a and pg_b are the boolean predicates

used to control which elements in the SVE vector

registers are involved in the svmla_m operation.

They ensure that only valid elements are processed,

which is crucial when the data segment length does

not align perfectly with the vector width

(sve_width).

• Reduction: After completing the vectorized

computation loop, use svaddv instruction to

horizontally add the elements of acc_a and acc_b.

This reduction operation consolidates the partial

sums stored in the accumulator variables into a

single result.

• Return Result: The result of the matrix-vector

multiplication is obtained by adding the horizontal

sums of acc_a and acc_b. This result represents the

resulting vector y after multiplying matrix A with

vector x.

2) Mathematical Expression

• Let A be the input matrix of size m×n, and x be the

input vector of length n.

• The matrix-vector multiplication operation

computes the product Ax, where A is the matrix, x

is the vector, i and j are loop indices.

• The elements of the resulting matrix-vector Ax are

computed as:

 (A)ij = ∑ 𝐴𝑖𝑗
𝑛−1
𝑗=0 * 𝑥𝑗 (1)

In the SVE implementation, this operation is parallelized

using SVE vector instructions, where multiple multiplications

and additions are performed simultaneously across vector

elements.

B. Implementation of SVE for Vector Swapping Operation

1) Algorithm Description

• Initialization: The function begins by taking several

crucial input parameters: n, denoting the total

number of elements in each vector, and x and y,

which are pointers to the input vectors. Additionally,

inc_x and inc_y represents the increments for

traversing the vectors. These increments allow

navigation of the vectors at specific strides, useful

for handling non-contiguous memory layouts or sub-

vectors within larger datasets. By accommodating

these parameters, the algorithm can manage vectors

of arbitrary length and stride, enhancing its

versatility across various numerical computation

scenarios. This initialization step sets the stage for

the vectorized operations, ensuring efficient

processing and swapping of elements between the

two vectors.

• Vectorized Swapping Loop: The core of the

algorithm is a loop that processes chunks of vector

elements using SVE instructions to maximize

efficiency. It begins by calculating the vector width

(sve_width) using svcntw() or svcntd() SVE intrinsic,

which return the number of 32-bit or 64-bit elements

in an SVE vector, respectively, depending on

whether single or double precision is used. Next,

predicate (pg) are generated using svwhilelt_b32 or

svwhilelt_b64 SVE intrinsic functions, which

determine which elements within the current chunk

are active based on their positions relative to the total

number of elements (n). This ensures that only valid

elements are processed, preventing out-of-bounds

errors.

The algorithm then loads chunks of elements from

vectors x and y into SVE registers using svld1

instruction, with the pg predicate ensuring that only

the valid elements within bounds are loaded. Once

the data is loaded, the elements from the two vectors

are swapped using temporary SVE registers, which

hold the data temporarily to facilitate the swap.

Finally, the swapped elements are stored back into

the original vectors using svst1 instruction, again

utilizing the pg predicate to ensure that only the valid

elements are written back, respecting the bounds of

the vectors. This loop iterates over the entire length

of the vectors in chunks defined by the vector width,

allowing for efficient and parallel processing of the

swap operation.

• Loop Termination: The loop iterates over the

elements in steps of the SVE vector width,

terminating when all elements have been processed.

This ensures that all elements are swapped

efficiently, even if the total number of elements is

not a multiple of the vector width.

2) Mathematical Expression

Let's denote:

• 𝑛: Total number of elements in each vector.

• 𝑥𝑖 and 𝑦𝑖: Elements of vectors 𝑥 and 𝑦 at index 𝑖,
respectively. The swapping operation can be

expressed mathematically as follows:

• For 𝑖=0, 1…, 𝑛−1:

Swap Operation: xi ↔yi (2)

C. Implementation of SVE for Vector-Scaling Operation

1) Algorithm Description

• Initialization: The initialization phase of the function

sets the stage for efficient scalar multiplication using

ARM SVE intrinsic. Parameters n, x, and da are

crucial inputs. n defines the total number of elements

in the vector x, allowing the function to iterate over

the entire vector. x serves as a pointer to the vector's

starting memory address, enabling direct access to

vector elements for processing. The scalar da

determines the value by which each element of x will

be multiplied, a fundamental operation in scalar-

vector multiplication. Together, these parameters

establish the scope of operations, ensuring that the

function operates on the correct data range and

applies the specified scalar transformation uniformly

across the vector.

• Scalar-Vector Multiplication Loop: The scalar-

vector multiplication loop within the function

orchestrates the efficient processing of vector

elements using ARM SVE. Central to this process is

a loop that iterates over the vector x, dividing it into

chunks defined by the width of SVE vector registers

(SVE_WIDTH). This iterative approach, starting

from index i and incrementing by SVE_WIDTH,

ensures that each iteration processes a contiguous

block of vector elements until the entire vector x has

been traversed.

Within each iteration, a predicate pg is dynamically

generated using SVE_WHILELT (i, n), which

determines the active elements eligible for

processing within the current chunk based on the

iteration index i and the total number of elements n.

This predicate efficiently manages memory access,

ensuring that only relevant vector elements are

loaded into an SVE vector register x_vec using

svld1. The pg predicate ensures that inactive

elements, beyond the vector boundary or tail end of

the vector, are not accessed, thereby optimizing

memory bandwidth.

The actual scalar-vector multiplication is executed

using svmul_z, where each element in the x_vec

register undergoes multiplication by the scalar value

da, producing a corresponding vector result. The

predicate pg again plays a crucial role in this

operation, ensuring that only active elements

participate in the multiplication, maintaining

computational efficiency.

Finally, the modified vector result is stored back into

the vector x using svst1, controlled by the same

predicate pg. This ensures that only the elements that

have been modified during the multiplication

process are written back to memory, preserving data

integrity and efficiency.

• Loop Termination: The loop terminates when all

vector elements have been processed.

2) Mathematical Equations

 Let us denote:

• 𝑛: Number of vector elements.

• 𝑥i: Element of the vector 𝑥 at index i.

• 𝑑𝑎: Scalar value used for multiplication.

The scalar-vector multiplication operation can be

expressed mathematically as follows:

• For 𝑖=0, 1…, 𝑛−1:

 𝑥i←𝑥i×𝑑𝑎 (3)

D. Implementation of SVE for Rotation Operation

1) Algorithm Description

The algorithm processes input vectors in chunks defined

by the SVE vector width, SVE_WIDTH. Each iteration of the

algorithm handles a segment of elements using SVE

instructions. Within each iteration, a predicate pg is generated

using the svwhilelt function. This predicate identifies which

elements within the current chunk fall within the bounds of

vectors x and y. This approach ensures precise handling of

boundary conditions, particularly when the number of

elements isn't a perfect multiple of SVE_WIDTH. By

leveraging SVE's capabilities in this manner, the algorithm

maximizes efficiency in processing vector operations on

ARM architectures.

The code initiates by utilizing the svld1 instruction to load

pairs of elements from vectors x and y into SVE vectors x_vec

and y_vec. This loading process is optimized by svld1's

capability to leverage the active predicate, which selectively

identifies elements within the vectors that are actively

processed during the load operation. This approach enhances

the parallel data handling capabilities of the processor.

Once the elements are successfully loaded into x_vec and

y_vec, the algorithm proceeds to perform a given rotation

using the given cosine (c) and sine (s) values. This rotation

operation modifies the elements within x_vec and y_vec

according to the defined transformation, ensuring efficient

computation of the desired transformation across the vector

elements. The algorithm calculates cx_vec as the product of

x_vec and c, and sy_vec as the product of y_vec and s using

svmul_z intrinsic. These are added using svadd_z to form the

new x elements. Similarly, sx_vec (product of x_vec and s)

and cy_vec (product of y_vec and c) are subtracted to form the

new y elements. The updated elements are stored back into

the vectors x and y using svst1.

2) Mathematical Expression

Mathematically, the given rotation operation can be

expressed as follows: Given elements 𝑥i and 𝑦i from vectors

𝑥 and 𝑦 respectively, and rotation parameters c (cosine) and s

(sine), the rotation operation transforms the elements as:

xi′=c⋅xi+s⋅yi (4)

yi′=c⋅yi−s⋅xi (5)

where 𝑥i′ and 𝑦i′ represent the updated elements after

rotation.

IV. EXPERIMENTATION AND ANALYSIS

A. Experimental Setup

 To evaluate the effect of our optimizations on the BLAS

library, we assess its performance on two different variants of

A64FX processors, which notably differ in clock speed and

core count. These processors are integral components within

a larger cluster environment of PARAM Neel from C-DAC,

India & Fugaku supercomputer from RIKEN, Japan.

TABLE I. PLATFORMS AND SPECIFICATIONS

Table 1. specifies the details of the hardware capabilities of

the processors used.

B. Observation and Analysis

 We compare our SVE optimized OpenBLAS v0.3.26

routines with the original OpenBLAS v0.3.26 routines on

PARAM Neel and Fugaku.

Fig. 1. Performance of SGEMV Routine

Fig. 1 shows the comprehensive performance analysis of

SGEMV BLAS routine. In general, the SGEMV routine

achieves performance gain on an average by approximately

12.73x on PARAM Neel and 8.54x on Fugaku. For smaller

data size, the performance of optimized BLAS on PARAM

Neel is approximately 6.14x times better as compared to

optimized BLAS on Fugaku. As the data size increases the

optimized BLAS on Fugaku shows performance gain of

approximately 1.15x times better than the optimized BLAS

on PARAM Neel.

Fig. 2. Performance of DGEMV Routine

Fig. 2 illustrates the performance analysis of DGEMV

BLAS routine. For smaller datasets, the optimized BLAS

routines exhibit an average performance improvement of

10.27x on PARAM Neel and 7.58x on Fugaku. However, as

the data size increases, the performance scaling on PARAM

Neel does not maintain the same efficiency observed on

Fugaku, leading to an average performance enhancement of

10.88x on Fugaku compared to 4.80x on PARAM Neel. On

the initial datasets, we observe that the performance of

optimized BLAS is almost similar on both the platforms.

However, as the dataset size increases, the performance

scaling of optimized BLAS on PARAM Neel reduced and is

comparable to the unoptimized performance of Fugaku.

Fig. 3. Performance of SSWAP Routine

Fig. 3 depicts the performance analysis of SSWAP BLAS

routine. For smaller datasets, the performance of the

optimized BLAS routines is nearly identical to the routine

without SVE optimizations on both PARAM Neel and

Fugaku. For the larger date size of 1 million elements, the

SSWAP routine achieves performance improvement of 2.20x

and 2.43x on PARAM Neel and Fugaku respectively.

Fig. 4. Performance of DSWAP Routine

Fig. 4 compares the SVE performance of DSWAP BLAS

routine. For smaller datasets, the performance of both the

optimized and original BLAS routine is similar on both

PARAM Neel and Fugaku, with an observed spike in

performance at a sample size of 104 on Fugaku. For larger

datasets, such as 1 million elements, the DSWAP routine

achieves a performance improvement of 2.60x on PARAM

Neel and 3.00x on Fugaku.

Info PARAM Neel Fugaku

Processor A64FX A64FX

Clock speed 1.8GHz 2.2GHz

Cores 48 52

Vectorization SVE SVE

Memory 32 GB HBM2 32 GB HBM2

Compiler GCC-12.2 GCC-12.2

Fig. 5. Performance of SSCAL Routine

Fig. 5 shows the performance analysis of SSCAL BLAS

routine. For smaller datasets, the performance of optimized

BLAS is almost similar to original BLAS on both PARAM

Neel and Fugaku. For larger data size of 1 million elements,

the SSCAL routine achieves performance gain of 2.10x on

both the platforms.

Fig. 6. Performance of DSCAL Routine

Fig. 6 depicts the performance analysis of the DSCAL

BLAS routine. For smaller datasets, the performance of the

optimized BLAS is identical to that of the original BLAS.

However, for larger datasets, specifically those with 1 million

elements, the DSCAL routine achieves a performance

improvement of 2.17x on PARAM Neel and 2.41x on

Fugaku.

Fig. 7. Performance of SROT Routine

Fig. 7 shows the performance analysis of SROT BLAS

routine. For lower datasets, the performance of optimized

BLAS is identical to without SVE optimization on both

PARAM Neel and Fugaku. However, for larger datasets of 1

million elements, the SROT routine achieves a performance

gain of 1.83x on PARAM Neel and 2.03x on Fugaku.

Fig. 8. Performance of DROT Routine

Fig. 8 illustrates the performance analysis of the DROT

BLAS routine. For smaller datasets, the performance of the

optimized BLAS is almost identical to the original BLAS

routine on both PARAM Neel and Fugaku. However, for

larger datasets of 1 million elements, the DROT routine

achieves a performance improvement of 3.50x on PARAM

Neel and 3.96x on Fugaku.

From the above analysis, it is observed that the

performanace of double precision optimized BLAS routines

is better when compared to single precision optimized BLAS

routines.

V. CONCLUSION AND FUTURE WORK

SVE introduces new architectural features that provide

wider vectors and enable the vectorization of loops on ARM

platforms. In this paper, we proposed an optimized

implementation of Level 1 and Level 2 BLAS routines in

OpenBLAS library. The effect of SVE based optimization on

OpenBLAS is demonstrated and analyzed with two different

variants of ARM processors. The results indicate significant

performance improvement due to effective code

vectorization, resulting in enhancements ranging from 7x to

13x for Level 2 routines and 1.80x to 4x for Level 1 routines.

As part of future research, we intend to implement additional

BLAS routines leveraging SVE optimizations.

ACKNOWLEDGMENT

This work utilized the computational resources of the

supercomputer Fugaku provided by RIKEN. The paper is a

research work under the National Supercomputing Mission

Project, India. We would like extend our gratitude to

Himanshu Chaudhary and Saurav Ravindran without whom

this work would not have been possible.

REFERENCES

[1] R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra

software. In Supercomputing (SC), pages 1–27, 1998

[2] K. Goto and R. A. v. d. Geijn. Anatomy of high performance matrix
multiplication. ACM Transactions on Mathematical Software (TOMS),
34(3):12:1–12:25, 2008.

[3] Intel. Intel math kernel library (MKL). http:// software.intel.com/en-
us/intel-mkl.

[4] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An
extended set of FORTRAN basic linear algebra subprograms. ACM
Transactions on Mathe matical Software (TOMS),14(1):1–17,1988.

[5] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Du,”A set of level
3 basic linear algebra subprograms,” ACMTransactions on
Mathematical Software (TOMS), 16(1):1–17, 1990.

[6] L. Huang, S. Ma, L. Shen, Z. Wang, and N. Xiao, “Low-cost binary128
floating-point fma unit design with simd support,” IEEE Transactions
on Computers, vol. 61, no. 5, pp. 745–751, 2011

[7] Intel. 2016. Intel 64 and IA-32 Architectures Software Developer
Manuals. Retrieved November 11, 2019 from
https://software.intel.com/en-us/articles/ intel-sdm

[8] Intel. 2019. Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 1: Basic Architecture. https://software.intel.com/en-
us/download/ intel-64-and-ia-32-architectures-software-developers-
manual-volume-1-basic-\ architecture

[9] Daniel S. McFarlin, Volodymyr Arbatov, Franz Franchetti, and Markus
Püschel. 2011. Automatic SIMD Vectorization of Fast Fourier
Transforms for the Larrabee and AVX Instruction Sets. In Proceedings
of the International Conference on Super computing (ICS’11).
Association for Computing Machinery, New York, NY, USA, 265–
274. https://doi.org/10.1145/1995896.1995938

[10] A. Sodani, R. Gramunt, J. Corbal, H. Kim, K. Vinod, S. Chinthamani,
S. Hutsell, R. Agarwal, and Y. Liu. 2016. Knights Landing: Second-
Generation Intel Xeon Phi Product. IEEE Micro 36, 2 (Mar 2016), 34–
46. https://doi.org/10.1109/MM.2016.25

[11] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli,
M. Horsnell, G. Magklis, A. Martinez, N. Premillieu et al., “The arm
scalable vector extension,” IEEE Micro, vol. 37, no. 2, pp. 26–39, 2017.

[12] A. Pohl, M. Greese, B. Cosenza, and B. Juurlink, “A performance
analysis of vector length agnostic code,” in Proceedings of the 2018
InternationalConferenceonHighPerformanceComputing&Simulation
(HPCS), 2019

[13] J. Lee, F. Petrogalli, G. Hunter, and M. Sato, “Extending openmp simd
support for target specific code and application to arm sve,” in
International Workshop on OpenMP. Springer, 2017, pp. 62–74.

[14] Openblas : Z. Xianyi, W. Qian, and W. Saar, “Openblas: An optimized
blas library,” Accedido: Agosto, 2016

[15] Q. Wang, X. Zhang, Y. Zhang and Q. Yi, "AUGEM: Automatically
generate high performance Dense Linear Algebra kernels on x86
CPUs," SC '13: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, Denver,
CO, USA, 2013, pp. 1-12, doi: 10.1145/2503210.2503219

[16] X. Wan, N. Gu and J. Su, "Accelerating Level 2 BLAS Based on ARM
SVE," 2021 4th International Conference on Advanced Electronic
Materials, Computers and Software Engineering (AEMCSE),
Changsha, China, 2021, pp. 1018-1022, doi:
10.1109/AEMCSE51986.2021.00208.

[17] Y. Wei, L. Deng, S. Sun, S. Li and L. Shen, "DGEMM Optimization
Oriented to ARM SVE Instruction Set Architecture," 2022 IEEE 28th
International Conference on Parallel and Distributed Systems
(ICPADS), Nanjing, China, 2023, pp. 514-521, doi:
10.1109/ICPADS56603.2022.00073.

[18] R. Lim, Y. Lee, R. Kim, and J. Choi, “An implementation of matrix–
matrix multiplication on the intel knl processor with avx-512,” Cluster
Computing, vol. 21, no. 4, pp. 1785–1795, 2018.

[19] “ArmPL”, [online], Available: https://developer.arm.com/, June 2024

[20] L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J.
Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry et al., “An
updated set of basic linear algebra subprograms (blas),” ACM
Transactions on Mathematical Software, vol. 28, no. 2, pp. 135–151,
2002.

[21] BLAST Forum, “Basic Linear Algebra Subprograms Technical Forum
Standard,” https://netlib.org/blas/blast-forum/blas-report.pdf, 2020-06-
27, University of Tennessee, Knoxville, Tennessee, Tech. Rep., 2001

[22] C. Fibich, S. Tauner, P. Rössler and M. Horauer, "Evaluation of Open-
Source Linear Algebra Libraries targeting ARM and RISC-V
Architectures," 2020 15th Conference on Computer Science and
Information Systems (FedCSIS), Sofia, Bulgaria, 2020, pp. 663-672,
doi: 10.15439/2020F145.

[23] F. G. Van Zee and R. A. Van De Geijn, “Blis: A framework for rapidly
instantiating blas functionality,” ACM Transactions on Mathematical
Software (TOMS), vol. 41, no. 3, pp. 1–33, 2015.

[24] https://github.com/OpenMathLib/OpenBLAS/releases/tag/v0.3.26

