
IRIS-MEMFLOW: Data Flow–enabled Portable Memory Orchestration in
IRIS Runtime for Diverse Heterogeneity

Mohammad Alaul Haque Monil, Narasinga Rao Miniskar, Seyong Lee,
Beau Johnston, Pedro Valero-Lara, Aaron Young, Keita Teranishi and Jeffrey S. Vetter

Oak Ridge National Laboratory, Oak Ridge, TN, USA
{monilm, miniskarnr, lees2, johnstonbe, valerolarap, youngar, teranishik, vetter}@ornl.gov

Abstract—Task-based programming models and execution
paradigms provide a means to decompose a computation by
expressing it as a graph in which each node represents a
specific computation operating on memory objects and the
edges define the dependencies in the execution flow. In this
execution model, independent nodes in the graph can be ex-
ecuted concurrently in different computing devices, making it
suitable for heterogeneous systems in which computing devices
with different architectures coexist. However, careful memory
orchestration across heterogeneous devices is needed because
copies of the same memory object may reside in multiple devices
during execution. Manually ensuring such an orchestration
is quite challenging. Not only must an application developer
guard against race conditions, but they must also optimize data
movement between the host and devices because unnecessary
data movement significantly impacts performance. To mitigate
these challenges, we enhance the IRIS heterogeneous runtime
and introduce IRIS-MEMFLOW—a data flow–enabled portable
memory abstraction for seamlessly orchestrating memory in
diverse heterogeneous computing environments. By using data-
flow analysis, IRIS-MEMFLOW guards against race conditions
while multiple heterogeneous devices access memory objects.
IRIS-MEMFLOW also optimizes data movement between the
host and devices without manual intervention. As a result, IRIS
provides improved programming productivity, performance, and
portability for multidevice heterogeneous executions in high-
performance computing and cloud systems that run diverse
architectures from different vendors. The efficacy of IRIS-
MEMFLOW is evaluated through experiments that show its
capability in terms of programming productivity, multidevice
heterogeneity, portability, and low overhead versus the state of
the art.

I. INTRODUCTION

Task-based programming models and runtimes expose task-
level abstraction and are an active area of research ow-
ing to their ability to intelligently decompose the total
computation into a graph of tasks. Through decomposi-
tion and scheduling, contemporary task-based runtimes (e.g.,
HPX [13], Charm++ [14]) can utilize a system in an effi-
cient way as opposed to the de-facto bulk synchronous pro-
gramming model (i.e., MPI). In addition to distributed high-
performance computing environments, task-based abstractions

Notice: This manuscript has been authored by UT-Battelle LLC under
contract DE-AC05-00OR22725 with the US Department of Energy (DOE).
The US government retains and the publisher, by accepting the article for
publication, acknowledges that the US government retains a nonexclusive,
paid-up, irrevocable, worldwide license to publish or reproduce the published
form of this manuscript, or allow others to do so, for US government purposes.
DOE will provide public access to these results of federally sponsored research
in accordance with the DOE Public Access Plan (https://www.energy.gov/doe-
public-access-plan).

are widely adopted for in-node heterogeneity (e.g., StarPU [1],
OmpSs [9], OpenMP [26]). However, contemporary program-
ming models and runtimes for heterogeneity face various
challenges in programming productivity and performance op-
timization in terms of orchestrating the execution—especially
memory orchestration in diverse heterogeneous architectures.

The in-node heterogeneity found in many modern comput-
ing systems exacerbates the portability, scalability, and utiliza-
tion challenges, and the task-based computing paradigm is no
different. Although the coexistence of different architectures
from vendors/manufacturers opens the door for simultaneous
task execution, orchestrating the total execution flow becomes
challenging. The goal is to create a high-level abstraction that
does not require architecture information while the runtime
systems provide the necessary orchestration. One of the major
challenges in such an orchestration is transparent memory
management. Ideally, at a high level, an application developer
would not need to worry about how the data moves across
devices. Traditionally, data movement is specified using a
directed acyclic graph (DAG) of tasks in which dependencies
protect the execution against any race condition among tasks
that are accessing the same memory.

Data flow–based task graph construction has been studied
in the scope of programming models and runtimes (e.g.,
Nanos [2], SYCL [15], OpenMP [26], StarPU [1], Kaapi [11],
TaskFlow [12]). However, the coexistence of heterogeneous
processors complicates the scenario because multiple copies
of the same data may exist in different devices managed by
the runtime for a specific device [22]. Studies have shown
some successes in supporting heterogeneity to some extent
(XKaapi [11], StarPU [1]). However, data-flow analysis can
facilitate guarding against race conditions and improve per-
formance by pruning unnecessary data movement and pro-
viding computation-communication overlap. To address these
challenges and leverage these opportunities, the research de-
scribed here strives to answer the following question: How can
a data-flow enabled, high-level memory abstraction provide
intelligent and efficient memory orchestration capability for
diverse heterogeneity while providing an architecture-agnostic
front end to ensure portability?

To answer this question, we present IRIS-MEMFLOW,
which enhances the memory abstraction of IRIS, a task-based
runtime for diverse heterogeneity. IRIS provides architecture-
agnostic APIs for task and memory object creations, and
dependencies are introduced to create a DAG of tasks to

CUDA
Runtime
Shared
Library

HIP
Runtime
Shared
Library

OpenMP
Kernel
Shared
Library Vendor

OpenCL
Vendor
OpenCL

CPU
NVIDIA

GPU
AMD
GPU

Intel
FPGA

Qualcomm
GPU

Task

Task

Task

Task

Task

Task

Task

Task

OpenCL ICD Loader

OpenCL
Kernel

HIP
Kernel

OpenMP
Kernel

CUDA
Kernel

OpenCL
Kernel

Shared Virtual Device Memory
DDR4 HBM2 HBM2 HBM2 LPDDR4

CPU

DDR4

Dynamic
Platform
Loader

Task
Scheduler

Task

Host

IR
IS

IRIS Host Code
(C/C++/Fortran/

Python)Ap
p

Po
lic
y

Po
lic
y

Po
lic
y

Po
lic
y

Qualcomm
DSP

LPDDR4

Hexagon
Runtime
Shared
Library

Task

Hexagon
Kernel

Level Zero
Runtime
Shared
Library

Intel
GPU

Task

SPIR-V
Kernel

HBM2

Compute Devices

Fig. 1: IRIS runtime system for heterogeneous architec-
tures [16].

intelligently schedule and orchestrate the tasks in diverse
heterogeneous systems [16], [21], [24], [25]. The memory
abstraction of the IRIS runtime (data memory [DMEM]) can
orchestrate the memory copies that exist during execution [20].
IRIS-MEMFLOW further introduces data flow–based memory
orchestrations to improve the existing memory abstractions
(DMEM) and deliver the solution to the research question.
Although data flow–based dependency analysis exists in other
runtimes, IRIS-MEMFLOW provides not only a high-level
portable abstraction for memory objects in the context of
heterogeneity but also combines low-level memory orchestra-
tion in which multiple devices concurrently execute different
tasks. IRIS-MEMFLOW enriches the IRIS runtime with two
additional capabilities. (1) High-level portable abstraction: an
architecture-agnostic memory object in IRIS uses data flow–
enabled DAGs to automatically ensure race condition–free
execution from a serial IRIS code and provides opportuni-
ties (e.g., DAG fusion) for increasing concurrency without
changing the front-end code. (2) Low-level orchestration:
data-flow enabled memory orchestration between host and
devices ensures intelligent memory movement and compute-
communication overlap while supporting automated hetero-
geneous execution and portability provided by the high-level
abstraction.

The present work describes contributions toward an auto-
mated, data flow–enabled portable memory abstraction that
can identify concurrency and guard against race conditions,
data races, and deadlocks initiated by concurrent tasks exe-
cuting in diverse heterogeneity. Additionally, we describe a
solution for automatic and optimized data movement between
host and devices during execution to ensure computation and
communication overlap, reduced data movement, and DAG
fusion while keeping the higher-level abstraction the same.
Finally, we evaluate the proposed methods for various linear
algebra algorithms by providing the overhead of the data-flow
analysis and the improvement versus the state of the art.

II. BACKGROUND

A. IRIS

Developed at Oak Ridge National Laboratory, 2024 R&D
100 award winner IRIS runtime [16] is an intelligent, task-
based runtime system (Fig. 1) designed for diverse heteroge-

Fig. 2: MatRIS math library abstraction using IRIS.

neous systems. IRIS provides a unique programming model
and runtime environment that can simultaneously utilize de-
vices and accelerators from different vendors. In addition to
supporting mainstream CPUs and GPUs from Intel, NVIDIA,
and AMD, IRIS also supports field-programmable gate arrays
(FPGAs) and digital signal processors (DSPs) from different
vendors. IRIS deviates from the traditional CPU and acceler-
ator model and considers all accelerators and CPUs as IRIS
devices. For this reason, unlike other state-of-the-art runtime
systems, IRIS can simultaneously orchestrate computation
among CPUs, multiple GPUs from the same or different ven-
dors, single or multiple FPGAs, and DSPs. IRIS invokes APIs
from OpenMP, OpenACC, HIP, CUDA, XilinxCL, OpenCL,
Hexagon C++, and IntelCL to perform the total orchestration.
IRIS provides two architecture-agnostic abstractions: (1) tasks
for computation and (2) memory objects for data. Through
these abstractions, a computation DAG is expressed and can
be scheduled and executed by using different schedulers in
IRIS.

B. MatRIS

The MatRIS (Fig. 2) multilevel math library abstrac-
tion [23], [25] uses the IRIS runtime and provides state-
of-the-art tiled algorithms for different BLAS and LAPACK
functionalities. Once compiled, MatRIS can utilize all the
heterogeneous devices in a system by using the scheduling
algorithm provided by the IRIS runtime. MatRIS supplies a
fully portable and heterogeneous implementation of GEMM,
GETRF (non-pivoting LU factorization), POTRF (Cholesky
factorization), TRSM, POSV, GESV, and other tiled math
algorithms. The present work shows the efficacy of using the
tiled algorithms in MatRIS.

III. MOTIVATION

As shown in Fig. 1, IRIS provides a shared virtual device
memory space (includes CPU as well). Such abstraction is
provided through the DMEM logical memory handler [20].
Each DMEM object in the IRIS runtime has copies in different

x =BA PS
B00

X1

T000

B01

X2

T001

B02

X3

T002

B0N

XN

T00N

A00

H

D0 D1 D2

A00
DMEM Object

CPU (D0) GPU (D1)

Dirty Bit False
Dirty Bit True

GPU (D2) GPU (D1)

Task 2 Task 3Task 1 Task 4

Fig. 3: IRIS managing multiple memory copies by using
DMEM abstraction in a matrix multiplication [20].

devices (Fig. 3). Using dirty bits, IRIS’s DMEM logic con-
troller tracks which memory copies within a DMEM object
have valid data. The diagram in Fig. 3 shows how IRIS
keeps multiple copies for matrix multiplication for the data
structure A. Because IRIS is informed about the status of each
copy of the data, it enables automatic data transfer between
devices when necessary. However, manual effort is required
to ensure flush-out data movement and guard against race
conditions.

Ideally, one programmer should be able to write a simple
single-threaded, architecture-agnostic, and serial program us-
ing IRIS tasks and memory objects without specifying any
data movement. The runtime should be able to perform the
following four functionalities without manual intervention.
(1) Automatically find concurrency in the computation by

constructing a task graph (DAG) to utilize the heteroge-
neous devices concurrently while guarding against race
conditions, data races, and deadlocks.

(2) Ensure automatic data movement that includes copying
input from host to device, data movement between de-
vices, and sending the final results without introducing
unnecessary/extra data movement.

(3) Ensure computation and communication overlap when
possible in the existing synchronous and asynchronous
execution in IRIS.

(4) Automatically fuse different DAGs of tasks when appli-
cable to increase concurrency and efficiently utilize het-
erogeneous devices (e.g., multiple GPUs) while ensuring
the three points mentioned above.

Currently, IRIS can accomplish all four functionalities
through moderate-to-extensive manual efforts. However, some
functionalities (two and three listed above) can be done
automatically through the current memory abstractions, includ-
ing data fetching and data movement between devices [20]
and computation and communication overlap using streams.
The present work extends current IRIS memory abstraction
(DMEM) [20] to provide fully automated solutions to these
problems by introducing data flow–based analysis.

IV. DATA FLOW–ENABLED MEMORY ORCHESTRATION
FOR HETEROGENEITY

This section describes the design of the data flow–enabled
portable memory object orchestration found in the IRIS run-
time. Data flow–based dependency creation has been inves-
tigated for both the compiler and the runtime for multicore

Fig. 4: DAG for dense LU factorization showing maximum
concurrency using shaded area.

CPUs and for heterogeneity to some extent [1], [4]. However,
our work uses the traditional concept of data flow and goes
beyond previous efforts by establishing a connection between
high-level memory abstraction and low-level memory orches-
tration for diverse heterogeneity and by implementing the four
functionalities listed in Section III.

A. Concurrency and Accuracy

The traditional concept of data flow is applied to the
sequential IRIS program (IRIS host code) to find concurrency
by constructing a DAG of tasks. As shown in Fig. 3, IRIS
memory objects are a bundle of their copies in the host
and different heterogeneous devices (the high-level memory
abstraction is shown in line 19 of Fig. A.1 in Appendix I).
Data-flow analysis views these high-level abstract memory
objects as single memory objects and considers the read-
and-write properties of these memory objects in each task’s
definition (Lines 28–29 of Fig. A.1 in Appendix I). At a
high level, dependency between tasks is created based on
memory accesses by the kernels associated with the tasks.
Because tasks are created in sequential code, the arrival of the
task ensures proper ordering. If two tasks write to the same
memory, then a dependency is created from the latter to the
former. The same is maintained for reading and writing on the
same memory object. Only the tasks reading the same memory
object or with no common memory objects can proceed in
parallel. So, starting from the first task creation, dependencies
are created as the tasks are created and weave the full DAG
and expose concurrency to the IRIS runtime (Fig. 4).

Initially, tasks are held in the IRIS scheduler’s queue. Once
a task no longer depends on any other tasks, it is moved to a
worker queue attached to a device (e.g., CPU, GPU). During
execution, at no point will two devices simultaneously try to
update the device copy of the memory object. Because this
serialization is ensured based on the arrival of the task from the
sequential program, the sequential IRIS program and the IRIS
DAG always provide the same result, thereby successfully
guarding against race conditions.

In synchronous mode, any IRIS device works on only
one task, and a memory object is updated by one device,
thereby avoiding data races. However, IRIS’s existing asyn-
chronous execution capability, in which multiple streams can
concurrently execute kernels and transfer data, can lead to
data races between copies of data in a memory object. For
example, for transferring data from one device to another
through the host, one must issue two transfers: one from
device-to-host and one from host-to-device. Both transfers can
be scheduled concurrently by different streams in different
devices. For such cases, the correct order is ensured by event-
based synchronization between streams (e.g., CUDA and HIP
events for streams). When a new task is created, then it creates
a dependency only on the existing tasks, thereby eliminating
the possibility of creating a cycle and ensuring a deadlock-free
execution in IRIS.

Applying traditional data-flow logic in the high-level mem-
ory object creates the DAG used to find concurrency and
guards against race conditions, data races, and deadlock in
the low-level orchestrations when multiple devices execute the
same DAG (ensures the first functionality listed in Section III).

Before the introduction of IRIS-MEMFLOW, dependencies
were manually created in IRIS, and this required significant
effort and sometimes made it impossible to track all the
dependencies. For example, in some cases, tasks and memory
objects are created based on the property of the data at run
time, making tracking a dependency quite challenging. IRIS-
MEMFLOW eliminates these challenges to provide higher
programming productivity.

B. Automatic Data Movement

IRIS provides a shared virtual device memory space. First,
data must be moved from the host space to the device space
for computation. After the computation finishes, data must
then be brought back to the host space. This process contains
three parts. (1) Flush-in: Data is brought to the device space
for the first time, and that is when memory is allocated to a
device. (2) Between-devices: When data is already brought to
the device space, then IRIS fetches the updated device copy,
either through device-to-device communication or device-to-
host followed by a host-to-device communication. (3) Flush-
out: Data is finally updated and sent back to the host space
from the most up-to-date device.

During the execution of a task, IRIS knows what data is
needed at that moment. The first two operations are handled on
an on-demand basis. Therefore, the current memory abstrac-
tion in IRIS (DMEM [20]) performs the first two automatically
because it keeps track of where the most up-to-date data lives.
However, the third part depends on whether the executing task
is the last to update that memory object, so manual effort is
employed to ensure flush-out. However, if data is prematurely
sent back to the host, then there is a risk of unnecessary
data transfers. For this reason, IRIS-MEMFLOW ascertains
when a memory object was last updated and inserts a flush-
out command only at that point. The flush-out command uses
the capability of the DMEM objects to find which device (or

main

GETRF

FLUSH-OUT TRSM TRSM

FLUSH-OUT GEMM FLUSH-OUT

GETRF

FLUSH-OUT

(a) GETRF

main

TRSM TRSM

FLUSH-OUT GEMM FLUSH-OUT GEMM

TRSMTRSM

FLUSH-OUTFLUSH-OUT

(b) TRSM

main

GETRF

FLUSH-OUT1 TRSM1 GETRFGETRF

TRSM1

TRSM2TRSM2

TRSM1

FLUSH-OUT1GETRF

TRSM2TRSM2

FLUSH-OUT1

TRSM1

TRSM1

GETRF

TRSM1FLUSH-OUT1

TRSM2 TRSM2

FLUSH-OUT2 FLUSH-OUT2

FLUSH-OUT2FLUSH-OUT2

(c) GESV

Fig. 5: Automated and non-blocking flush operation for LU
factorization. GETRF, TRSM, and GESV with 2× 2 decom-
position. Yellow indicates a flush operation.

host) has the most up-to-date copy and issues a device-to-host
transfer.

IRIS-MEMFLOW creates a floating task (flush-out task)
that only contains the flush-out command when it discovers
that a task’s kernel will update a memory object. IRIS-
MEMFLOW keeps moving the flush-out task whenever an-
other task updates that memory object. In graph submission
mode, a DAG is first created in IRIS before submission, and
graphs can be retained to execute many times. For this reason,
IRIS-MEMFLOW can ensure a maximum of one flush-out
per memory object, eliminating the possibility of unnecessary
flush-out data transfer.

The flush-in and between-devices data transfer must be
completed before the kernel starts executing. However, the
flush-out does not need to block the computation flow and
is always kept as a leaf node in the DAG. The existing
asynchronous execution in IRIS dedicates separate streams for
computation and communication. Hence, the flush-out task
in the leaf node increases the chances of computation and
communication overlapping without blocking any computa-
tion. Automatic flush-out is shown in Figs. 5a and 5b, where
a 2 × 2 decomposition is considered for LU factorization
and TRSM. For GETRF, four memory objects are updated
by five tasks. The GEMM and the last GETRF task update
the same memory, and IRIS-MEMFLOW ensures there are
four flush-out leaf tasks, avoiding unnecessary data movement.
The same is demonstrated for TRSM. In this way, IRIS-
MEMFLOW completes the automated data movement in IRIS

(a) A 2× 2 decomposi-
tion for GESV.

(b) A 3× 3 decomposition for GESV.

Fig. 6: Multiple DAG fusion. GESV is shown as an example.
Blue tasks are from GETRF, red tasks are from the first TRSM,
and cyan tasks are from the second TRSM.

while eliminating the possibility of unnecessary data transfer
and increasing the possibility of computation and commu-
nication overlap (functionalities two and three mentioned in
Section III).

C. DAG Fusion with Data Movement Optimization

Fusing multiple DAGs can increase concurrency, which can
in turn increase performance by ensuring higher utilization
of the computing devices. For example, the dense LU fac-
torization in Fig. 4 shows a diamond-shaped DAG. If such a
DAG is executed in a node with four GPUs, then some of
the GPUs will remain underutilized during the beginning and
the end of such a DAG. For this reason, more concurrency
is desired. IRIS-MEMFLOW can fuse multiple DAGs by
tracking the data flow of the memory objects. The DAG fusion
of the GESV solver is shown in Fig. 6. The GESV solver
combines three DAGs, one for GETRF and two for TRSM.
Some computation of the first TRSM can be started before the
full GETRF finishes its execution. For example, once GETRF
is done with the first memory object, which is not updated by
any other task in the GETRF DAG, the first task of TRSM
can immediately start executing. Although manual dependency
creation can be conducted in non-fused cases, the fused case
makes it nearly impossible to track the memory usage for
large DAGs. IRIS-MEMFLOW can automatically fuse DAGs
by flowing the usage of memory objects, thereby providing
higher concurrency.

IRIS-MEMFLOW provides optimized data transfers for
fused cases as well, as shown in Fig. 5c. The DAGs in Figs. 5a
and 5b show GETRF and TRSM with a 2× 2 decomposition.
Figure 5c shows the fusion of GESV (GETRF + TRSM +
TRSM). In the fused cases, 17 tasks update 8 memory objects.
IRIS-MEMFLOW moves the flush task as the new tasks are
added, ensuring exactly 8 flush tasks. If DAGs were executed
separately, then there would have been 12 flush tasks. Hence,
fusion provided by IRIS-MEMFLOW automatically eliminates
the extra flush-out data transfer, thereby providing optimized
data movement (functionality four mentioned in Section III).

V. EXPERIMENTS

This section describes the performance improvements and
other benefits of using IRIS-MEMFLOW over previous
approaches, including improved programming productivity,

TABLE I: A diverse heterogeneous system.
System CADES cloud node

Total 8 GPUs
GPUs 4× NVIDIA A100

4× AMD MI100
CPU AMD EPYC 7763, 128 cores

Compiler GNU-8.5.0
CUDA and ROCm versions CUDA-11.7 and ROCm-5.1.2

Math libraries MKL, cuBLAS, cuSOLVER,
hipBLAS, and hipSOLVER

portability and accuracy, and performance improvements from
automated flush-out. Performance improvement for DAG fu-
sion is also presented, followed by a discussion of the overhead
of IRIS-MEMFLOW. Finally, a comparison with the state of
the art is presented.

As shown in Table I, a Compute and Data Environment for
Science (CADES) cloud node at Oak Ridge National Labora-
tory was used for experimentation. The node is equipped with
four NVIDIA A100 GPUs and four AMD MI100 GPUs. The
four NVIDIA GPUs are connected by NVLINK as two pairs,
which provides the opportunity for device-to-device transfer.
Six dense linear algebra benchmarks from MatRIS were used:
GEMM, TRSM, GETRF (non-pivoting), POTRF, GESV, and
POSV, where GESV is a fusion of GETRF (non-pivoting) and
two TRSMs, and POSV is a fusion of POTRF and two TRSMs.
Non-pivoting GETRF is considered for all experiments. These
tiled algorithms create complex graphs of computation when
higher decomposition is used. This makes them suitable for
verifying the efficacy of IRIS-MEMFLOW. Moreover, the
numerical accuracy of these algorithms was checked by com-
paring the results of the tiled version of MatRIS versus a
single kernel of the appropriate vendor libraries. Block-cyclic
scheduling was used for each experiment to ensure all the
devices were utilized concurrently. Inspired by state-of-the-art
math libraries [3], [17], only the DAG execution time was
considered during the performance assessment (i.e., the DAG
creation time was not counted). NVIDIA’s Nsight system was
used to count the number of data transfer API calls.

A. Programming Productivity

The main objective of IRIS-MEMFLOW is to enhance
the IRIS runtime by providing a portable abstraction for
memory orchestration so that an application developer can
express the computation by using architecture-agnostic IRIS
APIs and IRIS to leverage all four functionalities mentioned
in Section III. Providing all these functionalities requires
writing more code and significant manual effort/analysis. IRIS-
MEMFLOW eliminates the need for manual effort, thereby
significantly boosting programming productivity, which can
be difficult to quantify. However, the number of source code
reductions can be quantified, and the GETRF implementation
in MatRIS required 40% less code with the features provided
by IRIS-MEMFLOW. For example, Fig. A.2 in Appendix
I shows an example of POTRF, which comprises serial-for
loops without any architecture description but becomes a
fully portable Cholesky decomposition at run time in CPU
and GPU environments. So, this unquantifiable boost in pro-
gramming productivity is one of the significant benefits of

IRIS-MEMFLOW. The rest of this section discusses the more
quantifiable performance results.

TABLE II: Portability and accuracy for different hardware
configurations. Each of the six algorithms was run for two data
sizes (32 × 32 and 1,024 × 1,024) with the decomposition
of two tile numbers (2 × 2 and 16 × 16), where each
combination is run five times, making 120 checks for each
hardware combination.

Modes Hardware combination
SYNC ONLY CPU
SYNC 2 NVIDIA GPUs
SYNC 4 NVIDIA GPUs
SYNC 2 AMD GPUs
SYNC 4 AMD GPUs
SYNC 2 NVIDIA GPUs and 2 AMD GPUs
SYNC 4 NVIDIA GPUs and 4 AMD GPUs
SYNC 1 CPU, 4 NVIDIA GPUs, and 4 AMD GPUs

ASYNC 2 NVIDIA GPUs
ASYNC 4 NVIDIA GPUs
ASYNC 2 AMD GPUs
ASYNC 4 AMD GPUs
ASYNC 2 NVIDIA GPUs and 2 AMD GPUs
ASYNC 4 NVIDIA GPUs and 4 AMD GPUs

B. Portability and Accuracy

Once compiled, MatRIS algorithms are portable, and IRIS
can use multiple heterogeneous devices concurrently at run
time. IRIS supports asynchronous and synchronous execution.
In asynchronous mode, IRIS uses multiple streams supported
by CUDA and ROCm runtimes for data transfers and kernel
execution, increasing the chance of computation and commu-
nication overlap. The same implementations of the MatRIS
algorithms are tested on different hardware configurations
(Table II), demonstrating the portability of IRIS’s memory
abstraction. As shown in Table II, both small and large DAGs
created by IRIS-MEMFLOW for small and large data sizes are
tested for different hardware combinations to check whether
IRIS-MEMFLOW can provide the correct numerical results by
guarding against deadlocks, race conditions, and data races.
IRIS-MEMFLOW is evaluated for numerical accuracy by
using MatRIS (up to the third digit of the floating points).

The execution provided correct numerical results for a total
of 1,680 combinations of the six algorithms from MatRIS.
This outcome shows that IRIS-MEMFLOW can provide exe-
cutions free of deadlock, race conditions, and data races while
ensuring the portability of MatRIS to all these hardware com-
binations, thereby providing the first functionally mentioned
in Section III.

C. Performance Improvement for Automated Flush-Out

IRIS-MEMFLOW enhances the current capability of the
IRIS runtime by introducing an automated and optimized data
movement mechanism for the flush-out operations. Through
data-flow analysis, IRIS-MEMFLOW ensures one flush-out
data movement for each memory object during the execu-
tion of a DAG. Without such automation, there is a risk
of unnecessary data movement introduced by manual inter-
vention. A comparison between IRIS-MEMFLOW enabled
flush-out and manual (inefficient) flush-out is presented in

TABLE III: Number of data transfers in automated vs. manual
flush-out.

Flush-out GEMM TRSM GETRF POTRF GESV POSV
Automated 388 263 260 134 533 420

Manual 800 487 400 218 1,185 1,016
Gain 52% 46% 35% 39% 55% 59%

GEMM TRSM GETRF POTRF GESV POSV

GF
LO

PS

62
34

1

40
11

8

24
70

9

18
44

6

39
14

5

43
83

052
66

0

34
67

5

19
14

3

14
70

8

30
52

5

34
04

7

IRIS-MEMFLOW-Flush-out
Manual-Inefficient-Flush-out

Fig. 7: Impact of data-flow enabled flush-out in IRIS-
MEMFLOW.

Fig. 7. For the manual (and inefficient) data movement cases,
data is written back to the host when a memory object is
updated, and the data movement happens right after ker-
nel execution, thereby delaying other tasks/kernel execution.
In contrast, IRIS-MEMFLOW only performs one flush-out
for a memory object, and this is done asynchronously to
the execution flow, enabling computation and communication
overlap. In the asynchronous mode, IRIS uses different streams
for executing kernel and data transfer, which increases the
possibility of computation and communication overlap. For
this reason, each benchmark running on the four NVIDIA
A100 GPUs demonstrated 15%–28% performance improve-
ment. Note that the matrix size (32,768 × 32,768), the tile
size (4,096 × 4,096), the execution mode (asynchronous), the
number of task/kernels, and the scheduling algorithm were
kept the same for both cases, and Fig. 7 shows only the
improvement achieved by the automated flush-out of IRIS-
MEMFLOW. The number of data transfers (a sum of host-
to-device, device-to-device, and device-to-host transfers) is
shown in Table III. Notably, IRIS-MEMFLOW reduced data
transfers by 59%. So, IRIS-MEMFLOW provides optimized
data transfers while increasing the possibility of computation
and communication overlap, thereby providing the second and
third functionalities mentioned in Section III.

D. Performance Improvement for DAG Fusion

Two benchmarks from the MatRIS algorithms, GESV and
POSV, provide the opportunity to investigate DAG fusion.
GESV combines GETRF with two TRSMs, and POSV com-
bines POTRF with two TRSMs. IRIS-MEMFLOW automat-
ically fuses these DAGs (Fig. 6). Through fusion, IRIS-
MEMFLOW exposes more concurrency in the fused DAG and
ensures fewer data movements. The performance comparison
of fused versus unfused DAGs is shown in Fig. 8 for different
matrix sizes, where the number of tiles is 8×8 and executed on
four NVIDIA A100 GPUs. The fused execution of GESV and

8192 16384 32768
Matrix Size

GF
LO

PS

34
87

17
33

9

39
14

5

20
52

10
86

0

34
70

7

gesv-Fused
gesv-Unfused

(a) GESV

8192 16384 32768
Matrix Size

GF
LO

PS

38
84

18
18

6

43
83

0

20
59

10
88

0

34
35

2

POSV-Fused
POSV-Unfused

(b) POSV

Fig. 8: Impact of DAG fusion in GESV and POSV.

POSV provides a 12%–89% improvement over the unfused
and efficient versions of GETRF + TRSM + TRSM and
POTRF + TRSM + TRSM. Smaller matrix sizes provide more
performance improvement over larger matrix sizes because
computation dominates the larger sizes. The improvement is
from the increased concurrency in the DAG (Fig. 6) and fewer
data transfers (Table IV). Through fusion, GESV and POSV
reduce data transfer API calls for the CUDA runtime by up
to 36%, thereby providing functionality four mentioned in
Section III.

TABLE IV: Number of data transfers for fused vs. unfused
DAGs.

GESV POSV
Fused 533 420

Unfused 786 660
Gain 32% 36%

E. Overhead of IRIS-MEMFLOW

DAGs in IRIS are created once but executed many times.
The data-flow analysis is conducted during DAG creation;
therefore, the overhead is added only once and does not impact
the actual execution of the DAG. Additional decomposition of
the matrix for the algorithms in MatRIS creates more tasks;
therefore, more overhead is added for the data-flow analysis.
The overhead of IRIS-MEMFLOW is shown in Table V in
milliseconds. For the worst case, GESV and POSV with
16 × 16 decomposition take up to 47 milliseconds. For a
32,768 × 32,768 matrix, GESV and POSV take at least
2 seconds to execute on four NVIDIA A100 GPUs. Therefore,
the one-time overhead is 2% of the execution time for the
worst case shown in Table V. IRIS inspires coarse-grain
task parallelism because each task executes a kernel. For
this reason, most of the performance results reported in the
paper use an 8×8 decomposition in which IRIS-MEMFLOW
introduces negligible overhead during DAG creation.

F. Comparison with the State of the Art

Here, we compare the overall solution provided by IRIS-
MEMFLOW for the algorithms in MatRIS against the
DPLASMA math library [3] built on the PaRSEC runtime [4]
and Chameleon [17] built on the StarPU runtime [1]. All the
algorithms run on four NVIDIA A100 GPUs and use the same

TABLE V: Overhead of IRIS-MEMFLOW in milliseconds.
Name of the Decomposition 8× 8 Decomposition 16× 16
algorithms No. of tasks Overhead No. of tasks Overhead

GEMM 513 1.76 ms 4,097 15.01 ms
TRSM 289 2.00 ms 2,177 18.97 ms
GETRF 205 0.83 ms 1,497 4.61 ms
POTRF 121 0.74 ms 817 4.62 ms
GESV 781 5.76 ms 5,849 47.34 ms
POSV 697 4.71 ms 5,169 40.76 ms

GEMM TRSM GETRF POTRF GESV POSV

GF
LO

PS

62
34

1

40
11

8

24
70

9

18
44

6

39
14

5

43
83

051
67

5

18
43

66
4

14
37

9

0 0

50
15

6

31
22

1

10
06

95
7

10
20

94
2

MatRIS-IRIS-MEMFLOW
DPLASMA-PaRSEC
CHAMELEON-STARPU

Fig. 9: Comparison of MatRIS using IRIS-MEMFLOW,
DPLASMA using PaRSEC, and Chameleon using StarPU.

matrix size (32,768 × 32,768) and tile size (4,096 × 4,096).
As shown in Fig. 9, MatRIS provides better performance in all
cases. Chameleon uses the CPU for certain kernels in GETRF,
POTRF, GESV, and POSV (the getrf and potrf kernels),
which results in poor performance. However, Chameleon uses
GPUs for GEMM and TRSM. Still, they introduce 72% and
67% more memory transfers, respectively, than MatRIS when
measured with NVIDIA’s Nsight, and these additional memory
transfers can be correlated with lower performance versus
MatRIS. DPLASMA did not have an implementation for non-
pivoting GESV, and the POSV did not report the flops, so these
results are not shown. DPLASMA does show comparable per-
formance for GEMM and POTRF, but they introduce 39% and
50% more memory transfers, respectively, than when using
MatRIS, which can be correlated with the lower performance.
The very low performance of TRSM and GETRF when using
DPLASMA is because some kernels execute on the CPU even
though GPU-only execution is specified.

Empowered by the IRIS runtime and the features of IRIS-
MEMFLOW, MatRIS provided better portability and perfor-
mance than the state-of-the-art libraries.

VI. RELATED WORK

A. Data Flow in Compilers and Runtimes

Many task-based programming systems (e.g., Cilk [27],
OmpSs [2], OpenMP [26], Charm++ [14], X10 [7]) use their
dedicated compilers for programming productivity and per-
formance optimizations. For example, an OpenMP compiler
automatically splits the input OpenMP codes into the host and
device codes. The device code applies various optimizations
and transformations and is converted into either low-level,
device-specific code or a binary suitable for the target device.
However, most task programming compilers still rely on

runtimes and/or user inputs for task graph constructions, task
scheduling, and memory transfers due to their dynamic nature,
which requires runtime information. The IRIS programming
system also uses multiple front-end compilers (OpenARC [18]
and charmSYCL [10]) to support high-level programming
abstractions: (1) the OpenARC compiler takes OpenACC or
OpenMP as input programs and performs source-to-source
translation to generate output IRIS host code and device-
specific kernels, and (2) the charmSYCL compiler internally
uses the IRIS runtime as its SYCL back end to concur-
rently support multiple heterogeneous devices. Like other task
programming systems, the IRIS compilers also rely on the
IRIS runtime to create a DAG of tasks and orchestrate them
in diverse heterogeneous systems. Therefore, the proposed
IRIS-MEMFLOW can benefit both high-level IRIS compilers
(OpenARC and charmSYCL) by enabling the compilers to
exploit the automated, data flow–enabled portable memory
abstraction offered by IRIS-MEMFLOW.

B. Data Flow in Math Libraries

Task-based (data flow) programming models have been used
extensively in math libraries, specifically in level-3 BLAS and
LAPACK routines [8], [28], [30]. Although most studies focus
on dense linear algebra problems, some sparse linear algebra
efforts [5], [6], [19], [31] do use data flow-based techniques
and outperform highly optimized sparse linear algebra libraries
by providing not only much better performance but also
much simpler ways to implement relatively complex sparse
algorithms in a portable way. In all these solutions, data flow
is achieved by using task-based programming models.

This kind of problem is amenable to further optimization
through hardware- and problem-specific tuning. Examples
include weak-dependencies or hierarchical tasks, which help
better match hardware and computation [29]. However, all
these optimizations require programmers to change the code
according to the characteristics of the problem and the hard-
ware’s features, and these optimizations are available only for
multicore CPUs.

However, the optimizations described in the present work do
not require any modification to the codes, thereby providing
a better solution in terms of programming productivity and
performance portability on multiGPU heterogeneous systems.

VII. CONCLUSIONS

This paper presents IRIS-MEMFLOW, a portable abstrac-
tion for memory orchestration in heterogeneous computing
systems. IRIS-MEMFLOW enhances the capabilities of the
IRIS task-based runtime by introducing data-flow analysis
on high-level portable memory objects to ensure accurate
execution when multiple heterogeneous devices are used con-
currently. IRIS-MEMFLOW establishes a connection between
high-level portable memory abstraction and low-level memory
orchestration in heterogeneous devices, ensuring optimized
data movement between host and devices. Moreover, IRIS-
MEMFLOW increases the opportunity for computation and
communication to overlap and fuse multiple DAGs. As a

result, a programmer can write a serial, architecture-agnostic
code without specifying any data movement. This code can
then be ported to different heterogeneous systems without any
change in the source code, ensuring significant programming
productivity. Leveraging the optimization provided by IRIS-
MEMFLOW, the MatRIS math library outperforms the state-
of-the-art math libraries in portability and performance.

ACKNOWLEDGMENTS
This work is funded in part by Bluestone, an X-Stack project in the US Department

of Energy’s Advanced Scientific Computing Office with program manager Hal Finkel
and by the U.S. Department of Defense Advanced Research Projects Agency (DARPA),
through the COSMIC project with the Microsystems Technology Office (MTO).

REFERENCES

[1] C. Augonnet, S. Thibault, R. Namyst, and P. A. Wacrenier. StarPU:
a unified platform for task scheduling on heterogeneous multicore
architectures. Concurrency and Computation: Practice and Experience,
23(2):187–198, 2011.

[2] E. Ayguade, R. Badı́a, and J. Labarta. Ompss and the nanos++ runtime.
[3] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, A. Haidar, T. Herault,

J. Kurzak, J. Langou, P. Lemarinier, H. Ltaief, et al. Distibuted dense
numerical linear algebra algorithms on massively parallel architectures:
Dplasma. 2010.

[4] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Hérault, and
J. J. Dongarra. Parsec: Exploiting heterogeneity to enhance scalability.
Computing in Science & Engineering, 15(6):36–45, 2013.

[5] S. Catalán, X. Martorell, J. Labarta, T. Usui, L. A. T. Dı́az, and P. Valero-
Lara. Accelerating conjugate gradient using ompss. In 20th International
Conference on Parallel and Distributed Computing, Applications and
Technologies, PDCAT 2019, Gold Coast, Australia, December 5-7, 2019,
pages 121–126. IEEE, 2019.

[6] S. Catalán, T. Usui, L. Toledo, X. Martorell, J. Labarta, and P. Valero-
Lara. Towards an auto-tuned and task-based spmv (lass library). In K. F.
Milfeld, B. R. de Supinski, L. Koesterke, and J. Klinkenberg, editors,
OpenMP: Portable Multi-Level Parallelism on Modern Systems - 16th
International Workshop on OpenMP, IWOMP 2020, Austin, TX, USA,
September 22-24, 2020, Proceedings, volume 12295 of Lecture Notes
in Computer Science, pages 115–129. Springer, 2020.

[7] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. Von Praun, and V. Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In Acm Sigplan Notices,
volume 40, pages 519–538. ACM, 2005.

[8] J. J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, P. Wu, I. Ya-
mazaki, A. YarKhan, M. Abalenkovs, N. Bagherpour, S. Hammarling,
J. Sı́stek, D. Stevens, M. Zounon, and S. D. Relton. PLASMA: parallel
linear algebra software for multicore using openmp. ACM Trans. Math.
Softw., 45(2):16:1–16:35, 2019.

[9] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas. Ompss: a proposal for programming heterogeneous
multi-core architectures. Parallel Processing Letters, 21(02):173–193,
2011.

[10] N. Fujita, B. Johnston, R. Kobayashi, K. Teranishi, S. Lee, T. Boku,
and J. S. Vetter. Charm-sycl: New unified programming environment
for multiple accelerator types. In Proceedings of the SC’23 Workshops
of The International Conference on High Performance Computing,
Network, Storage, and Analysis, pages 1651–1661, 2023.

[11] T. Gautier, F. Lementec, V. Faucher, and B. Raffin. X-kaapi: A
multi paradigm runtime for multicore architectures. In 2013 42nd
International Conference on Parallel Processing, pages 728–735, 2013.

[12] T.-W. Huang, D.-L. Lin, C.-X. Lin, and Y. Lin. Taskflow: A lightweight
parallel and heterogeneous task graph computing system. IEEE Trans-
actions on Parallel and Distributed Systems, 33(6):1303–1320, 2022.

[13] H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey. HPX: A
task based programming model in a global address space. In Proceedings
of the 8th International Conference on Partitioned Global Address Space
Programming Models, page 6. ACM, 2014.

[14] L. V. Kale and S. Krishnan. CHARM++: a portable concurrent object
oriented system based on C++, volume 28. ACM, 1993.

[15] R. Keryell, R. Reyes, and L. Howes. Khronos sycl for opencl: a tutorial.
In Proceedings of the 3rd International Workshop on OpenCL, pages 1–
1, 2015.

[16] J. Kim, S. Lee, B. Johnston, and J. S. Vetter. IRIS: A portable runtime
system exploiting multiple heterogeneous programming systems. In
2021 IEEE High Performance Extreme Computing Conference, HPEC
2021, Waltham, MA, USA, September 20-24, 2021, pages 1–8. IEEE,
2021.

[17] J. Klinkenberg, P. Samfass, M. Bader, C. Terboven, and M. S. Müller.
Chameleon: reactive load balancing for hybrid mpi+ openmp task-
parallel applications. Journal of Parallel and Distributed Computing,
138:55–64, 2020.

[18] S. Lee and J. S. Vetter. OpenARC: Open accelerator research com-
piler for directive-based, efficient heterogeneous computing. In ACM
Symposium on High-Performance Parallel and Distributed Computing
(HPDC), Vancouver, 2014. ACM.

[19] A. Lisito, M. Faverge, G. Pichon, and P. Ramet. Enhancing sparse direct
solver scalability through runtime system automatic data partition. In
P. Diehl, J. Schuchart, P. Valero-Lara, and G. Bosilca, editors, Asyn-
chronous Many-Task Systems and Applications - Second International
Workshop, WAMTA 2024, Knoxville, TN, USA, February 14-16, 2024,
Proceedings, volume 14626 of Lecture Notes in Computer Science,
pages 105–110. Springer, 2024.

[20] N. R. Miniskar, M. A. Haque Monil, P. Valero-Lara, F. Y. Liu, and J. S.
Vetter. Iris-dmem: Efficient memory management for heterogeneous
computing. In 2023 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–7, 2023.

[21] N. R. Miniskar, M. A. H. Monil, P. Valero-Lara, F. Liu, and J. S.
Vetter. Iris-blas: Towards a performance portable and heterogeneous
blas library. In 2022 IEEE 29th International Conference on High
Performance Computing, Data, and Analytics (HiPC), pages 256–261.
IEEE, 2022.

[22] N. R. Miniskar, M. A. H. Monil, P. Valero-Lara, F. Y. Liu, and J. S.
Vetter. Iris-dmem: efficient memory management for heterogeneous
computing. In 2023 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–7. IEEE, 2023.

[23] M. A. H. Monil, N. R. Miniskar, F. Liu, J. S. Vetter, and P. Valero-Lara.
LaRIS: Targeting Portability and Productivity for LaPACK Codes on
Extreme Heterogeneous Systems using IRIS. In IEEE/ACM Redefining
Scalability for Diversely Heterogeneous Architectures Workshop, Dallas,
TX, USA, November 13–18, 2022. IEEE.

[24] M. A. H. Monil, N. R. Miniskar, F. Y. Liu, J. S. Vetter, and P. Valero-
Lara. Laris: Targeting portability and productivity for lapack codes on
extreme heterogeneous systems by using iris. In 2022 IEEE/ACM Re-
defining Scalability for Diversely Heterogeneous Architectures Workshop
(RSDHA), pages 12–21. IEEE, 2022.

[25] M. A. H. Monil, N. R. Miniskar, K. Teranishi, J. S. Vetter, and P. Valero-
Lara. Matris: Multi-level math library abstraction for heterogeneity
and performance portability using iris runtime. In Proceedings of the
SC’23 Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis, pages 1081–1092, 2023.

[26] OpenMP. OpenMP reference, 1999.
[27] A. D. Robison. Composable parallel patterns with intel cilk plus.

Computing in Science & Engineering, 15(2):66–71, 2013.
[28] D. Sukkari, H. Ltaief, M. Faverge, and D. E. Keyes. Asynchronous

task-based polar decomposition on single node manycore architectures.
IEEE Trans. Parallel Distributed Syst., 29(2):312–323, 2018.

[29] P. Valero-Lara, S. Catalán, X. Martorell, and J. Labarta. BLAS-
3 optimized by ompss regions (lass library). In 27th Euromicro
International Conference on Parallel, Distributed and Network-Based
Processing, PDP 2019, Pavia, Italy, February 13-15, 2019, pages 25–
32. IEEE, 2019.

[30] P. Valero-Lara, S. Catalán, X. Martorell, T. Usui, and J. Labarta. slass:
A fully automatic auto-tuned linear algebra library based on openmp
extensions implemented in ompss (lass library). J. Parallel Distributed
Comput., 138:153–171, 2020.

[31] P. Valero-Lara, C. Greenwalt, and J. S. Vetter. Sparselu, A novel algo-
rithm and math library for sparse LU factorization. In 12th IEEE/ACM
Workshop on Irregular Applications: Architectures and Algorithms,
IA3@SC 2022, Dallas, TX, USA, November 13-18, 2022, pages 25–31.
IEEE, 2022.

APPENDIX I
Figure A.1 shows a simple directed acyclic graph (DAG) of two tasks using high

level APIs of the IRIS runtime without IRIS-MEMFLOW. This example shows how
IRIS memory objects are created and linked to the corresponding host addresses (lines
19–22). Then, tasks are created to invoke the vecadd kernel at run time to compute

[C = A + B and B = C + B] and added to a graph object. The memory objects and access
patterns are provided in lines 28–29 and 37–38. Flush tasks at lines 32 and 41 ensure
the result is returned to the host from the most up-to-date device copies. Moreover, a
dependency between tasks is specified in line 42 to enforce the execution order and avoid
race conditions.

1 #include <iris/iris.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <malloc.h>
5

6 int main(int argc, char** argv) {
7 size_t SIZE;
8 int *A, *B, *C;
9 iris_init(&argc, &argv, true);

10 SIZE = argc > 1 ? atol(argv[1]) : 16;
11 size_t SIZE_bytes = SIZE * sizeof(int);
12 A = (int*) malloc(SIZE_bytes);
13 B = (int*) malloc(SIZE_bytes);
14 C = (int*) malloc(SIZE_bytes);
15

16 for (int i = 0; i < SIZE; i++)
17 {A[i] = I; B[i] = I; C[i] = 0;}
18

19 iris_mem mem_A, mem_B, mem_C;
20 iris_data_mem_create(&mem_A, A, SIZE_bytes);
21 iris_data_mem_create(&mem_B, B, SIZE_bytes);
22 iris_data_mem_create(&mem_C, C, SIZE_bytes);
23

24 iris_graph graph; iris_graph_create(&graph);
25

26 iris_task task0;
27 iris_task_create(&task0);
28 void* params0[3] = { &mem_A, &mem_B, &mem_C };
29 int pinfo0[3] = { iris_r, iris_r, iris_w };
30 iris_task_kernel(task0, "vecadd", 1, NULL,
31 &SIZE, NULL, 3, params0, pinfo0);
32 iris_task_dmem_flush_out(task0, mem_C);
33 iris_graph_task(graph, task0, iris_random, NULL);
34

35 iris_task task1;
36 iris_task_create(&task1);
37 void* params1[3] = { &mem_C, &mem_B, &mem_B };
38 int pinfo1[3] = { iris_r, iris_r, iris_w };
39 iris_task_kernel(task1, "vecadd", 1, NULL,
40 &SIZE, NULL, 3, params1, pinfo1);
41 iris_task_dmem_flush_out(task1, mem_B);
42 iris_task_depend(task1, 1, task0);
43 iris_graph_task(graph, task1, iris_random, NULL);
44

45 iris_graph_submit(graph, iris_random, 1);
46 iris_finalize();
47 }

Fig. A.1: A simple IRIS program without IRIS-MEMFLOW.

Using IRIS-MEMFLOW, the IRIS program can be expressed as a simple sequential
code, and portability and compatibility with multiple heterogeneous devices is provided
automatically. An example of Cholesky factorization in MatRIS is shown in Fig. A.2.
In contrast to Fig. A.1, Fig. A.2 does not need manual specification of flush and
dependencies; IRIS-MEMFLOW automatically performs those.

1 if (uplo == MATRIS_BLAS_LOWER) {
2 for (int k = 0; k < A_til.row_tiles_count(); k++) {
3 IRIS_FUNC(laris_graph_common_, POTRF_TYPE)
4 (graph... A_til.GetAt(k,k).IRISMem()...);
5 for (int m = k+1; m < A_til.row_tiles_count(); m++){
6 IRIS_FUNC(laris_graph_common_, TRSM_TYPE)
7 (graph...A_til.GetAt(k,m).IRISMem()...);
8 }
9 for (int m = k+1; m < A_til.row_tiles_count(); m++){

10 IRIS_FUNC(laris_graph_common_, SYRK_TYPE)
11 (graph...A_til.GetAt(m,m).IRISMem());
12 for (int n = k+1; n < m; n++) {
13 IRIS_FUNC(laris_graph_common_, GEMM_TYPE)
14 (graph...A_til.GetAt(n,m).IRISMem());
15 }
16 }
17 }
18 }

Fig. A.2: Sequential, architecture-agnostic code for Cholesky
factorization in MatRIS using IRIS-MEMFLOW.

