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Abstract—Probabilistic computing is an emerging quantum-
inspired computing paradigm capable of solving combinatorial
optimization and various other classes of computationally hard
problems. In this work, we present pc-COP, an efficient and
configurable probabilistic computing hardware accelerator with
2048 fully connected probabilistic bits (p-bits) implemented on
Xilinx UltraScale+ FPGA. We propose a pseudo-parallel p-bit up-
date architecture with speculate-and-select logic which improves
overall performance by 4× compared to the traditional sequential
p-bit update. Using our FPGA-based accelerator, we demonstrate
the standard G-Set graph maximum cut benchmarks with near-
99% average accuracy. Compared to state-of-the-art hardware
implementations, we achieve similar performance and accuracy
with lower FPGA resource utilization.

Index Terms—probabilistic computing, fully connected, FPGA,
hardware accelerator, max cut, combinatorial optimization,
quantum-inspired computing, Ising machine.

I. INTRODUCTION

Quantum computing [1], [2], [3], [4] is a pioneering
paradigm in computation which applies the principles of quan-
tum mechanics to revolutionize problem-solving capabilities.
While quantum computing holds tremendous potential, it is
still in the nascent stages of development and faces significant
challenges on its path to practicality and widespread adoption.
These challenges have motivated the emergence of many
new physics-inspired computing models such as probabilistic
computing [5], stochastic computing [6], simulated annealing
[7], probabilistic annealing [8] and parallel tempering [9].

Probabilistic computing is one of the emerging quantum-
inspired computing paradigms and it involves the manipulation
of unstable stochastic units known as probabilistic bits or
p-bits. Multiple p-bits are interconnected together to con-
struct probabilistic circuits or p-circuits. Unlike classical bits
which are deterministically either 0 or 1 and quantum bits
(qubits) which can exist in a superposition of 0 and 1, p-bits
rapidly fluctuate between 0 and 1. While qubits require near-
absolute-zero temperatures for accurate functionality, such
p-bits and p-circuits can be realized at room temperature,
thus enabling many novel applications at the intersection of
classical and quantum hardware using existing as well as
emerging technologies [10], [11]. Recent literature has demon-
strated the immense potential of probabilistic computing using
various software and hardware implementation platforms such

as micro-controllers [12], general purpose micro-processors
(CPUs) and graphics processing units (GPUs) [13], [14], [15],
field-programmable gate arrays (FPGAs) [16], magnetic tun-
nel junctions (MTJs) [17], resistive random-access memories
(RRAMs) [18], ferro-electric field-effect transistors (FeFETs)
[19] and threshold switch devices (TSDs) [20]. However, these
hardware implementations have been limited to either small-
scale p-circuits using emerging nano-devices or preliminary
architectures using FPGAs. They have limited circuit-level
analysis, thus leaving plenty of room for design space ex-
ploration and algorithm-specific architectural improvement.

Combinatorial optimization [21], [22] is an important class
of hard problems which can be solved efficiently using prob-
abilistic computing. In this work, we present pc-COP, an
efficient and configurable probabilistic computing hardware
accelerator with 2048 fully connected p-bits implemented on
state-of-the-art Xilinx UltraScale+ FPGA [23]. It is capable
of solving large-scale graph maximum cut combinatorial opti-
mization problems [7], [24] with high accuracy. Our logarith-
mic adder tree design for sum-of-products computation boosts
overall performance. We approximate the activation function
and tune the precision of the annealing schedule to reduce
FPGA resource utilization. Our proposed pseudo-parallel p-bit
update architecture with speculate-and-select logic improves
performance by 4× compared to the traditional sequential p-bit
update. We implement pc-COP on a Xilinx Zynq UltraScale+
MPSoC ZCU104 Evaluation Board and demonstrate near-
99% average accuracy across various G-Set maximum cut
benchmarks up to 2,000 nodes [25].

II. BACKGROUND

A. Probabilistic Computing

Probabilistic computing is an emerging quantum-inspired
computing paradigm capable of solving many interesting prob-
lems such as combinatorial optimization, machine learning,
quantum emulation and integer factorization [5], [26], [27],
[28], [29]. The operation of a p-circuit with several p-bits
is described in Algorithm 1. The system state is defined as
m = {mi | 1 ≤ i ≤ Nm}, where each mi ∈ {−1,+1} denotes
the corresponding p-bit value. Each p-bit mi is updated
sequentially based on the weights Ji,j and bias values hi. A



Algorithm 1 Overview of p-circuit operation [5], [26]
Require: number of p-bits Nm, interconnection weight matrix

J = [Ji,j ]Nm×Nm and bias vector h = [hi]Nm×1 for
application-specific p-circuit, number of samples Ns

Ensure: final p-bit state m
1: define p-bit state m = {mi | 1 ≤ i ≤ Nm}
2: randomly initialize p-bits mi ∈ {−1,+1} ∀ 1 ≤ i ≤ Nm

3: for (s = 1; s ≤ Ns; s = s+ 1) do
4: for (i = 1; i ≤ Nm; i = i+ 1) do
5: Ii ← β × (hi +

∑Nm

j=1 Ji,j mj )
6: mi ← sgn( rand(−1,+1) + tanh( Ii ) )
7: end for
8: end for
9: return m = {mi | 1 ≤ i ≤ Nm}

global constant β is used to control the overall strength of p-
bit interconnections. A complete sequence of updating all the
Nm p-bits in a p-circuit is referred to as a sample.

This process is repeated multiple times, thus generating Ns

samples. The stochastic neural network representation is simi-
lar to Boltzmann machines [5]. The p-bit update equation (Ii =
β×(hi+

∑Nm

j=1 Ji,j mj )) resembles Ising machines [27] while
the sequential nature of the update resembles the iterative
evolution in Gibbs sampling [30]. The energy of the system
with state m is defined as E({m}) = −(

∑
i<j Ji,jmimj +∑

himi ) which again resembles the quadratic energy model
in Ising machines [30]. The inherent stochasticity and non-
linear activation function in each p-bit, which is a unique
feature of probabilistic computing, ensures that various states
m are visited according to their corresponding Boltzmann
probability p{m} ∝ exp[−βE({m}) ], where β acts as an
inverse pseudo-temperature which can enhance or suppress
probabilities based on energy minima. The system of p-bits
evolves over consecutive samples to converge towards a low-
energy state corresponding to an optimum or near-optimal
solution of the problem encoded in the p-circuit. The value of
β can be tuned across samples to achieve better convergence,
which bears resemblance to simulated annealing [27], [30].

Recent literature has explored the use of emerging tech-
nologies to efficiently realize the p-bit functionality in hard-
ware [5], [26], [17], [18], [31], [11], [20], [19]. But, large-
scale implementations of p-circuits using such emerging nano-
devices are yet to be demonstrated experimentally. There-
fore, FPGA-based implementations offer a promising near-
term alternative. Preliminary FPGA-based architectures have
been demonstrated in [16], [27], [30], [32], [33]. However,
detailed circuit-level analysis and architectural optimizations
for probabilistic computing are yet to be explored.

B. Combinatorial Optimization Problems

Combinatorial optimization is a sub-field of mathematical
optimization which involves finding the optimal solution out
of a finite but large set of possibilities where exhaustive
search is intractable [21], [22]. In this work, we explore the
efficacy of probabilistic computing in solving the prototypical

combinatorial optimization problem (COP) of graph maximum
cut, also known as max-cut [7]. The objective of the max-cut
problem is to partition the vertices V of a graph G = (V,E)
into two complementary sets S and T such that the number
of edges (∈ E) between S and T is as large as possible.
The corresponding p-circuit can be constructed by assigning
a p-bit mi corresponding to each vertex vi ∈ V . Then, the
optimal max-cut solution will result in mi = +1 if vi ∈ S
and mi = −1 if vi ∈ T such that the objective function∑

i<j wi,jmimj is minimized, where wi,j is the weight of the
edge connecting vertices vi and vj [24]. Therefore, the p-bit
interaction coefficients are obtained as Ji,j = −wi,j and hi =
0. The Stanford G-Set benchmark dataset [25], containing
various random, toroidal and planar graphs, is typically used
to evaluate max-cut solver implementations. G-Set contains
graphs with wi,j ∈ {0, 1} as well as wi,j ∈ {−1, 0,+1},
therefore 2-bit interaction coefficients Ji,j are required.

III. HARDWARE ARCHITECTURE

Fig. 1 shows the top-level architecture of pc-COP, our
proposed hardware accelerator for solving large-scale max-cut
COPs using probabilistic computing. It supports max-cut in-
stances up to 2048 nodes using 2048 p-bits stored in the 2048-
bit register m Reg, where -1 and +1 p-bit values are encoded
as 0 and 1 respectively. According to step 2 of Algorithm 1, the
initial random state of the p-bit register m Reg is configured
using a 2048-bit external input. The corresponding 2048×2048
matrix J of 2-bit interaction coefficients (-1, 0 and + 1 encoded
as 11, 00 and 01 respectively) is stored in the 2048 × 4096-
bit = 8 Mb memory J Mem. Although J Mem is implemented
using 256 physical Block RAM (BRAM) slices of 32 Kb each
(excluding error correction coding bits) in FPGA, they are
organized such that an entire 4096-bit row of J can be read in a
single cycle, as required in step 5 of Algorithm 1. The J Mem
memory is configured with the problem-specific J matrix 32
bits at a time using the 18-bit address input and an address
decoder. The functionality of Algorithm 1 is implemented in
the p-Bit Update Core and managed by a finite state machine
(FSM) and control registers. A 512-bit seed input is used to
configure the stochasticity in the p-bit update circuitry. The
24-bit inputs βinitial and βanneal−rate are used to configure
the inverse pseudo-temperature β. A 32-bit instruction input
is used to program the accelerator as well as configure the
number of p-bits Nm ≤ 2048 and the number of samples Ns.
The instruction format is shown in Fig. 1 and its length is
set to 32 bits to conform with the 32-bit interface between
the processing system (PS) and the programmable logic (PL)
in Xilinx Zynq MPSoC as discussed in Section IV. After the
accelerator completes Ns samples of the specified max-cut
instance with Nm nodes, the final state of the p-bit register is
available as output along with several status bits.

A. Inverse Pseudo-Temperature and Annealing Schedule

Algorithm 1 is controlled by two key hyper-parameters:
the inverse pseudo-temperature β and the number of samples



Fig. 1. Top-level architecture of the proposed pc-COP accelerator.

Fig. 2. Logarithmic adder tree and multiplier circuits for p-bit weight logic.

Ns [27], [30]. In our implementation, the inverse pseudo-
temperature for each sample (each iteration in step 3 of
Algorithm 1) is obtained according to βs = βinitial ×
βs−1
anneal−rate for 1 ≤ s ≤ Ns which gives the annealing

schedule. Based on the number of samples Ns, these hyper-
parameters are tuned according to the analysis presented in
[15], [34]. For Ns = 1000, we use βinitial = 0.01 and
βanneal−rate = 1.005. For Ns = 100, we use βinitial = 0.01
and βanneal−rate = 1.05. Our accelerator uses a 24-bit register
to store the value of βs with a 4-bit integer part and a 20-bit
fractional part. Based on Python-based software simulation
of Algorithm 1, we observed that average accuracy remains
almost the same for various fractional bit precision of β
ranging from 4-bit to 32-bit. We chose the fractional bit
precision of β as 20-bit for our design as it requires the least
number of DSP slices (2 DSP multipliers) for implementing
the annealing schedule in FPGA.

B. Logarithmic Adder Tree

A logarithmic adder tree and associated multiplier circuitry
implements step 5 of Algorithm 1. For 2-bit interaction coef-
ficients, the Ji,j × mj multiplication is implemented using
simple Boolean logic and the corresponding truth table is

Fig. 3. Implementations of the activation function: (a) lookup table-based
tanh and 2 × sigmoid − 1 (threshold T = 4), and (b) piece-wise linear
approximations A1, A2 and A4 (threshold T = 1, 2 and 4 respectively).

shown in Fig. 2. Using a logarithmic adder tree [33] instead
of cascaded adders helps reduce the critical path delay by two
orders of magnitude [35], [36]. The output of the adder tree is
then multiplied with the inverse pseudo-temperature β (= βs

for the s-th sample) to get Ii = β × (
∑Nm

j=1 Ji,j mj ). The
annealing schedule from Section III-A is implemented using
another multiplier which updates the value of β after each
sample, as shown in Fig. 2.

C. Activation Function and Random Number Generation

Previous work [16], [33] has implemented the tanh acti-
vation function using a lookup table. In this work, we have
explored various approximations of the activation function.
Fig. 3 shows the circuit diagrams for lookup table and piece-
wise linear approximation implementations. For lookup table,
both tanh and its approximation using 2 × sigmoid − 1 are
analyzed, and the lookup tables consist of 1024 entries with
20-bit fractional precision (consistent with the discussion in
Section III-A). The piece-wise linear approximations of the
activation function are implemented as:

activation output ≈


−1 if input ≤ −T
input / T if − T < input < +T

+1 if input ≥ +T

where division by the threshold T ∈ {1, 2, 4} can be easily
implemented using bit-shifts (only wiring). We observed that
the piece-wise linear approximation with T = 1 requires the
least number of FPGA LUTs (≈ 5× smaller than lookup table-
based implementation) while achieving accuracy similar to the
original tanh activation function. Therefore, we implement
this simple approximation of the activation function through-
out our design. The output size of the activation function,
which always lies in [−1,+1], is 22-bit with 1 sign bit, 1
integer bit and 20 fractional bits.

The rand(−1,+1) and sgn( . ) functions in step 6 of Al-
gorithm 1 represent the p-bit stochasticity. The rand(−1,+1)
function is implemented using a 21-bit Fibonacci-style linear
feedback shift register (LFSR) [37] with 1 sign bit and 20
fractional bits (consistent with the discussion in Section III-A).



Fig. 4. Architecture of the baseline sequential p-bit update core.

The sgn function is implemented using a signed comparator
whose output is 0 or 1 (equivalent to -1 or +1 respectively),
denoting the updated value of the p-bit in that sample.

D. Pseudo-Parallel p-Bit Update with Speculate-and-Select

Fig. 4 shows a baseline architecture of the p-Bit Update
Core which integrates the J Mem, m Reg, adder tree, β-
multiplier, activation function, LFSR and comparator to update
the p-bit state sequentially one p-bit at a time according to
Algorithm 1. It takes Nm + 1 cycles to update all the Nm p-
bits in each sample, and hence requires (Nm+1)Ns cycles to
complete Ns samples and reach the final p-bit state. However,
this sequential architecture limits the overall performance of
the system as it can update only one p-bit per clock cycle.

The sequential nature of the p-bit updates is inspired by
Gibbs sampling which does not allow independently updating
multiple p-bits in parallel. However, it is possible to specula-
tively compute all possible combinations of multiple updated
p-bit values in parallel and then select the appropriate ones
at the end. This technique resembles carry-select logic in
high-performance adders [35], [36], [38]. For example, let us
consider the computation of the updated value of mi as:

m′
i = sgn( rand(−1,+1) + tanh(β × (

Nm∑
j=1

Ji,jmj ) ) )

which has two possibilities: m′
i = −1 or m′

i = +1. Then, we
can also simultaneously pre-compute the following two values:

m′
i+1|m′

i=−1 = sgn( rand(−1,+1) +

tanh(β × (
∑

1≤j≤Nm,j ̸=i

Ji+1,jmj − Ji+1,i ) ) )

m′
i+1|m′

i=+1 = sgn( rand(−1,+1) +

tanh(β × (
∑

1≤j≤Nm,j ̸=i

Ji+1,jmj + Ji+1,i ) ) )

which are the two possible updated values of mi+1 if the
updated value of mi is -1 and +1 respectively. All three values
m′

i, m
′
i+1|m′

i=−1 and m′
i+1|m′

i=+1 are computed in parallel,
and then the correct m′

i+1 is selected as:

m′
i+1 =

{
m′

i+1|m′
i=−1 if m′

i = −1
m′

i+1|m′
i=+1 if m′

i = +1

Therefore, the p-bits can be updated two at a time for
i ∈ {1, 3, 5, · · · , 2047}. Note that the dependency of p-bit
updates is maintained, that is, Algorithm 1 is still followed.
Therefore, we refer to this technique as pseudo-parallel update
with speculate-and-select. In particular, the above equations

Fig. 5. Architectures of the proposed (a) 2-way and (b) 4-way pseudo-parallel
p-bit update cores with speculate-and-select logic, and (c) comparison of
FPGA resource utilization of 1-way, 2-way and 4-way architectures.

describe the 2-way pseudo-parallel architecture where 2 p-
bits are updated per cycle, that is, overall (Nm

2 +1)Ns cycles
are required to complete Ns samples. To enable the pseudo-
parallel computation of two p-bit updates, the J Mem is split
into two banks so that both the i-th and (i + 1)-th rows of
matrix J (denoted as J [i] and J [i+1] respectively) can be read
simultaneously in the same cycle. The overall architecture of
the 2-way pseudo-parallel p-Bit Update Core is shown in Fig.
5a. Note that the speculative update of mi+1 requires only one
adder tree whose output is then adjusted according to the dif-
ferent speculations, e.g., (

∑
1≤j≤Nm,j ̸=i Ji+1,jmj − Ji+1,i )

can be calculated in one path for m′
i+1|m′

i=−1, and it can
be adjusted by simply adding 2Ji+1,i in the other path for
m′

i+1|m′
i=+1. This idea can be further extended to a 4-way

pseudo-parallel architecture where 4 p-bits are updated per
cycle, that is, overall (Nm

4 +1)Ns cycles are required to com-



Fig. 6. Distribution of FPGA resource utilization of our proposed accelerator
with 4-way pseudo-parallel p-bit update and speculate-and-select logic.

Fig. 7. Measurement setup with Zynq UltraScale+ ZCU104 FPGA board.

Fig. 8. Experimental validation framework consisting of proposed FPGA-
based hardware accelerator interfaced with ARM processor in Zynq MPSoC.

plete Ns samples. To enable the pseudo-parallel computation
of four p-bit updates, the J Mem is split into four banks so
that the i-th, (i+1)-th, (i+2)-th and (i+3)-th rows of matrix
J (denoted as J [i], J [i+1], J [i+2] and J [i+3] respectively)
can be read simultaneously in the same cycle. The p-bits are
updated four at a time for i ∈ {1, 5, 9, · · · , 2045}. Fig. 5b
shows the overall architecture of the 4-way pseudo-parallel p-
Bit Update Core. Fig. 5c compares the proposed 2-way and
4-way pseudo-parallel architectures with the baseline 1-way
sequential architecture in terms of FPGA resource utilization
(LUTs, FFs, DSPs and BRAMs). In general, a k-way pseudo-
parallel p-bit update architecture will require k instances of
the adder tree, 2k − 1 instances each of the β-multiplier, the
activation function, the LFSR and the comparator, along with
J Mem (split into k banks), m Reg, multiplexors and control
circuitry. The logic resource utilization increases exponentially
with increasing k and our proposed architecture can be scaled
to support more pseudo-parallel updates, e.g., 8-way, 16-way,
etc, based on resources available in the target FPGA.

IV. IMPLEMENTATION RESULTS

We implement and validate our proposed accelerator on a
Xilinx Zynq UltraScale+ MPSoC ZCU104 Evaluation Board
with an XCZU7EV-2FFVC1156E device [23] using Verilog
HDL and Xilinx Vivado Design Suite version ML 2022.2. Our
accelerator (with 4-way pseudo-parallel p-bit update) operates
at a clock frequency of 100 MHz, and utilizes 37k LUTs,
9.5k FFs, 17 DSPs (equivalent to ≈ 7k LUTs [39]) and 256
BRAMs (total 8 Mb) in UltraScale+ FPGA. The distribution of
FPGA resource utilization is shown in Fig. 6. Our experimental
setup is shown in Fig. 7 with the FPGA board and the host
PC running Python and Vivado interfaces.

Fig. 8 provides an overview of our experimental validation
framework consisting of the Zynq board and the host PC
connected through Ethernet. The ARM processor in the Zynq
PS is used to configure the J Mem with a problem-specific J
matrix as well as provide the initial p-bit state, LFSR seed,
annealing parameters and instruction through input ports of the
accelerator implemented in the Zynq PL. A 2048-bit LFSR is
used to generate the initial p-bit state, while another 512-bit
LFSR is used to seed the pc-COP internal LFSRs. The ARM
processor is programmed using the open-source Python-based
PYNQ software framework provided by Xilinx.

We use the standard G-Set max-cut benchmark graphs [25]
with 800, 1000 and 2,000 nodes to evaluate the performance
and accuracy of our design with the 4-way pseudo-parallel p-
bit update explained in Section III-D. We conduct 1000 trials
for each G-Set benchmark for both Ns = 1000 and Ns = 100
(with the annealing hyper-parameters discussed in Section
III-A) to obtain a reasonable distribution of the accuracy of
results (accuracy calculated relative to best known cut values
from state-of-the-art [24]). Each trial takes 2.01 ms, 2.51 ms
and 5.01 ms respectively for Nm = 800, 1000 and 2000 with
Ns = 1000, and 201 µs, 251 µs and 501 µs respectively for
Nm = 800, 1000 and 2000 with Ns = 100. pc-COP achieves
an average accuracy of 98.49% and 95.99% across all the
51 evaluated G-Set graphs for Ns = 1000 and Ns = 100
respectively. Table I shows the average accuracy for different
graph sizes and types of graphs. We note that pc-COP is able to
reach near-99% for most of the benchmarks, thus highlighting
its potential for solving large-scale max-cut and other combi-

TABLE I
PC-COP MEASURED PERFORMANCE AND ACCURACY

No. of Type Benchmark Average Accuracy †
Nodes of Graphs Graphs Ns = 1000 Ns = 100

800 G-Set Random G1 - G10 99.30% 97.33%
800 G-Set Toroidal G11 - G13 95.65% 86.24%
800 G-Set Planar G14 - G21 98.33% 94.46%

1000 G-Set Random G43 - G47 99.63% 98.93%
1000 G-Set Planar G51 - G54 99.05% 98.43%
2000 G-Set Random G22 - G31 99.02% 97.22%
2000 G-Set Toroidal G32 - G34 95.43% 91.12%
2000 G-Set Planar G35 - G42 98.21% 96.72%
2000 Fully Connected K2000 98.89% 97.99%

† measured results averaged over 1000 trials



TABLE II
COMPARISON OF PC-COP WITH STATE-OF-THE-ART FPGA-BASED G-SET MAX-CUT COP HARDWARE ACCELERATORS

Design Type Tech No. of Connection Weight Resource Op. G-Set Avg. Time to
Nodes Topology Precision Utilization Freq. Accuracy Solution

[7] Digital 22nm 800 - Fully 2 bits 32 Xeon cores 2.3 95.61% 170 ms -
Annealing CPU 20000 Connected + 72 GB DRAM GHz 19.89 s

[7] Digital 28nm 800 - Fully 2 bits 2880 CUDA cores 745 95.61% 110 ms -
Annealing GPU 20000 Connected + 12 GB DRAM MHz 390 ms

[40] Coherent Optics 2000 Fully 1 bit − − 97.92% 5 msIsing Machine Connected

[38] Digital 16nm 1024 Fully 4 bits 40k LUTs + 12k FFs 100 99.07% 373 µs -
Annealing FPGA Connected + 4 Mb BRAM MHz 5.38 ms

[41] Digital 16nm 1024 Fully 4 bits 75k LUTs + 12k FFs 100 99.19% 186 µs -
Annealing FPGA Connected + 4 Mb BRAM MHz 1.35 ms

[42] Digital 20nm 4096 Fully 2 bits − − 98.50% 5 ms -
Annealing FPGA Connected 25 ms

[9] Parallel 16nm 1024 Fully 2 bits 99k LUTs + 74k FFs 200 99.43% 0.5 ms -
Tempering FPGA (×8 replicas) Connected + 7.125 Mb BRAM MHz 1 ms

[13] Probabilistic 14nm 800 - Fully 2 bits 2 Core-i7 cores 2.5 ≈ 97.00% −Computing CPU 3000 Connected GHz

2048 2 bits

for Ns = 1000
37k LUTs + 9.5k FFs 98.49% 2.01 ms -

This Probabilistic 16nm Fully + 17 DSPs (≈ 7k LUTs †) 100 5.01 ms
Work Computing FPGA Connected + 8 Mb BRAM MHz for Ns = 100

95.99% 201 µs -
501 µs

† 1 DSP is equivalent to ≈ 51.2 logic slices [39] and 1 logic slice contains 8 LUTs in UltraScale+ FPGA [23]

natorial optimization problems. Fig. 9 shows the evolution of
the system energy and convergence towards the best known
cut size of 11624 (with final energy E{m} = −4050) for the
G1 benchmark, as measured from our experimental setup. We
also evaluate max-cut performance with the K2000 benchmark
[15] which is a fully-connected graph where all nodes are
connected to each other with {0,±1} weights. Across 1000
trials, we achieve average accuracy of 98.89% and 97.99% for
Ns = 1000 and Ns = 100 respectively.

Table II compares our design with previous work on FPGA-
based hardware accelerators demonstrating max-cut with G-
Set benchmarks. Most of the previous work are digital an-
nealers and Ising computers implemented using CPU and GPU
[7], optics [40] and FPGA [38], [41], [42], [9]. While there are
many other implementations of FPGA-based and ASIC-based
digital annealers in recent literature [43], [44], [45], we only
include those which have demonstrated G-Set benchmarks for
fair comparison. [13] is a CPU-based demonstration of G-Set
max-cut with probabilistic computing. Compared to previous

Fig. 9. Evolution of system energy and convergence towards solution for G1
benchmark with Ns = 1000, as measured from our experimental setup.

CPU-based and GPU-based implementations, we achieve 3 or-
ders of magnitude speedup while maintaining similar accuracy
levels. Compared to previous FPGA-based digital annealer
implementations, we achieve reasonably comparable perfor-
mance and accuracy with the new probabilistic computing
paradigm while having lower FPGA resource utilization. This
clearly demonstrates that hardware-accelerated probabilistic
computing is an excellent candidate for realizing efficient and
large-scale combinatorial optimization problem solvers.

V. CONCLUSION

Probabilistic computing is an emerging quantum-inspired
computing paradigm capable of solving various classes of
computationally hard problems such as combinatorial op-
timization. In this work, we present pc-COP, an efficient
and configurable probabilistic computing hardware accelerator
with 2048 fully connected p-bits implemented on Xilinx
UltraScale+ FPGA and demonstrate the standard G-Set graph
maximum cut benchmarks. Our efficient logarithmic adder tree
design for sum-of-products computation reduces critical path
delay. We efficiently approximate the activation function and
tune the precision of the annealing schedule to save logic
resources. Finally, we propose a pseudo-parallel p-bit update
architecture with speculate-and-select logic which improves
overall performance by 4× compared to the traditional se-
quential p-bit update. We achieve near-99% average accuracy
across various G-Set max-cut benchmarks with 800, 1000
and 2000 nodes. Our experimental results demonstrate that
FPGA-based probabilistic computing hardware accelerators
are promising practical systems for efficiently solving large-
scale combinatorial optimization problems.
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