A Performance Analysis of GPU-Aware MPI
Implementations Over the Slingshot-11 Interconnect

Michael Beebe*, Rahulkumar GayatriT, Kevin Gottf,
Adam Lavely’, Muhammad Haseeb?, Brandon Cook', and Yong Chen*

*Texas Tech University, Lubbock, Texas, USA
TLawrence Berkeley National Laboratory, Berkeley, California, USA
INVIDIA Corporation, Santa Clara, California, USA

Abstract—This study evaluates the performance of three GPU-
aware MPI implementations—Cray MPICH, MPICH, and Open
MPI—on the Slingshot-11 interconnect using the Perlmutter
supercomputer. We use the OSU microbenchmarks to evaluate
the bandwidth and latency of specific MPI routines, and two
Exascale Computing Projects - LAMMPS and WarpX to evaluate
application performance. Results confirm that Cray MPICH
outperforms the others over Slingshot-11, significantly influencing
HPC application efficiency by leveraging proprietary hardware
mechanisms. This research assists domain scientists in selecting
MPI libraries, enhancing application performance on Slingshot-
11 systems and contributing to future software and hardware
optimization studies.

Index Terms—GPU-Aware MPI, Slingshot-11, Perlmutter

I. INTRODUCTION

Message Passing Interface (MPI) has been ubiquitous in
HPC for decades [!]. However, the performance portability of
MPI implementations across architectures and network tech-
nologies can vary significantly, impacting the execution times
of communication-bound applications. This necessitates MPI
library vendors to continually optimize their implementations
for newly introduced interconnects and accelerator devices.
The impending demise of Moore’s law has resulted in a
paradigm shift toward heterogeneous computing, leading to
an increased use of accelerators and tightly coupled hard-
ware/software co-design. MPI implementations are adapting
this trend by providing GPU-aware support. With GPU-
awareness enabled, MPI implementations can recognize when
a buffer (pointer) resides on GPU memory and can engage
mechanisms such as NVIDIA GPUDirect [2] to initiate direct
GPU-to-GPU communications. This allows the GPU-aware
MPI implementations to avoid the extra steps in traditional
MPI data flows that involve transferring data from GPU
to CPU at source, communicating it between CPUs, and
transferring it to the GPU at destination. With rapid evolution
in interconnect technology and the number of MPI settings
available to improve performance for different interconnects,
it can be challenging for scientists to choose the most perfor-
mant MPI implementation for their application. In this study,
we evaluate the performance of point-to-point and collective
communications between Cray MPICH, MPICH, and Open
MPI over Slingshot-11 using the OSU microbenchmarks [3],
and evaluate application performance differences with two
Exascale Computing Project applications - LAMMPS [4] and

WarpX [5]. Based on our results, we demonstrate that the
choice of MPI implementation can have a significant impact on
the communication performance of HPC applications, showing
that programmers and scientists can benefit from resources
that help make informed decisions in MPI selection when
deploying their applications across supercomputing facilities.

II. BACKGROUND
A. Perlmutter

The system used to evaluate our selected MPI implementa-
tions is the Perlmutter supercomputer housed at the National
Energy Research Scientific Computing Center (NERSC). As
shown by the node specifications depicted in Fig. 1, each node
is equipped with four HPE Slingshot-11 Cassini NICs per
node, one 64-core hyper-threading-enabled AMD EPYC 7763
processor, 256GB of DDR4 DRAM spread across eight slots,
and four 40GB HBM2e NVIDIA A100 GPUs. Each NIC and
GPU is connected to the CPU by way of a fourth generation
PClIe bus, and there are twelve third generation NVLink links
between each pair of GPUs boasting 25GB/s/direction for
each link. The network is configured with a 3-hop dragonfly

topology.
B. Slingshot-11

HPE’s Slingshot interconnect [60] is designed for HPE Cray
supercomputers and HPC clusters, targeting exascale comput-
ing needs in simulation, modeling, Al, and data analytics. A
key feature is the high-radix 64-port switch, which reduces
network diameter and lowers latency compared to traditional
lower-radix designs [7]. Slingshot-11 includes an enhanced
congestion control mechanism with notable quality-of-service
(QoS) capabilities, ensuring predictable performance by dy-
namically managing and prioritizing data traffic. Its adaptive
routing continuously optimizes data pathways based on real-
time network conditions, ensuring efficient data transfer even
under high network traffic.

C. MPI Libraries

Cray MPICH [8] is optimized for Cray supercomputers
and the Slingshot interconnect, supporting unique network
topologies like Dragonfly. This tight hardware-software inte-
gration minimizes communication latencies, offering perfor-
mance benefits over general-purpose MPI implementations.

PCle-G4

l ZxDDR 4 Nvlink-3
() / I
............ SS11 NIC
NVIDIA NVIDIA
A100 AlL00
GPU GPU
............ SS11 NIC
] AMD
Milan
,,,,,,,,,,,, SS11 NIC
NVIDIA NVIDIA
A100 A100
GPU GPU
............ SS11 NIC
A/ '
| 4x DDR 4 |

Fig. 1: Perlmutter GPU Node Specification

MPICH [9], maintained by Argonne National Laboratory, is
a standard-compliant, scalable MPI implementation. Its ex-
tensible framework integrates various device drivers, optimiz-
ing performance across diverse platforms and interconnects,
making it a popular choice in supercomputing environments.
Open MPI [10] is a flexible, open-source MPI implementation
with a modular architecture. It supports various network
plugins (BTLs) and offers the MCA (Modular Component
Architecture) framework, enabling tailored communication
pathways and portability across different systems, from high-
speed interconnects to common Ethernet.

D. OSU Microbenchmarks

To obtain performance metrics for our comparisons between
our MPI implementations, we use the OSU microbench-
marks [3] version 7.1, a widely used benchmark suite that is
used to measure point-to-point, multi-pair, and collective com-
munication latency. We examine point-to-point latency and
bandwidth in III-A, and blocking collective operations in III-B.
We investigate message sizes ranging from 4 bytes to 16MB to
cover a wide variety of uses cases and application behaviors.
From these results, we can predict which MPI implementation
will perform the best for communication-bound applications
based on prevalence of each MPI routine as a constraint
within that application. In the interest of evaluating each of
our selected MPI libraries’ GPU-aware implementation, we
configured the OSU microbenchmarks such that messages are
being transmitted to and from GPU buffers in an inter-node
fashion. The results reported in this study are the averages of
five runs.

E. Scientific Applications
1) LAMMPS

The Large-scale Atomic/Molecular Massively Parallel Sim-
ulator (LAMMPS) [4] is a highly versatile and widely used
open-source molecular dynamics simulation package main-
tained by Sandia National Laboratory. LAMMPS facilitates
the modeling of atomic, molecular, and polymetric systems

across a diverse range of conditions. Much work has been
done in LAMMPS to optimize communications.

2) WarpX

WarpX [5] is an electromagnetic Particle-In-Cell (PIC) code
that is designed to model and simulate advanced accelerator
concepts and plasma-based particle accelerators. The code is
built on the AMReX [11] adaptive mesh refinement (AMR)
library, allowing it to efficiently handle complex geometries
and dynamically refine regions of interest.

III. EVALUATION & ANALYSIS

In this section, we discuss the benchmark and application
performance of each tested GPU-aware MPI implementation.
Table I shows the software versions used when conducting the
tests.

TABLE I: Software Versions

GNU Compiler 11.2.0
CUDA 11.7
Libfabric 1.15.2.0
Cray MPICH 8.1.25
MPICH 4.1.1
Open MPI 5.0
OSU Microbenchmarks 7.1.1
LAMMPS 2022.11.03
WarpX 23.04

A. Point-To-Point MPI Operations

For our first set of evaluations, we examine point-to-point
latency and bandwidth for our three selected MPI implemen-
tations whereby messages are sent from a GPU buffer on one
node and received by a GPU buffer on another node. The
latency tests are carried out in a ping-pong fashion. Many
iterations of this ping-pong test are carried out and the average
one-way latency numbers are reported. The bandwidth tests

are carried out by sending a fixed number of back-to-back
messages from GPU buffers and then waiting for a reply
from the GPU buffers on the receiver. The receiver sends
the replies back only after receiving all the sent messages.
This process is repeated for one thousand iterations and the
bandwidth is calculated using the elapsed time. The objective
of the bandwidth test is to determine the maximum sustained
data rate that can be achieved on the network level. Thus, non-
blocking sends and receives are used for the point-to-point
bandwidth test. All point-to-point tests utilize two nodes, and
one process per node.

6x 10"

=>¢ Cray MPICH
Argonne MPICH

== Open MPI

Latency (us)

4x10°

v%\b@@\,@(‘?@@\%&,ﬂ—b*%b

Size

Fig. 2: Point-to-Point Latency (Small Message Sizes)

=>4 Cray MPICH
Argonne MPICH

o
imz —— Open MPI
o
f=4
Q
ki
10’ =
R S

Fig. 3: Point-to-Point Latency (Large Message Sizes)

=>4 Cray MPICH
10° Argonne MPICH
== Open MPI

Bandwidth (MB/s)

“Q’\Q’%’V@"‘@b,ﬁ&%\"'&rﬂ‘b&é‘

Fig. 4: Point-to-Point Bandwidth (Small Message Sizes)

;

=> Cray MPICH
Argonne MPICH
== Open MPI

©

Bandwidth (MB/s)
>

R S Y

Size

O

Fig. 5: Point-to-Point Bandwidth (Large Message Sizes)

We find that the latencies for all message sizes are similar,
and when there are differences, the Cray MPICH tends to

provide the best performance. As shown in Figures 2 and 3,
latencies for all three implementations fall when increasing
from 128 byte to 256 byte message sizes, with Cray MPICH
having the most pronounced drop. As we increase the message
size from 256 bytes, latencies for all three implementations
steadily rise with Argonne MPICH and Open MPI exhibiting
a large spike moving from 4K messages to 8K messages not
seen in the Cray MPICH data. For larger message sizes, all
three implementations exhibit similar point-to-point latency.
Similarly for point-to-point bandwidth, the three MPI imple-
mentations are fairly similar outside of a few differences. All
three implementations have a near order of magnitude jump
when going from 128 to 256 bytes, and reach similar overall
peak bandwidth values. The Argonne MPICH shows a drop in
bandwidth when moving from a 512K message size to a IMB
message, and a steady rise and bandwidth thereafter shown in
Figure 5.

B. Collective MPI Operations

For the next set of evaluations, we examine the latencies
of several blocking collective MPI routines. These tests are
carried out by performing collective operations with four
processes per node (one for each GPU) and measure the
average latency of each operation over one thousand iterations.

1) Strong Scaling

First, we perform a set of tests where we use a fixed message
size of 16MB and an increasing number of nodes. The tests are
for MPI_Gather in Figure 6, MPI_Allgather in Figure
7, MPI_Reduce in Figure 8§, MPI_Allreduce in Figure
9, MPI_Bcast in Figure 10, and MPI_Alltoall in Figure
11. For all of these tests, a lower latency will lead to better
performance.

S

2310
2
& 2x10*
2
@
—
% B =< Cray MPICH
?Q 10 Argonne MPICH
< == Open MPI
2 4 8 16

Nodes

Fig. 6: MPI_Gather Strong Scaling (16MB Message Size)

=>¢= Cray MPICH
Argonne MPICH
s == Open MPI
10

Nodes

’s

Average Latency (us)
3

Fig. 7: MPI_Allgather Strong Scaling (16MB Message Size)

Overall, our strong scaling results indicate that Cray MPICH
tends to perform the best on Slingshot-11 over a wide variety

s)

2 4
56710 ¢ cray MPICH

=@~ Argonne MPICH

4x10° == Open MPI

Average Latency
w
x
8&

2x10°

Nodes

Fig. 8: MPI_Reduce Strong Scaling (16MB Message Size)

s | @ @ . .
> 10
2
% L | —
g ! T
® 4n4 =>é&= Cray MPICH
410
P =@~ Argonne MPICH
g —— Open MPI
o
>
<3

107 ye—
2 4 8 16

Nodes

Fig. 9: MPI_Allreduce Strong Scaling (16MB Message Size)

10
{2}
2
: ///
5
g
% =< Cray MPICH
o =@~ Argonne MPICH
z 10° == Open MPI
2 4 8 16
Nodes
Fig. 10: MPI_Bcast Strong Scaling (16MB Message Size)

10 =>é& Cray MPICH
=@~ Argonne MPICH
== Open MPI

Average Latency (us)
=

Nodes

Fig. 11: MPI_Alltoall Strong Scaling (16MB Message Size)

of MPI calls and problem sizes. Figure 6 shows that Open
MPI outperforms the other two implementations when using
only two nodes but scales rather poorly. In Figure 7 we
observe linear scaling for Cray MPICH and Open MPI, but
see Argonne MPICH have a significant drop-off in perfor-
mance when increasing from eight to sixteen nodes. Fig-
ure 10 shows Cray MPICH and Argonne MPICH having
similar MPI_Bcast latencies with Argonne MPICH slightly
outperforming Cray MPICH at sixteen nodes and Open MPI
greatly under-performing. As shown in Figure 11, all three
implementations scale linearly with Cray MPICH exhibiting
the lowest latencies for each number of nodes.

2) Weak Scaling

Next, we perform several weak scaling collective tests using
sixteen nodes and four processes per node. Our weak scaling
is not done with the same test size across multiple number of
nodes, but by changing the data being passed across the same
16 nodes as done with the strong scaling. This is done to better
represent the 16 node application tests done for LAMMPS
and WarpX in III-C. We again show the same MPI calls with
MPI_Gather in Figure 12 for small data packet sizes and
Figure 13 for large, MPI_Allgather in Figures 14 and 15,
MPI_Reduce in Figures 16 and 17, MPI_Allreduce in
Figures 18 and 19, MPI_Bcast in Figures 20 and 21, and
MPI_Alltoall in Figures 22 and 23. Similar to the strong
scaling above, Cray MPICH provides the best latency values
for all but a few test instances.

=>¢= Cray MPICH

=@~ Argonne MPICH
—+= Open MPI

‘_)(—-—9(

> ko) o oV > db f)ﬁ'-’% (Q.(’[/ Ng 'il. && &Si"

Size

10°

Latency (us)

Fig. 12: MPI_Gather Weak Scaling (16 Nodes)
- Small Messages

=>& Cray MPICH
=@~ Argonne MPICH
== Open MPI

Latency (us

R I IR

Size

Fig. 13: MPI_Gather Weak Scaling (16 Nodes), Large Mes-

° .—ﬁ—.—.—‘—.—.—.—.—.—é
ERTN

>

% 3 =>= Cray MPICH

©

-

=@~ Argonne MPICH
, | == Open MPI

> > 2o oSV &> d/b f)ﬁ:’ﬁ (0.(’[/ Ng ‘il‘ b* q;l‘

Size

Fig. 14: MPI_Allgather Weak Scaling (16 Nodes), Small
Messages

Cray MPICH outperforms Open MPI and Argonne MPICH
throughout the entire tested region for MPI_Gather and
MPI_Allgather, often by more than an order of magnitude.
All three have step like functions at various places within
these two tests. However, the different locations where the
jumps occur show that this is not a hardware restriction but

=>¢= Cray MPICH
=@~ Argonne MPICH
== Open MPI

Latency (us)
>

PO R ¢
Size

Fig. 15: MPI_Allgather Weak Scaling (16 Nodes), Large
Messages

4 =>& Cray MPICH
_.6x10 ' —@- Argonne MPICH
== Open MPI

%\"/ N S S

©
&
Size

Fig. 16: MPI_Reduce Weak Scaling (16 Nodes), Small Mes-

=>¢ Cray MPICH
104 =@~ Argonne MPICH
== Open MPI

&g @ .{ﬁ’*‘ ,fsf’l‘ oﬂ"{. ® 'l§b W @& \b\&
Size
Fig. 17: MPI_Reduce Weak Scaling (16 Nodes), Large Mes-
sages

2%10° H_._./._._H-H\./.

@
2 =>¢ Cray MPICH
§‘ 10> ~ =@— Argonne MPICH
% == Open MPI
— 1
6x10 f
RV
——
v%\“orgvbb‘@brﬁb@\w&,&b&q;b
Size

Fig. 18: MPI_Allreduce Weak Scaling (16 Nodes), Small
Messages

5
10" =& Cray MPICH
=@~ Argonne MPICH
10 == Open MPI

Fig. 19: MPI_Allreduce Weak Scaling (16 Nodes), Large
Messages

6% 10’

z

T 4x10

>

o

e 1

£3%10 | ¢ cray MPICH

= , =@~ Argonne MPICH
2x10 == Open MPI|

R N

Size

N

Fig. 20: MPI_Bcast Weak Scaling (16 Nodes), Small Messages

=>¢= Cray MPICH
=@~ Argonne MPICH
10° =+= Open MPI

Latency (us)

S R ® ® ® w
S P U A
Size

B Wt - — - -
3 =>é Cray MPICH
E B =@~ Argonne MPICH
810 —— Open MPI
X
v%\hﬁwbv':tbr’?%%@&,ﬁb*#
Size
Fig. 22: MPI_Alltoall Weak Scaling (16 Nodes), Small Mes-
sages
10°
240
>
2
8
3

p //(
10 =>é Cray MPICH
3 =@~ Argonne MPICH
10 == Open MPI
+

£ o

¢ ® ® & ®
G R U O -

Size

Fig. 23: MPI_Alltoall Weak Scaling (16 Nodes), Large Mes-
sages

rather differences in the MPI implementations. As shown in
Figures 12 and 13 Cray MPICH outperforms Argonne MPICH
and Open MPI when performing MPI_Gather with small
messages, with the three implementations beginning to even
out as the message size increases beyond 16K. This disparity
is more pronounced when performing MPI_Allgather as
evidenced by Figures 14 and 15. All three implementations
show similar performance for MPI_Reduce on sixteen nodes
across message sizes with Cray MPICH lagging behind be-
tween 2K and 16K. but overtaking the other two implemen-
tations after 128K. For MPI_Allreduce, we see Argonne
MPICH and Open MPI scale somewhat linearly, particularly
for large message sizes, but with Cray MPICH showing much

smaller latencies. Figure 20 shows all three implementations
having a significant drop-off in latency when increasing from
128 byte to 256 byte messages, with Open MPI having the
most profound drop-off. All three implementations having a
similar change in performance may be linked to an inherent
attribute of the network rather than MPI implementation.
Lastly, Cray MPICH outperforms Argonne MPICH and Open
MPI at MPI_Alltoall on sixteen nodes for all message
sizes. For this routine, Argonne MPICH performs better than
Open MPI with smaller messages but is later surpassed as the
message size increases to 16MB.

C. Scientific Application Analysis
1) LAMMPS

mmm Cray MPICH
mmm Open MPI
60 Argonne MPICH

50
40
20
. II
0
16 32 64 128

Nodes

Matom-GPU/s

w
S

Fig. 24: LAMMPS SNAP Potential (Higher is Better)

For our LAMMPS test, we ran the Spectral Neighbor
Analysis Potential (SNAP) [12]. The SNAP potential is an
inter-atomic potential model that captures complex atomic
interactions using bi-spectrum components of local atomic en-
vironments. A great deal of work has been done in LAMMPS
to hide communication latency and minimize the overhead
resulting from data transfers. The results of this work are
reflected in our SNAP output, as the performance discrepancy
across MPI implementations is minuscule for each number of
nodes used. The similar performance across implementations
shows that optimizations may be made to reduce the com-
munication constraints at the application level to bridge the
gap between the performance of MPI implementations despite
their varying degrees of support for different interconnects.

2) WarpX

3000
W Cray MPICH
2500 mmm Open MPI
o Argonne MPICH

2000

(Seconds

1500

1000
-
0
15 30 60 120

Nodes

Runtime

Fig. 25: WarpX KPP (Lower is Better)

The WarpX test shows significant difference in application
runtime using the different MPI implementations. The Cray
MPICH performs best, followed by OpenMPI and then the

Argonne MPICH as shown in Figure 25. This can be attributed
to the MPI routines that WarpX uses, as it uses a large number
MPI sends and receives with many of the messages sizes in
the range of 256 bytes to 16K, where the Cray MPICH has
lower latencies than the other implementations by a large mar-
gin. Furthermore, WarpX is performing many point-to-point
communications with large message sizes ranging from 1MB
to 6MB, where Argonne MPICH exhibits exceedingly low
communication bandwidth making it an order of magnitude
slower than the other implementations. A 120 node WarpX
run for Argonne MPICH is not reported as its low bandwidth
for large message sizes prevented it from being able to run
within a reasonable time frame.

IV. RELATED WORK

Several studies [13] [14] have been done to compare the per-
formance of MPI implementations and analyze the intricacies
of GPU-aware MPI for varied use cases [15]. Khorassani et
al. [13] did an early evaluation of Slingshot-11 shortly after its
release comparing MVAPICH-2 and Cray MPICH on CPUs.
Studies have been performed to compare the performance of
pure MPI vs. hybrid MPI with OpenMP [16].

V. FUTURE WORK

In future work, we will expand on this study and address
its limitations. For instance, we will examine other MPI
implementations with GPU-aware support like MVAPICH-
2 [17]. Another important addition will be to extend our
study to other popular high-speed interconnects such as Infini-
band and Omni-Path. Furthermore, we will evaluate a wider
variety of “real-world” applications that cover the diverse
set of communication patterns characteristic of modern HPC
applications. Since MPI performance characteristics are not
limited to communication latency and bandwidth, it will be
beneficial to consider other metrics such as memory usage,
energy consumption, startup time, etc.

VI. CONCLUSION

Rapid evolution in interconnect technology and GPU-
computing has led to communication performance portability
challenges across MPI implementations. In this work, we
use several scientific applications and benchmarks to evaluate
the communication performance of different GPU-aware MPI
implementations including Cray MPICH, Argonne MPICH,
and Open MPICH over the Slingshot-11 interconnect on the
Perlmutter supercomputer. Our experimental results show that
HPE’s Cray MPICH outperforms the others in almost all
scenarios due to its SS11 specific optimizations. As Argonne
MPICH and Open MPI developers have more time to optimize
their implementations for Slingshot-11, we anticipate this
performance gap to shrink in the future. We believe that
our study will help motivate MPI developers to support and
optimize for new and upcoming interconnect technologies as
well as help application developers to choose the best MPI
implementation for their specific applications and compute
environments.

ACKNOWLEDGEMENTS

This research used resources of the National Energy Re-
search Scientific Computing Center (NERSC), a U.S. De-
partment of Energy Office of Science User Facility located
at Lawrence Berkeley National Laboratory, operated under
Contract No. DE-AC02-05CH11231.

[1]

[2]

[3]

[4]

[5]

[6]

[8]
[9]
[16]

REFERENCES

R. Hempel and D. W. Walker, “The emergence of the mpi message pass-
ing standard for parallel computing,” Computer Standards & Interfaces,
vol. 21, no. 1, pp. 51-62, 1999.

A. Thompson and C. Newburn. (2022) Gpudirect storage: A
direct path between storage and gpu memory. [Online]. Available:
https://developer.nvidia.com/blog/gpudirect-storage/

0. S. U. Network-Based Computing Laboratory, “Osu micro-
benchmarks 7.2,” 2023, available at: https://mvapich.cse.ohio-state.edu/
benchmarks/.

A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore,
T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and
S. J. Plimpton, “LAMMPS - a flexible simulation tool for particle-based
materials modeling at the atomic, meso, and continuum scales,” Comp.
Phys. Comm., vol. 271, p. 108171, 2022.

L. Fedeli, A. Huebl, F. Boillod-Cerneux, T. Clark, K. Gott, C. Hillairet,
S. Jaure, A. Leblanc, R. Lehe, A. Myers et al. (2022) Pushing the frontier
in the design of laser-based electron accelerators with groundbreaking
mesh-refined particle-in-cell simulations on exascale-class supercomput-
ers. IEEE. Available at: https://github.com/ECP-WarpX/WarpX.

H. P. Enterprise, “Hpe slingshot interconnect,” 2023, available at: https:
/Iwww.hpe.com/us/en/compute/hpc/slingshot-interconnect.html.

D. De Sensi et al., “An in-depth analysis of the slingshot interconnect,”
in SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis. 1EEE, 2020, pp. 1-14. [Online].
Available: https://doi.org/10.1109/SC41405.2020.00039

N. Documentation, “Cray mpich,” 2023, available at: https://docs.nersc.
gov/programming/mpi/cray-mpich/.

N. T. Karonis, B. Toonen, and I. Foster, “Mpich-g2: A grid-enabled
implementation of the message passing interface,” arXiv:cs/0206040v2,
N. Drosinos and N. Koziris, “Performance comparison of pure mpi
vs hybrid mpi-openmp parallelization models on smp clusters,” in
18th International Parallel and Distributed Processing Symposium,

[10]

(11]

[12]

[13]

[14]

[15]

(171

June 2002, available at: https://arxiv.org/abs/cs/0206040v2. [Online].
Available: https://arxiv.org/abs/cs/0206040v2

E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra,
J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine,
R. H. Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall,
“Open mpi: Goals, concept, and design of a next generation
mpi implementation,” in Proceedings, 11th European PVM/MPI
Users’ Group Meeting, September 2004. [Online]. Available: https:
/Iwww.open-mpi.org/papers/euro-pvmmpi-2004-overview/

W. Zhang, A. Almgren, V. Beckner, J. Bell, J. Blaschke, C. Chan,
M. Day, B. Friesen, K. Gott, D. Graves, M. Katz, A. Myers, T. Nguyen,
A. Nonaka, M. Rosso, S. Williams, and M. Zingale, “AMReX: a
framework for block-structured adaptive mesh refinement,” Journal of
Open Source Software, vol. 4, no. 37, p. 1370, May 2019. [Online].
Available: https://doi.org/10.21105/joss.01370

R. Gayatri, S. Moore, E. Weinberg, N. Lubbers, S. Anderson,
J. Deslippe, D. Perez, and A. P. Thompson, “Rapid exploration of
optimization strategies on advanced architectures using testsnap and
lammps,” arXiv preprint arXiv:2011.12875, 2020, available at: https:
/larxiv.org/abs/2011.12875v1.

K. S. Khorassani et al., “High performance mpi over the slingshot
interconnect,” Journal of Computer Science and Technology, vol. 38,
no. 1, pp. 128-145, 2023. [Online]. Available: https://doi.org/10.1007/
s11390-023-2907-5

H. Wang et al., “Gpu-aware mpi on rdma-enabled clusters: Design,
implementation and evaluation,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 10, pp. 2595-2605, 2014. [Online].
Available: https://doi.org/10.1109/TPDS.2013.222

M. Aissa et al., “Toward a gpu-aware comparison of explicit
and implicit cfd simulations on structured meshes,” Computers &
Mathematics with Applications (1987), vol. 74, no. 1, pp. 201-217,
2017. [Online]. Available: https://doi.org/10.1016/j.camwa.2017.03.003
2004. Proceedings. 1EEE, 2004, p. 15. [Online]. Available: https:
//doi.org/10.1109/IPDPS.2004.1302919

D. K. Panda, H. Subramoni, C.-H. Chu, and M. Bayatpour, “The
mvapich project: Transforming research into high-performance mpi
library for hpc community,” Journal of Computational Science, vol. 52,
p- 101208, 2021, case Studies in Translational Computer Science.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1877750320305093

https://developer.nvidia.com/blog/gpudirect-storage/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://mvapich.cse.ohio-state.edu/benchmarks/
https://github.com/ECP-WarpX/WarpX
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html
https://www.hpe.com/us/en/compute/hpc/slingshot-interconnect.html
https://doi.org/10.1109/SC41405.2020.00039
https://docs.nersc.gov/programming/mpi/cray-mpich/
https://docs.nersc.gov/programming/mpi/cray-mpich/
https://arxiv.org/abs/cs/0206040v2
https://arxiv.org/abs/cs/0206040v2
https://www.open-mpi.org/papers/euro-pvmmpi-2004-overview/
https://www.open-mpi.org/papers/euro-pvmmpi-2004-overview/
https://doi.org/10.21105/joss.01370
https://arxiv.org/abs/2011.12875v1
https://arxiv.org/abs/2011.12875v1
https://doi.org/10.1007/s11390-023-2907-5
https://doi.org/10.1007/s11390-023-2907-5
https://doi.org/10.1109/TPDS.2013.222
https://doi.org/10.1016/j.camwa.2017.03.003
https://doi.org/10.1109/IPDPS.2004.1302919
https://doi.org/10.1109/IPDPS.2004.1302919
https://www.sciencedirect.com/science/article/pii/S1877750320305093
https://www.sciencedirect.com/science/article/pii/S1877750320305093

	Introduction
	Background
	Perlmutter
	Slingshot-11
	MPI Libraries
	OSU Microbenchmarks
	Scientific Applications
	LAMMPS
	WarpX

	Evaluation & Analysis
	Point-To-Point MPI Operations
	Collective MPI Operations
	Strong Scaling
	Weak Scaling

	Scientific Application Analysis
	LAMMPS
	WarpX

	Related Work
	Future Work
	Conclusion
	References

