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Abstract— Optimized mathematical libraries designed for 

specific hardware platforms are critical for achieving maximum 

performance in scientific and engineering applications. These 

libraries play a key role in accelerating computations and 

improving code efficiency. The Scalable Vector Extension (SVE) 

for the ARM architecture is a recent development that enhances 

vectorization capabilities, with wide vectors, leading to significant 

performance improvements. This paper explores vector 

optimizations for Basic Linear Algebra Subprograms (BLAS) 

routines, targeting both single and double precision data. It details 

the strategies for vectorizing BLAS operations using SVE. The 

approach is implemented with OpenBLAS, and experimental 

results reveal notable performance gains, demonstrating the 

efficacy of SVE in accelerating computational tasks on ARM 

platforms. 

Keywords— Math Libraries, SVE, ARM, Vectorization, BLAS, 

OpenBLAS, High Performance Computing 

I. INTRODUCTION  

In various scientific and engineering fields, the 

computational capabilities of advanced processors are 

essential for solving complex mathematical problems.  

Advanced processors based on x86 and ARM architectures, 

utilized in servers and supercomputers, demonstrate their 

ability to execute computationally intensive tasks. However, 

to fully leverage these platforms, the choice of mathematical 

libraries is paramount. Math libraries serve as fundamental 

components in computational environments, providing a wide 

array of mathematical and computational functions necessary 

for the execution of complex numerical operations. Math 

libraries contain optimized routines for linear algebra, fourier 

transforms, differential equation solvers, and statistical 

functions which are exhaustively used for scientific 

computations. Basic linear algebra libraries [4, 5] can be 

categorized as Level-1 which solves vector-vector operations, 

Level-2 covers matrix-vector operations and Level-3 resolves 

matrix-matrix operations [15,16,17]. The popular 

implementations of BLAS operations found are ATLAS [1], 

GotoBLAS [2], OpenBLAS [14], Reference BLAS [20] [21], 

BLIS [23], Intel MKL [3] [18] and ArmPL [19].  

Optimization of these libraries enhance productivity by 

simplifying code development, offering a broad range of 

operations and enabling code reusability across various 

hardware architectures. This efficiency in mathematical 

computation is crucial for advancing research and innovation, 

making these libraries integral to computational ecosystems. 

Vectorization, is a key optimization technique, that 

leverages on Single Instruction Multiple Data (SIMD) type of 

data parallelism [6]. By executing the same operation across 

a data vector in parallel, vectorization reduces instruction 

count and maximizes processor throughput, significantly 

boosting performance in tasks like numerical computations 

and image processing. Compiler and library support, along 

with hardware features such as SIMD registers and execution 

units, are essential for effective vectorization. Different 

vectorization techniques include: 

A. Advanced Vector Extensions  

Advance Vector Extensions is a set of instructions for 

doing SIMD operations for x86 architectures. These 

instructions enhance and extend the capabilities of SIMD 

instruction sets, such as MMX and SSE [7,8,9]. The 

instruction set expanded from 256 bits AVX2 [10] to more 

advance AVX-512 [8], supporting 512-bit wide SIMD 

registers (ZMM0-ZMM31). AVX significantly enhances 

floating-point operations by widening the 16 XMM registers 

from 128 bits to 256 bits, and further extending them to 512 

bits with AVX-512. It paves the way for future advancements 

in instruction set functionality and vector lengths through its 

efficient instruction encoding scheme, three and four-operand 

instruction syntax, and the inclusion of the Fused Multiply-

Add (FMA) extension. Additionally, AVX supports load and 

store masking, gather operations for improved data access, 

and enhanced integer arithmetic. AVX features efficient 

broadcast instructions for replicating scalar values across 

vector registers, optimizing data initialization. Additionally, 

masked load/store operations selectively access and update 

memory based on conditions, enhancing efficiency in 

irregular data processing. These features collectively improve 

the computational efficiency. 

B. Scalable Vector Extension 

Scalable Vector Extension (SVE) is a next-generation 

SIMD extension for the Armv8-A aarch64 instruction set, 

designed to enhance the vectorization of loops that are 

challenging or inefficient to vectorize [11]. SVE is Vector 

Length Agnostic (VLA), allowing hardware implementors to 

choose vector register sizes that best fit their workloads 

[12]13]. SVE supports scalable vector lengths up to 2048 bits 

and includes 32 scalable vector registers (Z0-Z31) and 16 

predicate registers (P0-P15). This adaptability means 

software can seamlessly adjust to different vector lengths 

without requiring new instruction encodings or 

recompilation. 

SVE introduced several advanced features, including per-

lane predication for precise control over which vector 

elements are active, gather-load and scatter-store for efficient 

data transfer from non-contiguous memory addresses, and 

vector partitioning for dynamic loop progression. It also 

supports fault-tolerant speculative vectorization, ensuring 

safe vector operations even with memory faults. Horizontal 

vector operations such as summation and logical reductions 

are enhanced, along with serialized vector operations that 

efficiently handle pointer-chasing loops, improving 

performance in tasks with irregular data access patterns. 

The SVE programming model reduces development costs 

and effort in SIMD code optimization by providing a flexible 



approach and wider vectors, beneficial for math libraries. The 

VLA model ensures optimal performance across different 

SVE implementations, reducing deployment costs and 

enhancing compatibility. SVE's support for full floating-point 

features, compliant with the IEEE 754 standard, ensures 

accurate and consistent numerical computations, making it 

particularly advantageous for applications in scientific 

simulations, data analytics, and machine learning. 

These advancements offer significant potential for 

optimizing BLAS routines. This research focuses on using the 

OpenBLAS library as a baseline and aims to improve the 

efficiency of Level 1 and Level 2 BLAS routines through 

optimization with SVE. The further sections of the document 

are classified as follows: Section 2 reviews related works, 

while Section 3 provides a detailed explanation of our 

approach used to implement SVE. Section 4 presents the 

experimentation and analysis. Finally, Section 5 concludes 

the paper, offering insights into our findings and suggesting 

avenues for future research. 

II. RELATED WORKS 

Christian Fibich, et al. [22] thoroughly evaluated various 

open-source BLAS libraries optimized for ARM and RISC-V 

architectures on Linux-capable embedded platforms. They 

highlighted BLAS as a critical standard for efficient linear 

algebra operations, crucial as IoT devices increasingly utilize 

powerful processors. Their findings indicate that optimized 

BLAS implementations offer significant performance 

advantages over plain C alternatives. ARM platforms 

demonstrate better performance compared to RISC-V 

platforms in their tests. This study underscores the 

importance of optimized libraries in enhancing computational 

efficiency on embedded systems and suggests future 

optimizations for RISC-V architecture. 

Xiuwen Wan, et al. [16] presented a method to leverage 

ARM’s SVE and its FCMLA instruction to accelerate Level 

2 BLAS routines. Their approach focused on exploiting VLA 

programming and wider vector capabilities introduced by 

SVE for the ARMv8-A architecture, aimed at enhancing 

vectorization efficiency. They implemented these features 

using simulations on ARM Instruction Emulator (ARMIE) 

and Gem5. Their findings demonstrate that SVE can 

significantly optimize Level 2 BLAS operation, such as 

matrix-vector multiplication. 

Yi Wei, et al. [17] optimized Double Precision General 

Matrix Multiplication (DGEMM) on Phytium processors 

using ARM SVE instructions. Their approach integrates 

adjustments to data block sizes within the OpenBLAS library 

to enhance processor storage efficiency. They developed a 

mathematical model for determining optimal kernel sizes and 

implement an efficient assembly kernel to reduce memory 

access delays. Experimental validation underscores 

significant performance enhancements in DGEMM due to 

these optimizations with SVE instructions on Phytium 

processors. 

III. OUR APPROACH 

This section details our ongoing implementation of SVE 

within the OpenBLAS-0.3.26 [24] math library. We are 

optimizing Level 2 BLAS routines such as Single Precision 

General Matrix-Vector Multiplication (SGEMV) and Double 

Precision General Matrix-Vector Multiplication (DGEMV). 

These routines are internally utilized by Single Precision 

Symmetric Matrix-Vector Multiplication (SSYMV) and 

Double Precision Symmetric Matrix-Vector Multiplication 

(DSYMV). For detailed optimization strategies, please refer 

to section (III.A). Additionally, we are addressing the 

optimization of Level 1 BLAS routines, including Single 

Precision Swapping (SSWAP), Double Precision Swapping 

(DSWAP), Single Precision Scaling (SSCAL), Double 

Precision Scaling (DSCAL), Single Precision Rotation 

(SROT), and Double Precision Rotation (DROT). These 

routines are fundamental components called internally by 

various BLAS operations such as symmetric and triangular 

matrix-vector multiplications in different formats (banded, 

packed, and triangular). For a thorough exploration of 

optimization strategies for Level 1 routines, please see 

sections III.B, III.C, and III.D, respectively. This research 

explores the implementation of SVE into BLAS routines to 

enhance computational performance on ARM architectures. 

The primary objective is to leverage SVE's scalable 

vectorization capabilities to improve parallelism in vector 

operations. The key design principles considered are 

• Loop unrolling to maximize parallel iterations and exploit 

SVE's ability to handle multiple elements concurrently. 

• Varying vector lengths allow adaptable optimization, 

enhancing computational efficiency and scalability in 

SVE-enabled operations. 

• Conditional compilation to ensure compatibility with 

different data types such as FLOAT and DOUBLE.  

• Leveraging vector load (svld) and store (svst) operations 

for efficient data movement, complemented by SIMD 

capabilities to boost computational throughput. 

A. SVE Implementation for Matrix-Vector Multiplication 

1) Algorithm Overview 

• Initialization: Initialize two accumulator variables 

(acc_a and acc_b) to zero. These accumulators store 

partial sums during the computation. 

• Loop Over Columns: Iterate over the columns of 

matrix A in chunks of size sve_width * 2. This takes 

advantage of SVE's dual-issue capability, allowing 

simultaneous processing of two segments of data per 

iteration. The sve_width is computed using svcntw() 

or svcntd() SVE intrinsic. 

• Data Loading: Load segments of matrix A (x_vec_a, 

x_vec_b) and vector x (y_vec_a, y_vec_b) into SVE 

vector registers using svld instruction. This 

instruction fetch data from memory into the SVE 

registers, enabling vectorized operations. 

• Vectorized Multiplication and Accumulation: 

Perform vectorized multiply-accumulate operations 

using svmla_m instruction on the loaded segments. 

Here, svmla_m multiplies each element of x_vec_a 

(or x_vec_b) with the corresponding element of 

y_vec_a (or y_vec_b) and adds the result to acc_a 

(or acc_b) which is shown below. 



acc_a = svmla_m (pg_a, acc_a, x_vec_a, y_vec_a) 

acc_b = svmla_m (pg_b, acc_b, x_vec_b, y_vec_b) 

The masks pg_a and pg_b are the boolean predicates 

used to control which elements in the SVE vector 

registers are involved in the svmla_m operation. 

They ensure that only valid elements are processed, 

which is crucial when the data segment length does 

not align perfectly with the vector width 

(sve_width). 

• Reduction: After completing the vectorized 

computation loop, use svaddv instruction to 

horizontally add the elements of acc_a and acc_b. 

This reduction operation consolidates the partial 

sums stored in the accumulator variables into a 

single result. 

• Return Result: The result of the matrix-vector 

multiplication is obtained by adding the horizontal 

sums of acc_a and acc_b. This result represents the 

resulting vector y after multiplying matrix A with 

vector x. 

2) Mathematical Expression 

• Let A be the input matrix of size m×n, and x be the 

input vector of length n. 

• The matrix-vector multiplication operation 

computes the product Ax, where A is the matrix, x 

is the vector, i and j are loop indices. 

• The elements of the resulting matrix-vector Ax are 

computed as:  

                    (A)ij = ∑ 𝐴𝑖𝑗
𝑛−1
𝑗=0  * 𝑥𝑗                      (1) 

In the SVE implementation, this operation is parallelized 

using SVE vector instructions, where multiple multiplications 

and additions are performed simultaneously across vector 

elements. 

B. Implementation of SVE for Vector Swapping Operation 

1) Algorithm Description 

• Initialization: The function begins by taking several 

crucial input parameters: n, denoting the total 

number of elements in each vector, and x and y, 

which are pointers to the input vectors. Additionally, 

inc_x and inc_y represents the increments for 

traversing the vectors. These increments allow 

navigation of the vectors at specific strides, useful 

for handling non-contiguous memory layouts or sub-

vectors within larger datasets. By accommodating 

these parameters, the algorithm can manage vectors 

of arbitrary length and stride, enhancing its 

versatility across various numerical computation 

scenarios. This initialization step sets the stage for 

the vectorized operations, ensuring efficient 

processing and swapping of elements between the 

two vectors. 

• Vectorized Swapping Loop: The core of the 

algorithm is a loop that processes chunks of vector 

elements using SVE instructions to maximize 

efficiency. It begins by calculating the vector width 

(sve_width) using svcntw() or svcntd() SVE intrinsic, 

which return the number of 32-bit or 64-bit elements 

in an SVE vector, respectively, depending on 

whether single or double precision is used. Next, 

predicate (pg) are generated using svwhilelt_b32 or 

svwhilelt_b64 SVE intrinsic functions, which 

determine which elements within the current chunk 

are active based on their positions relative to the total 

number of elements (n). This ensures that only valid 

elements are processed, preventing out-of-bounds 

errors.  

The algorithm then loads chunks of elements from 

vectors x and y into SVE registers using svld1 

instruction, with the pg predicate ensuring that only 

the valid elements within bounds are loaded. Once 

the data is loaded, the elements from the two vectors 

are swapped using temporary SVE registers, which 

hold the data temporarily to facilitate the swap. 

Finally, the swapped elements are stored back into 

the original vectors using svst1 instruction, again 

utilizing the pg predicate to ensure that only the valid 

elements are written back, respecting the bounds of 

the vectors. This loop iterates over the entire length 

of the vectors in chunks defined by the vector width, 

allowing for efficient and parallel processing of the 

swap operation. 

• Loop Termination: The loop iterates over the 

elements in steps of the SVE vector width, 

terminating when all elements have been processed. 

This ensures that all elements are swapped 

efficiently, even if the total number of elements is 

not a multiple of the vector width. 

2) Mathematical Expression 

Let's denote: 

• 𝑛: Total number of elements in each vector. 

• 𝑥𝑖 and 𝑦𝑖: Elements of vectors 𝑥 and 𝑦 at index 𝑖, 
respectively. The swapping operation can be 

expressed mathematically as follows: 

• For 𝑖=0, 1…, 𝑛−1: 

Swap Operation: xi ↔yi                                           (2)          

C. Implementation of SVE for Vector-Scaling Operation  

1) Algorithm Description 

• Initialization: The initialization phase of the function 

sets the stage for efficient scalar multiplication using 

ARM SVE intrinsic. Parameters n, x, and da are 

crucial inputs. n defines the total number of elements 

in the vector x, allowing the function to iterate over 

the entire vector. x serves as a pointer to the vector's 

starting memory address, enabling direct access to 

vector elements for processing. The scalar da 

determines the value by which each element of x will 

be multiplied, a fundamental operation in scalar-

vector multiplication. Together, these parameters 



establish the scope of operations, ensuring that the 

function operates on the correct data range and 

applies the specified scalar transformation uniformly 

across the vector. 

• Scalar-Vector Multiplication Loop: The scalar-

vector multiplication loop within the function 

orchestrates the efficient processing of vector 

elements using ARM SVE. Central to this process is 

a loop that iterates over the vector x, dividing it into 

chunks defined by the width of SVE vector registers 

(SVE_WIDTH). This iterative approach, starting 

from index i and incrementing by SVE_WIDTH, 

ensures that each iteration processes a contiguous 

block of vector elements until the entire vector x has 

been traversed. 

Within each iteration, a predicate pg is dynamically 

generated using SVE_WHILELT (i, n), which 

determines the active elements eligible for 

processing within the current chunk based on the 

iteration index i and the total number of elements n. 

This predicate efficiently manages memory access, 

ensuring that only relevant vector elements are 

loaded into an SVE vector register x_vec using 

svld1. The pg predicate ensures that inactive 

elements, beyond the vector boundary or tail end of 

the vector, are not accessed, thereby optimizing 

memory bandwidth. 

The actual scalar-vector multiplication is executed 

using svmul_z, where each element in the x_vec 

register undergoes multiplication by the scalar value 

da, producing a corresponding vector result. The 

predicate pg again plays a crucial role in this 

operation, ensuring that only active elements 

participate in the multiplication, maintaining 

computational efficiency.  

Finally, the modified vector result is stored back into 

the vector x using svst1, controlled by the same 

predicate pg. This ensures that only the elements that 

have been modified during the multiplication 

process are written back to memory, preserving data 

integrity and efficiency. 

• Loop Termination: The loop terminates when all 

vector elements have been processed. 

2) Mathematical Equations 

 Let us denote: 

• 𝑛: Number of vector elements. 

• 𝑥i: Element of the vector 𝑥 at index i. 

• 𝑑𝑎: Scalar value used for multiplication. 

The scalar-vector multiplication operation can be 

expressed mathematically as follows: 

• For 𝑖=0, 1…, 𝑛−1: 

            𝑥i←𝑥i×𝑑𝑎        (3) 

 

D. Implementation of SVE for Rotation Operation  

1) Algorithm Description 

The algorithm processes input vectors in chunks defined 

by the SVE vector width, SVE_WIDTH. Each iteration of the 

algorithm handles a segment of elements using SVE 

instructions. Within each iteration, a predicate pg is generated 

using the svwhilelt function. This predicate identifies which 

elements within the current chunk fall within the bounds of 

vectors x and y. This approach ensures precise handling of 

boundary conditions, particularly when the number of 

elements isn't a perfect multiple of SVE_WIDTH. By 

leveraging SVE's capabilities in this manner, the algorithm 

maximizes efficiency in processing vector operations on 

ARM architectures.  

The code initiates by utilizing the svld1 instruction to load 

pairs of elements from vectors x and y into SVE vectors x_vec 

and y_vec. This loading process is optimized by svld1's 

capability to leverage the active predicate, which selectively 

identifies elements within the vectors that are actively 

processed during the load operation. This approach enhances 

the parallel data handling capabilities of the processor. 

Once the elements are successfully loaded into x_vec and 

y_vec, the algorithm proceeds to perform a given rotation 

using the given cosine (c) and sine (s) values. This rotation 

operation modifies the elements within x_vec and y_vec 

according to the defined transformation, ensuring efficient 

computation of the desired transformation across the vector 

elements. The algorithm calculates cx_vec as the product of 

x_vec and c, and sy_vec as the product of y_vec and s using 

svmul_z intrinsic. These are added using svadd_z to form the 

new x elements. Similarly, sx_vec (product of x_vec and s) 

and cy_vec (product of y_vec and c) are subtracted to form the 

new y elements. The updated elements are stored back into 

the vectors x and y using svst1. 

2) Mathematical Expression 

Mathematically, the given rotation operation can be 

expressed as follows: Given elements 𝑥i and 𝑦i from vectors 

𝑥 and 𝑦 respectively, and rotation parameters c (cosine) and s 

(sine), the rotation operation transforms the elements as:  

xi′=c⋅xi+s⋅yi                                                                (4) 

yi′=c⋅yi−s⋅xi                                                                (5)                                                                                                    

where 𝑥i′ and 𝑦i′ represent the updated elements after 

rotation.  

IV. EXPERIMENTATION AND ANALYSIS 

A. Experimental Setup 

 To evaluate the effect of our optimizations on the BLAS 

library, we assess its performance on two different variants of 

A64FX processors, which notably differ in clock speed and 

core count. These processors are integral components within 

a larger cluster environment of PARAM Neel from C-DAC, 

India & Fugaku supercomputer from RIKEN, Japan. 

 

 



TABLE I.  PLATFORMS AND SPECIFICATIONS 

 

Table 1. specifies the details of the hardware capabilities of 

the processors used. 

B. Observation and Analysis  

 We compare our SVE optimized OpenBLAS v0.3.26 

routines with the original OpenBLAS v0.3.26 routines on 

PARAM Neel and Fugaku. 

Fig. 1. Performance of SGEMV Routine 

Fig. 1 shows the comprehensive performance analysis of 

SGEMV BLAS routine. In general, the SGEMV routine 

achieves performance gain on an average by approximately 

12.73x on PARAM Neel and 8.54x on Fugaku. For smaller 

data size, the performance of optimized BLAS on PARAM 

Neel is approximately 6.14x times better as compared to 

optimized BLAS on Fugaku.  As the data size increases the 

optimized BLAS on Fugaku shows performance gain of 

approximately 1.15x times better than the optimized BLAS 

on PARAM Neel. 

Fig. 2. Performance of DGEMV Routine 

Fig. 2 illustrates the performance analysis of DGEMV 

BLAS routine. For smaller datasets, the optimized BLAS 

routines exhibit an average performance improvement of 

10.27x on PARAM Neel and 7.58x on Fugaku. However, as 

the data size increases, the performance scaling on PARAM 

Neel does not maintain the same efficiency observed on 

Fugaku, leading to an average performance enhancement of 

10.88x on Fugaku compared to 4.80x on PARAM Neel. On 

the initial datasets, we observe that the performance of 

optimized BLAS is almost similar on both the platforms. 

However, as the dataset size increases, the performance 

scaling of optimized BLAS on PARAM Neel reduced and is 

comparable to the unoptimized performance of Fugaku. 

Fig. 3.  Performance of SSWAP Routine 

Fig. 3 depicts the performance analysis of SSWAP BLAS 

routine. For smaller datasets, the performance of the 

optimized BLAS routines is nearly identical to the routine 

without SVE optimizations on both PARAM Neel and 

Fugaku. For the larger date size of 1 million elements, the 

SSWAP routine achieves performance improvement of 2.20x 

and 2.43x on PARAM Neel and Fugaku respectively.  

Fig. 4.  Performance of DSWAP Routine 

Fig. 4 compares the SVE performance of DSWAP BLAS 

routine. For smaller datasets, the performance of both the 

optimized and original BLAS routine is similar on both 

PARAM Neel and Fugaku, with an observed spike in 

performance at a sample size of 104 on Fugaku. For larger 

datasets, such as 1 million elements, the DSWAP routine 

achieves a performance improvement of 2.60x on PARAM 

Neel and 3.00x on Fugaku.  

Info PARAM Neel Fugaku 

Processor A64FX A64FX 

Clock speed 1.8GHz 2.2GHz 

Cores 48 52 

Vectorization SVE SVE 

Memory 32 GB HBM2 32 GB HBM2 

Compiler GCC-12.2 GCC-12.2 

 

 

 

 



Fig. 5. Performance of SSCAL Routine 

Fig. 5 shows the performance analysis of SSCAL BLAS 

routine. For smaller datasets, the performance of  optimized 

BLAS is almost similar to original BLAS on both PARAM 

Neel and Fugaku. For larger data size of 1 million elements, 

the SSCAL routine achieves performance gain of 2.10x on 

both the platforms. 

Fig. 6. Performance of DSCAL Routine 

Fig. 6 depicts the performance analysis of the DSCAL 

BLAS routine. For smaller datasets, the performance of the 

optimized BLAS is identical to that of the original BLAS. 

However, for larger datasets, specifically those with 1 million 

elements, the DSCAL routine achieves a performance 

improvement of 2.17x on PARAM Neel and 2.41x on 

Fugaku. 

Fig. 7. Performance of SROT Routine 

Fig. 7 shows the performance analysis of SROT BLAS 

routine. For lower datasets, the performance of optimized 

BLAS is identical to without SVE optimization on both 

PARAM Neel and Fugaku. However, for larger datasets of 1 

million elements, the SROT routine achieves a performance 

gain of 1.83x on PARAM Neel and 2.03x on Fugaku. 

Fig. 8. Performance of DROT Routine 

Fig. 8 illustrates the performance analysis of the DROT 

BLAS routine. For smaller datasets, the performance of the 

optimized BLAS is almost identical to the original BLAS 

routine on both PARAM Neel and Fugaku. However, for 

larger datasets of 1 million elements, the DROT routine 

achieves a performance improvement of 3.50x on PARAM 

Neel and 3.96x on Fugaku. 

From the above analysis, it is observed that the 

performanace of double precision optimized BLAS routines 

is better when compared to single precision optimized BLAS 

routines. 

V. CONCLUSION AND FUTURE WORK 

SVE introduces new architectural features that provide 

wider vectors and enable the vectorization of loops on ARM 

platforms. In this paper, we proposed an optimized 

implementation of Level 1 and Level 2 BLAS routines in 

OpenBLAS library. The effect of SVE based optimization on 

OpenBLAS is demonstrated and analyzed with two different 

variants of ARM processors. The results indicate significant 

performance improvement due to effective code 

vectorization, resulting in enhancements ranging from 7x to 

13x for Level 2 routines and 1.80x to 4x for Level 1 routines. 

As part of future research, we intend to implement additional 

BLAS routines leveraging SVE optimizations. 
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