
Benchmarking the Performance of Large Language
Models on the Cerebras Wafer Scale Engine

Zuoning Zhang∗, Dhruv Parikh∗, Youning Zhang†, Viktor Prasanna∗
∗University of Southern California

∗{zuoningz, dhruvash, prasanna}@usc.edu †{youningzhang}@berkeley.edu

Abstract—Transformer based Large Language Models (LLMs)
have recently reached state of the art performance in Natural
Language Processing (NLP) and Computer Vision (CV) domains.
LLMs use the Multi-Headed Self-Attention (MHSA) mechanism
to capture long-range global attention relationships among input
words or image patches, drastically improving its performance
over prior deep learning approaches.

In this paper, we evaluate the performance of LLMs on
the Cerebras Wafer Scale Engine (WSE). Cerebras WSE is
a high performance computing system with 2.6 trillion tran-
sistors, 850,000 cores and 40 GB on-chip memory. Cerebras
WSE’s Sparse Linear Algebra Compute (SLAC) cores elim-
inate multiply-by-zero operations and its 40 GB of on-chip
memory is uniformly distributed among SLAC cores, enabling
fast local access to model parameters. Moreover, Cerebras
software configures routing between cores at runtime, optimizing
communication overhead among cores. As LLMs are becoming
more ubiquitous used, new hardware architectures are required
to accelerate LLM training and inference. We benchmark the
effectiveness of this hardware architecture at accelerating LLM
training and inference. Additionally, we analyze if Cerebras
WSE can scale the memory-wall associated with traditionally
memory-bound compute tasks using its 20 PB/s high bandwidth
memory. Furthermore, we examine the performance scalability
of Cerebras WSE through a roofline model. By plotting training
throughput against computational intensity, we aim to assess their
effectiveness at handling high compute-intensive LLM training
and inference tasks.

Index Terms—large language models, transformers, wafer-
scale engine, benchmarking, high performance computing

I. INTRODUCTION

Large Language Models (LLMs) have been gaining growing
interest and led to significant breakthroughs in natural lan-
guage processing, enabling applications from automated text
generation [1] and machine translation [2] to conversational AI
[3]. Their ability to understand human inquiry and generate
human-like text has enabled advancements in fields such as
education [4] and healthcare [5], fostering human and AI to
have closer and more direct interactions.

Before transformer models, Recurrent Neural Networks
(RNNs) [6] and Long Short-Term Memory (LSTMs) were
the state-of-the-art models for sequential data processing
tasks. RNNs operate on sequential data processing tasks by
maintaining a hidden state that captures information from
previous inputs and handles one input element at a time.
This enables RNNs to be able to handle inputs of arbitrary
length, therefore making it suitable for language-related tasks.
RNNs have been deployed in applications such as machine

translation [7] and speech recognition [8]. However, RNNs
suffer from vanishing/exploding gradients [9] and struggle at
handling inputs that exhibit long-range dependencies among
input words. LSTMs address these issues by introducing
a gating mechanism, allowing important information to be
preserved over long sequences. This makes LSTMs to be
more effective at handling input sequences with long-term
dependencies [10]. Despite the success of RNNs and LSTMs
at handling textual and sequential data, they struggle with
parallelization. This limits RNNs and LSTMs from scaling
to large model sizes without sacrificing efficiency, therefore
making them struggle to handle complex inputs and inputs
with extremely long-range relationships. These limitations led
to the development of transformer models [1], which utilize
a Multi-Head Self-Attention (MHSA) mechanism to process
input tokens simultaneously in order to find relationships
among input tokens. The parallel nature of MHSA enables
the model to efficiently capture relationships among very long
input sequences. For example, in GPT-3 [11], the context
window size is 2048 tokens, meaning the model will find
relationships among the previous 2048 tokens. Moreover, the
parallel nature of transformer models allows them to scale in
size and excel at handling complex input sentences.

Two cutting-edge transformer models that utilize the MHSA
mechanism are BERT [12] and GPT [11] models. Unlike tra-
ditional models that process input tokens sequentially (left-to-
right or right-to-left), BERT uses transformer encoders, which
utilize a bidirectional approach to process input sequences,
meaning BERT can calculate MHSA values of a token based
on tokens both to the left and right. This enables BERT
to have greater contextual understanding of each word and
discover more relationships within the input sequence. GPT
models utilize transformer decoder components to process
texts in a left-to-right manner, where each token can only
compute MHSA based on previous tokens in the sequence.
This unidirectional nature allows GPT models to predict the
next word in a sequence based on the context of all preceding
words, making it suitable for autoregressive text generation
tasks.

However, the vast scale of these transformer-based LLMs
architectures requires significant training and inference costs,
presenting challenges in computational and economic re-
sources. In 2018, BERT had a model size of 110M parameters
[12]. In 2020, GPT had 175B parameters [11]. The model
sizes increased by more than 1000 times in two years. The

growing demand for training larger LLMs requires growing
compute intensities and hardware resources. To address these
challenges, several new and innovative hardware architectures
have been proposed, aiming to optimize the efficiency of
LLMs training and inference [13] [14].

One hardware architecture that aims to accelerate the LLMs
training and inference tasks is the Cerebras CS-2 system. The
Cerebras CS-2 system integrates an entire wafer-scale chip,
Cerebras WSE-2, to build a powerful AI accelerator. This
enables Cerebras WSE-2 to possess extremely high memory
bandwidth and compute intensity. The WSE-2 chip is more
than 46000 mm2 in size with 2.6 trillion transistors. The
Cerebras WSE-2 architecture is composed of 850,000 cores
arranged in a 2-D mesh topology, enabling 20PB/s memory
bandwidth and 220Pb/s fabric bandwidth [15] [16].

Analyzing the training throughput and inference latency
of LLMs in the Cerebras WSE becomes a critical task as
this architecture, with extremely high memory bandwidth, has
the potential to allow LLMs training and inference to take
advantage of its abundant compute resources without being
bottlenecked by memory bandwidth. In this work, we make
the following contributions:

• Training analysis: We performed in-depth analysis of
the training throughput of BERT, on classification task,
and GPT-3, on autoregressive text generation task, across
different model sizes and batch sizes on the Cerebras
WSE platform.

• Inference analysis: We perform the end-to-end inference
latency analysis for the BERT model on binary classifica-
tion task on the Cerebras WSE platform across different
BERT model sizes and commonly used batch sizes.

• Projected training epoch duration: Based on our ob-
served training throughputs, we performed analysis to
obtain the projected per-epoch training time to train GPT-
3 models and BERT models on the PILE dataset [17] and
SST-2 dataset [18].

• Roofline model: We completed roofline model analysis
for training throughput of BERT and GPT-3 models
across different model sizes to gain insight into the
scalability of the Cerebras WSE on LLMs training.

Our aim is to deepen our understanding of Cerebras WSE
platform’s potential to perform intensive LLMs training and
inference tasks.

Section II briefly introduces LLMs and their applications
in different fields. Furthermore, this section briefly introduces
current state-of-the-art hardware architecture, Cerebras WSE,
for LLMs training and inference. Section III describes the
models, model sizes, datasets used, and batch sizes for models
being evaluated for the experiments, along with the computing
platforms on which the experiments were performed. Results
are analyzed in section IV. Discussion and conclusion follow
in section V.

II. BACKGROUND

A. Large Language Models (LLMs)

Large language models have gained growing interest over
the past few years. Especially with the release of ChatGPT
[19], users began recognizing the capabilities of LLMs and
leverage them to assist with daily tasks that were previously
time-consuming. Because of its remarkable language under-
standing abilities, more than one million users signed up to use
ChatGPT within one week of its release [20]. Moreover, LLMs
have created a profound influence in many industries and
fields. For example, LLMs ability to generate and debug code
can accelerate the software development process and enhance
programmers’ productivity [21]. LLMs can also assist with the
creative writing process by offering new ideas and providing
feedback and grammatical corrections on input writings of
users [20].

Current LLMs use transformer architecture and utilize the
Self-Attention (SA) mechanism to efficiently process and
understand relationships among words in a sentence. This
mechanism enables LLMs to have a powerful understanding of
the meaning and context of a given sentence. Mathematically,
SA can be defined as the following sequences of operations

Q = WQX (1)

K = WKX (2)

V = W V X (3)

A = softmax
(
QKT

√
dk

)
V (4)

WQ ∈ Rd×dk , WK ∈ Rd×dk , W V ∈ Rd×dv are
the weight matrices for query, key, and value, respectively.
Q ∈ Rn×dk , K ∈ Rn×dk , V ∈ Rn×dv are the query, key,
and value matrices, respectively. X ∈ Rn×d is the input
sentence embedding matrix, where n is the input sequence
length, d is the embedding length of each word in the input
sentence. The SA output A ∈ Rn×dv will then be projected to
the same shape as input X through a feed-forward network.
This sequence of operations define the essential elements
of a transformer block and is also called a single attention
head. In transformer-based LLMs, each transformer block can
contain multiple such attention heads. Each head captures
different relationships among the tokens in the input sequence,
baking within the model a richer context and understanding via
the Multi-Headed Self-Attention (MHSA) mechanism. As the
input and output dimensions of a transformer block are the
same, multiple transformer blocks can be stacked, allowing
earlier transformer blocks to provide more context for later
blocks.

Transformer models are pre-trained over a large corpus of
tokens via tasks such as next word prediction (GPT) [22] and
masked language modeling (BERT) [23].

B. GPT

GPT is a transformer decoder-only architecture where each
input only computes SA among previous input tokens. Namely,
when computing output SA token ai ∈ Rdv , SA only com-
putes among qi ∈ Rdk with kj ∈ Rdk , vj ∈ Rdv where
j ≤ i. This ensures that the model only attends to past
and current tokens, not future unseen ones. At each time
stamp, GPT computes a probability distribution over the entire
vocabulary to predict the probability of next word, enabling
it to generate the next word. This process is also called
auto-regressive decoding or text generation. Auto-regressive
text generation during inference terminates when an endoftext
token is generated or a predefined maximum output sequence
length is reached.

Multi-Head Self Attention

LayerNorm

Feedforward

LayerNorm

Input Embeddings + Position Embeddings

h0 h1 ... hn

Language Model Head

Next word logits

Fig. 1: GPT transformer decoder architecture. Input embed-
dings are first added with positional embeddings and then
fed into GPT transformer-decoder block, where MHSA is
performed.

C. BERT

BERT [12] is a transformer encoder-only architecture where
each input computes SA among both previous and future input
tokens, called bidirectional SA. Namely, when computing out-
put SA token ai ∈ Rdv , SA only computes among qi ∈ Rdk

with kj ∈ Rdk , vj ∈ Rdv where j ≤ n, where n is the input
sequence length. Because SA is computed over the entire input
sequence, BERT models have a global comprehensive context
over all tokens in the input sequence. Normally, a [class] token
is added at the beginning of the input sequence. At the output
layer, the final hidden state of the [class] token is used for the
classification of the entire sentence. This ensures that the final
classification of the sentence is not biased toward any specific
word in the input sequence. BERT models are typically pre-
trained on tasks like Masked Language Modeling (MLM) [12],
where a random subset of the input sequence is masked and
the model predicts the masked words. BERT models are also
pre-trained via Next Sentence Prediction (NSP), where the
model predicts whether the given two sentences should follow
each other. After pre-training, BERT models are fine-tuned for
task-specific applications, such as sentiment analysis of input
sequence [24].

x1

.

x0[class]

q0 q1

k0 k1

qn

kn

C

xn

Classification

.

Fig. 2: BERT transformer encoder architecture. [class] token
embedding is appended to the front of the input sequence. The
BERT architecture is similar to the GPT model architecture
shown in Figure 1, except that MHSA occurs between the
current token and tokens to the left and right. In BERT, the
final output hidden state of [class] token is used to predict the
probability distribution for classification of the input sequence.

D. Cerebras WSE

All training and inference experiments are conducted on
the Cerebras Wafer Scale Engine (WSE) and Cerebras CS-
2 system. Cerebras WSE is a powerful AI accelerator built
to train LLMs [25]. As of May 2023, Cerebras WSE is the
largest chip ever built, at 46,000 mm2 and containing 2.6
trillion transistors and 850,000 cores. Cerebras WSE’s large
die size enables greater compute power and enables more
computations to occur on-chip [16]. This reduces off-chip
communications and enables computation resources to be fully
utilized. Cerebras chip is built with Taiwan Semiconductor
Manufacturing Company (TSMC) 7 nm process and runs at 1.1
GHz frequency [15]. The WSE’s physical design contributes
50% silicon area to static random access memory (SRAM) and
50% to computation logic in each core. Each core features a
local 48 KB SRAM that enables the core to have fast access to
local memory. In each core, memory is organized into eight
6 KB banks, each 32-bit wide. On top of the local 48 KB
memory, each core also has a 256-byte, 64-bit wide, software-
configured cache, enabling even faster data access for most
frequently used data [15]. This uniformed distributed on-chip
memory architecture enables low memory access latency for
each core and very high aggregated memory throughput.

Cerebras WSE’s fine-grained data flow scheduling, enables
cores to only perform computations on non-zero data, saving
dynamic power of cores [15]. The combination of this and
the high memory bandwidth enables efficient computations
on data with unstructured sparsity [26], which is well suited
for neural network computations as model weights and input
data can possess arbitrary levels of sparsity. Moreover, on top
of fine-grained data flow scheduling, each core also has 8
micro-threads holding 8 independent tensor instructions. The
scheduler chooses among these cores to execute in the core
compute logic, guaranteeing that there is always useful work

ready for the compute logic to execute.
Cores in Cerebas WSE are arranged in a 2-D mesh topology.

Each core has a router that has a 32-bit bidirectional port to
four adjacent cores in north, south, east, and west direction,
as well as one 32-bit port to the compute logic within the
core. Data packets in Cerebras WSE are 32-bit long, 16-bit
data and 16-bit control. Packets are communicated through
static routing. Each router has 24 local static routes that can
be configured, called colors. The static routing mechanism
and 2D mesh topology enable high-speed data communication
among cores [15].

Cerebras WSE also uses weight streaming to enable training
very large models. Model weights are stored in an external
memory device DRAM and flash memory called MemoryX.
MemoryX sends the weights of each layer to Cerebras WSE
at compute time. After Cerebras WSE computes the output
values using the streamed weights and the data in its cores,
backpropagation occurs and the gradients of the layer are sent
back to MemoryX to perform weight updates. Storing model
weights externally enables extremely large model sizes as they
do not consume on-chip memory [15].

Cerbras WSE’s architecture enables high memory band-
width, rich compute resources, and very low overhead com-
munication between cores. This architecture enables efficient
training and inference of very large neural network models.

…...
…...

…...
…...

…
...

…
...

…
...

…
...

Router

Compute
Logic

48KB
SRAM

Core 1 Core 2

Core 850,000

Fig. 3: Cerebras WSE architecture. Cores are connected in 2D
mesh topology. Each core has a dedicated router that connects
to neighboring cores and its own compute logic. Each core
also has 48 KB SRAM, totaling 40 GB on-chip SRAM on the
entire chip

III. EXPERIMENTS

A. Cerebras Platform Details

The training throughput and inference latency analysis for
GPT-3 and BERT is conducted on the Cerebras CS-2 system.
The CS-2 system contains the host CPU and the Cerebras
WSE. Table I contains details of these platforms.

B. Datasets

We utilized the Stanford Sentiment Treebank (SST-2)
dataset [18] for training and inference of BERT models. We
utilize the SST-2 dataset for fine-tuning of BERT model. The

TABLE I: Specifications of platforms

Platforms Cerebras CS-2 AMD EPYC 7702P

Platform Technology TSMC 7 nm TSMC 7 nm
Frequency 1.10 GHz 2.0 GHz

Peak Performance 7.5 PFLOPS 2.04 TFLOPS
On-chip Memory 40 GB 256 MB L3 cache

Memory Bandwidth 20 PB/s 204.8 GB/s

dataset is composed of movie reviews with binary classifi-
cation tasks, classifying each movie review as positive or
negative. We split the SST-2 dataset to have 67350 samples
for training and 873 samples for evaluation, which is used to
measure BERT inference latency.

We utilized the PILE [17] dataset for training of GPT-
3 models. The PILE is an 825 GB dataset, containing
211,043,181 samples [27] of English text dataset collected
from 22 high-quality sub-datasets of different domains. By
training LLMs on datasets of diverse domains, the model is
able to gain greater general domain knowledge. We utilize the
PILE dataset for pre-training of the GPT-3 models. The task
completed by the model is to predict the next word based on
all previous words in the sequence. Therefore, the label of each
training sample is the input sequence tokens right shifted by
one token. To simplify the training settings and reduce the time
taken to complete the experiments, we use a 16 MB subset,
containing 10,000 samples, of the PILE dataset for training of
the GPT-3 models.

C. Model Hyper-parameters

We performed our experiments on the BERT-base (111M)
and BERT-large (340M) variants. For GPT-3, we evaluated
the 256M, 590M, 2.7B, 6.7B, 13B, and 20B model sizes.
Table II and Table III represent the hyper-parameters of each
model variant. In these tables, L represents the number of
layers (transformer blocks), D represents the hidden size,
H represents the number of self-attention heads and MSL
represents the maximum sequence length of the input.

TABLE II: BERT hyper-parameters

BERT Base Large

L 12 24
D 768 1024
H 12 16

MSL 128 128

TABLE III: GPT-3 hyper-parameters

GPT-3 256M 590M 2.7B 6.7B 13B 20B

L 14 18 32 32 40 44
D 1088 1536 2560 4096 5120 6144
H 17 12 32 32 40 64

MSL 2048 2048 2048 2048 2048 2048

D. Performance metrics

For training of BERT and GPT-3 models, we use through-
put, samples per second, as the performance metric. For
inference of BERT models, we use end-to-end latency as the
performance metric. Because BERT models perform classifi-
cation tasks, we define the end-to-end latency of BERT models
as the duration from when the input batch is given to the model
to when the model output is produced.

IV. RESULTS

A. BERT Training Performance Analysis

Training experiments of BERT models were performed on
the BERT-base and BERT-large variants as shown in Table
II. Figure 4 shows the training performance, measured in
throughput (samples/sec), of the BERT models with varying
batch sizes, where the batch size is measured in the number
of samples. For both BERT-base and BERT-large, the training
throughput increases initially. However, the training through-
put of the BERT-base model decreases after reaching the
optimal batch size, while the training throughput of the BERT-
large model stays roughly the same after a sharp increase in
the beginning. The optimal batch size of BERT-base is 2048
and BERT-large is 8192.

In Table IV, we report the projected training time, in
seconds, to train one epoch of the SST-2 dataset on the BERT-
base and BERT-large models. We calculate the training time
based only on the number of training samples, not including
test and development sets, and the training throughput we
observed in Figure 4.

0 2000 4000 6000 8000 10000 12000 14000 16000
Batch Size

2000

4000

6000

8000

10000

12000

14000

16000

Th
ro

ug
hp

ut
 (

sa
m

pl
es

/s
ec

)

BERT Training Throughput
BERT Base
BERT Large

Fig. 4: BERT training throughput analysis. Training through-
put is measured in samples/sec. Batch sizes are all powers of
2

B. GPT-3 Training Performance Analysis

Training experiments of GPT-3 models were conducted on
the GPT-3 model sizes indicated in Table III. Figure 5 shows
the training throughput of each GPT-3 model size with varying

TABLE IV: Projected SST-2 One Epoch Training Time (secs)

Batch Size
BERT

base large

128 29.70 64.73

512 8.63 20.64

1024 5.46 12.68

2048 4.16 9.52

4096 4.64 9.38

8192 4.95 9.29

16384 5.55 9.34

batch sizes. For GPT-3 256M model, the training throughput
increases as the batch size increases. Larger batch sizes can
more effectively utilize the available high bandwidth memory.
This facilitates more computations within each core, exploiting
the large compute resources available in the WSE. For GPT-3
20B size, training throughput drops at large batch sizes. This is
due to the fact that the memory bandwidth on the chip is fully
utilized and data transfer dominates the compute time during
training. For other GPT-3 model sizes, the training throughput
stays roughly the same across model sizes. This highlights the
WSE’s unique capacity to scale training for large models and
batch sizes without a drop in throughput.

In Table V, we provide the projected training time, in
hours, to train one epoch of the entire PILE dataset [27].
The projected training time includes one pass of the train,
test, and development sets. We calculate the training time
based on the training throughput we observed in Figure 5 and
the total number of samples reported in the PILE datasheet,
211,043,181 samples. We provide the training time for batch
size of 128 and 256 as the throughput is similar for other batch
sizes and 128 and 256 are common choices of batch size.

200 400 600 800 1000
Batch Size

10

20

30

40

Th
ro

ug
hp

ut
 (

sa
m

pl
es

/s
ec

)

GPT Training Throughput
GPT 2p7b
GPT 6p7b
GPT 13b
GPT 20b

200 400 600 800 1000
Batch Size

200

225

250

275

300

325

350

375

Th
ro

ug
hp

ut
 (

sa
m

pl
es

/s
ec

)

GPT Training Throughput

GPT 256m
GPT 590m

5(a) 5(b)

Fig. 5: Training throughput analysis of GPT-3 models over
varying batch sizes. 5(a) shows the training throughput for
GPT-3 2.7B, 6.7B, 13B, and 20B models. 5(b) shows training
throughput for GPT-3 256M and 590M models. All batch sizes
are measured in number of samples and are power of 2

TABLE V: Projected PILE One Epoch Training Time (hours)

Model
Batch Size

128 256

256 M 157 157

590 M 294 290

2.7 B 1258 1252

6.7 B 2586 2581

13 B 4943 4939

20 B 7613 7594

C. BERT Inference Performance Analysis

Figure 6 shows the inference latency for BERT models
over varying batch sizes. Our experiment results indicate that
the BERT-base model latency does not vary by much for
all batch sizes except batch size of 1. Likewise, BERT-large
model latency does not change much after a certain batch
size. However, recall that end-to-end latency is measured as
the duration it takes for the output of the entire batch to be
produced. Therefore, this indicates that performing inference
for larger batch sizes is beneficial on the Cerebras WSE
platform as the end-to-end latency does not vary by much
with increasing batch size. This reduces the average inference
latency per sample for larger batch sizes, as is expected for
high-compute high-bandwidth systems like Cerebras.

0 100 200 300 400 500
Batch Size

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

En
d

to
 E

nd
 L

at
en

cy
 (

se
c)

BERT Inference Latency
BERT Base
BERT Large

Fig. 6: BERT end-to-end inference latency analysis.

D. Roofline Models

Based on our experimental results, we completed roofline
model analysis for BERT and GPT-3 training, shown in Figure
7 and Figure 8. Our results show that both BERT-base and
BERT-large training on all the batch sizes we investigated
operate in the compute-bound region. Moreover, all GPT-
3 training for batch size of 128 operate in the compute-
bound region. This highlights that training large models on
the Cerebras WSE is scalable, with Cerebras WSE scaling the
memory wall for LLM training through its unique architecture.

6 8 10 12 14 16
log Arithmetic Intensity (FLOPS/GB)

11

12

13

14

15

16

lo
g

At
ta

in
ed

 (
FL

O
PS

/s
)

Roofline Model of BERT Training

Peak perf.: 7.5 PFLOPS/s
Mem BW: 20 PB/s
base B=128
base B=512
base B=1024
base B=2048
base B=4096
base B=8192
base B=16384
large B=128
large B=512
large B=1024
large B=2048
large B=4096
large B=8192
large B=16384

Fig. 7: BERT roofline analysis. Axes are in log scale.

7 8 9 10 11 12 13 14 15 16
log Arithmetic Intensity (FLOPS/GB)

13.0

13.5

14.0

14.5

15.0

15.5

16.0

lo
g

At
ta

in
ed

 (
FL

O
PS

/s
)

Roofline Model of GPT-3 Training

Peak perf.: 7.5 PFLOPS/s
Mem BW: 20 PB/s
256m B=128
590m B=128
2p7b B=128
6p7b B=128
13b B=128
20b B=128

Fig. 8: GPT-3 roofline analysis. Axes are in log scale. Only
batch size of 128 is investigated.

V. CONCLUSION AND FUTURE WORK

In this paper, we examined the training throughput of BERT
and GPT-3 training across commonly used batch sizes and
model sizes, as well as inference latency for BERT. We
also investigated the roofline model of BERT and GPT-3
training, gaining insights in the scalability and potential of the
Cerebras WSE for accelerating LLM training and inference.
Investigating Cerebras WSE’s performance for more models,
especially computer vision models, will be a promising area
for exploration because of its widespread applications.

ACKNOWLEDGMENT

This work was performed on a CS-2 platform at the Univer-
sity of Southern California supported by the US Army DURIP
program. This work was also supported in part by DEVCOM
Army Research Lab (ARL) under grant W911NF2320186.

We would like to thank the USC Center for Advanced Re-
search Computing (CARC) for their support in installing and
accessing the CS-2 platform and the Cerebras staff for their
continued engineering support and helpful discussions.

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[2] B. McCann, J. Bradbury, C. Xiong, and R. Socher, “Learned in trans-
lation: Contextualized word vectors,” Advances in neural information
processing systems, vol. 30, 2017.

[3] Z. Xue, R. Li, and M. Li, “Recent progress in conversational ai,” arXiv
preprint arXiv:2204.09719, 2022.

[4] Z. Zhang, D. Zhang-Li, J. Yu, L. Gong, J. Zhou, Z. Liu, L. Hou, and
J. Li, “Simulating classroom education with llm-empowered agents,”
arXiv preprint arXiv:2406.19226, 2024.

[5] S. A. Gebreab, K. Salah, R. Jayaraman, M. H. ur Rehman, and
S. Ellaham, “Llm-based framework for administrative task automation in
healthcare,” in 2024 12th International Symposium on Digital Forensics
and Security (ISDFS). IEEE, 2024, pp. 1–7.

[6] J. Elman, “Finding structure in time. cognitive science, 14 (2), 179–211.”
1990.

[7] J. R. Chaudhary and A. C. Patel, “Bilingual machine translation using
rnn based deep learning,” Int J Sci Res Sci Eng Technol, vol. 4, no. 4,
pp. 1480–1484, 2018.

[8] Y. Miao, M. Gowayyed, and F. Metze, “Eesen: End-to-end speech
recognition using deep rnn models and wfst-based decoding,” in 2015
IEEE workshop on automatic speech recognition and understanding
(ASRU). IEEE, 2015, pp. 167–174.

[9] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee,
“Recent advances in recurrent neural networks,” arXiv preprint
arXiv:1801.01078, 2017.

[10] H. Sak, A. W. Senior, and F. Beaufays, “Long short-term memory
recurrent neural network architectures for large scale acoustic modeling,”
2014.

[11] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[13] W. Luk, K. F. C. Yiu, R. Li, K. Mishchenko, S. I. Venieris, H. Fan
et al., “Hardware-aware parallel prompt decoding for memory-efficient
acceleration of llm inference,” arXiv preprint arXiv:2405.18628, 2024.

[14] Y. Huang, L. J. Wan, H. Ye, M. Jha, J. Wang, Y. Li, X. Zhang,
and D. Chen, “New solutions on llm acceleration, optimization, and
application,” arXiv preprint arXiv:2406.10903, 2024.

[15] S. Lie, “Cerebras architecture deep dive: First look inside the hard-
ware/software co-design for deep learning,” IEEE Micro, vol. 43, no. 3,
pp. 18–30, 2023.

[16] G. Lauterbach, “The path to successful wafer-scale integration: The
cerebras story,” IEEE Micro, vol. 41, no. 6, pp. 52–57, 2021.

[17] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster,
J. Phang, H. He, A. Thite, N. Nabeshima et al., “The pile: An
800gb dataset of diverse text for language modeling,” arXiv preprint
arXiv:2101.00027, 2020.

[18] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a
sentiment treebank,” in Proceedings of the 2013 conference on empirical
methods in natural language processing, 2013, pp. 1631–1642.

[19] T. OpenAI, “Chatgpt: Optimizing language models for dialogue. openai,”
2022.

[20] M. Abdullah, A. Madain, and Y. Jararweh, “Chatgpt: Fundamentals,
applications and social impacts,” in 2022 Ninth International Conference
on Social Networks Analysis, Management and Security (SNAMS). Ieee,
2022, pp. 1–8.

[21] Q. Gu, “Llm-based code generation method for golang compiler testing,”
in Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2023, pp. 2201–2203.

[22] M. Geva, A. Caciularu, K. R. Wang, and Y. Goldberg, “Transformer
feed-forward layers build predictions by promoting concepts in the
vocabulary space,” arXiv preprint arXiv:2203.14680, 2022.

[23] J. Salazar, D. Liang, T. Q. Nguyen, and K. Kirchhoff, “Masked language
model scoring,” arXiv preprint arXiv:1910.14659, 2019.

[24] M. G. Sousa, K. Sakiyama, L. de Souza Rodrigues, P. H. Moraes,
E. R. Fernandes, and E. T. Matsubara, “Bert for stock market sentiment
analysis,” in 2019 IEEE 31st international conference on tools with
artificial intelligence (ICTAI). IEEE, 2019, pp. 1597–1601.

[25] N. Sengupta, S. K. Sahu, B. Jia, S. Katipomu, H. Li, F. Koto, O. M.
Afzal, S. Kamboj, O. Pandit, R. Pal et al., “Jais and jais-chat: Arabic-
centric foundation and instruction-tuned open generative large language
models,” arXiv preprint arXiv:2308.16149, 2023.

[26] V. Thangarasa, M. Salem, S. Saxena, K. Leong, J. Hestness, and S. Lie,
“Mediswift: Efficient sparse pre-trained biomedical language models,”
2024. [Online]. Available: https://arxiv.org/abs/2403.00952

[27] S. Biderman, K. Bicheno, and L. Gao, “Datasheet for the pile,” arXiv
preprint arXiv:2201.07311, 2022.

