
Extracting TCPIP Headers at High Speed for the
Anonymized Network Traffic Graph Challenge

Zhaoyang Han∗, Andrew Briasco-Stewart‡, Michael Zink†, Miriam Leeser∗
Northeastern University ∗‡, University of Massachusetts Amherst †

Email: ∗zhhan,mel@coe.neu.edu, ‡briasco-stewart.a@northeastern.edu
†mzink@umass.edu,

Abstract—
Field Programmable Gate Arrays (FPGAs) play a significant

role in computationally intensive network processing due to
their flexibility and efficiency. Particularly with the high-level
abstraction of the P4 network programming model, FPGA shows
a powerful potential for packet processing. By supporting the P4
language with FPGA processing, network researchers can create
customized FPGA-based network functions and execute network
tasks on accelerators directly connected to the network. A feature
of the P4 language is that it is stateless; however, the FPGA
implementation in this research requires state information. This is
accomplished using P4 externs to describe the stateful portions of
the design and to implement them on the FPGA using High-Level
Synthesis (HLS). This paper demonstrates using an FPGA-based
SmartNIC to efficiently extract source-destination IP address
information from network packets and construct anonymized
network traffic matrices for further analysis. The implementation
is the first example of the combination of using P4 and HLS in
developing network functions on the latest AMD FPGAs. Our
design achieves a processing rate of approximately 95 Gbps with
the combined use of P4 and High-level Synthesis and is able to
keep up with 100 Gbps traffic received directly from the network.

Index Terms—FPGA, P4, packet capture, in-network process-
ing, anonymized network traffic

I. INTRODUCTION

Large-scale network problems represent some of the most
pressing challenges in our increasingly connected world. These
problems encompass a variety of complex issues related to
the design, analysis, and optimization of vast networks that
facilitate global communication and data exchange. As net-
works continue to grow in size and complexity, addressing
these problems becomes crucial for ensuring efficient, reliable,
and secure operations. A significant bottleneck in the current
network infrastructure is its inability to process large network
traffic while maintaining the flexibility needed to adapt to
varying demands and conditions.

The MIT Graph Challenge [15] is an important platform
for tackling large-scale network problems. By providing a
structured competition focused on innovative graph analytics,
the challenge encourages researchers and practitioners to de-
velop cutting-edge solutions. Participants engage with real-
world datasets and complex graph problems, driving advances
in algorithms and technologies that can be applied to optimize

This work was funded by National Science Foundation (NSF) grants
CNS-1925464, CNS-1925658, CNS-2130891, and 2130907. All opinions and
statements in the above publication are of the authors and do not represent
NSF positions.

large-scale networks. In particular, network researchers use
a data product of anonymized source-to-destination traffic
matrices derived from billions of real network packets to
analyze and solve real large-scale network problems.

The Anonymized Network Sensing Graph Challenge [8]
is part of the Graph Challenge that aims to find opti-
mized and highly efficient approaches in the construction of
anonymized traffic matrices from network traffic. As part of
the Anonymized Network Sensing Graph Challenge, we pro-
posed a novel approach based on the Programming Protocol-
independent Packet Processors (P4) language combined with
the implementation on Field Programmable Gate Arrays (FP-
GAs).

FPGAs have demonstrated significant potential in compu-
tationally intensive network processing, especially when they
are directly connected to the network [14]. Their ability to
offload compute-intensive tasks and support the disaggregation
of data centers makes them valuable in addressing the demands
of modern network infrastructures. FPGAs can be directly
connected to networks, enhancing their role in processing and
managing large volumes of data efficiently. In addition, the
reconfigurability of FPGAs allows them to be programmed
and reprogrammed to perform specific tasks. This flexibility is
particularly beneficial for network processing, where require-
ments can change rapidly. FPGA-based network devices can
be tailored to accelerate various networking functions, such as
packet filtering, encryption, and deep packet inspection, and
can be updated as new protocols and standards emerge. The
P4 language is a high-level abstraction for network devices
that allows the programmer to describe how network packets
should be parsed, processed, and forwarded. The combination
of the P4 language and FPGA implementation allows network
researchers to easily develop their own FPGA-based network
functions [3], [10].

In this research we focus on constructing the anonymized
data structure of network traffic as described in the
Anonymized Network Sensing Graph Challenge. This inno-
vative solution makes use of FPGAs programmed with P4
to form a powerful approach to match the line rate of the
high-speed network. Specifically, we demonstrate the use
of an FPGA-based SmartNIC that is able to perform tasks
for the Anonymized Network Sensing Graph Challenge at
approximately 95Gbps rate.

The contributions of the work presented in this paper are



to:
• Describe the design flows of FPGA-based SmartNICs

in developing high-throughput network functions using
P4. In particular, this paper shows the first example of
the combination of using P4 and High-level Synthesis in
developing network functions on the latest AMD FPGAs.

• Demonstrate innovative FPGA-based SmartNIC solutions
for the Anonymized Network Sensing Traffic Graph
Challenge.

• Implement and test the solution with the CAIDA dataset
on the public Open Cloud Testbed (OCT), achieving high-
throughput processing at 95Gbps.

The rest of this paper is organized as follows. In Sec. II
we introduce the Anonymized Network Sensing Traffic Graph
Challenge problem, discuss using the P4 language for pro-
gramming FPGAs, and describe the Open Cloud Testbed
(OCT) that is used for these experiments. Our design is
described in Sec. III and results are presented is Sec. IV.
We present a discussion of future directions for incorporating
this design into the rest of the graph challenge problem in
Sec. V and conclude the paper with a summary of our design,
evaluation and future directions.

II. BACKGROUND

In this section, we introduce the details of the Anonymized
Network Traffic Graph Challenge problem, the FPGA-based
P4 SmartNICs used in our implementation, the Open Cloud
Testbed (OCT) as well as discussing related research.

A. Anonymized Network Sensing Challenge

Fig. 1. Anonymized Network Traffic Graph Challenge Steps. Figure adapted
from [8].

The Anonymized Network Traffic Graph Challenge aims to
extract source and destination information from real network
traffic, as shown in Fig. 1. Our solution focuses on the first
two steps. To simulate real network traffic, participants are
encouraged to use network traces captured in real networks
for the evaluation. To test the performance of the flow, we
use the realistic network traffic from the Center for Applied
Internet Data Analysis (CAIDA) [5].

B. P4

The P4 language is a domain-specific language to de-
scribe how network devices like switches, Network Interface
Cards (NICs), routers, filters, etc. should process packets.

This device-agnostic high-level abstraction provides network
researchers an opportunity to design their network functions
without considering hardware devices.

The evolution of the P4 language [4] and the advent of
programmable network devices have significantly enhanced
the user’s ability to program both control and data planes.
This progress has enabled extensive research in areas such
as data plane disaggregation, cryptography, and data plane
machine learning. Several P4 programmable devices are avail-
able including AMD Pensando, Intel Tofino Switch, NVIDIA
Bluefield2 SmartNICs, etc. FPGAs are a key technology to
empower the performance of packet processing in the data
plane [17]–[19], and can be programmed with the P4 language,
as described in the next section.

C. FPGAs as Network Devices

There is a trend to attach more devices directly to the
network to improve data access and decrease latency. Modern
applications, including machine learning [6], require a large
amount of data that can be more efficiently accessed directly
from the network. SmartNICs are gaining popularity as a
packet processing platform and can be programmed using the
P4 programming model.

FPGA-based SmartNICs offer superior programmability and
customization compared to dedicated P4 SmartNICs. Com-
pared to AMD’s Pensando Distributed Services Card (DSC-
200), which has a fixed data flow and lacks flexibility, Smart-
NICs based around FPGA programming can be customized
and scaled to address specific requirements. Firestone et
al. [9] demonstrated this advantage by developing and deploy-
ing FPGA-based SmartNICs on Azure, effectively offloading
network functions. Their results show that FPGAs excel at
dynamically managing network traffic, alleviating the main
CPU processing burden.

We have created a framework for developing and testing
network functions on P4-based FPGA SmartNICs using the
Open Cloud Testbed, a public research platform described in
Sec. II-D. This P4-based framework offers a more efficient
method for describing network behaviors on FPGAs than
traditional Hardware Description Languages (HDLs) such as
Verilog and VHDL. While FPGAs are ideal for developing
P4 applications due to their customizable pipelines, the P4
model does not fully leverage the advantages of FPGA par-
allel programming. Our framework extends the original P4
model with the extra ability for concurrent processing using
the extern function, a P4 language construct. Such extern
functions can be described in HDL or C++ and translated to
the FPGA fabric using either a standard tool flow or High-
Level Synthesis (HLS). We utilize the P4 framework in OCT
to develop our solution for the Graph Challenge due to its ease
of use and high performance.

D. Open Cloud Testbed

The Open Cloud Testbed (OCT) [20] provides a research-
oriented experimentation testbed for systems researchers who
focus on cloud platforms. Testbeds like OCT deliver the



Fig. 2. Overview of OCT FPGA development and workflow [20]

necessary hardware and software on top of bare metal services
to researchers in both the cloud and system communities,
enabling more experimental-based research.

OCT currently offers 32 FPGAs to the research community:
24 AMD Xilinx Alveo U280, 4 AMD Xilinx VCK5000, and
4 AMD Xilinx V70. Each of these FPGAs is housed in a
host server that an experimenter can allocate as a bare metal
machine. 28 (all U280s and VCK5000s) of the 32 FPGAs
have two direct network links, which connect both of their
QSFP28 (100GbE) interfaces to a switch for a combined
maximum bandwidth of 200 Gbps [11]. In tandem, OCT offers
a toolchain that supports the development of bitstreams that
can be deployed on the FPGAs [14].

The OCT workflow consists of two primary stages which
are illustrated in Fig. 2. We provide a series of tutorials,
example applications, and scripts and profiles for the setup
and execution of experiments [16].

Development Stage: OCT development tools are hosted on
a virtual machine (VM) within the New England Research
Cloud (NERC). OCT users can remotely log into this VM to
create FPGA bitstreams, host executables, and drivers using
the provided tools. In addition, licenses required for certain
Xilinx IPs are hosted on a separate license server. OCT
provides several different FPGA configurations that can be
used for different research directions and are well-suited to
this research.

This basic framework is available on OCT as the HLS ac-
celeration flow. Users can use HLS to develop their compute-
intensive accelerators and test them on OCT. Recently, P4-
based FPGA support has been made available on OCT, in-
cluding tutorials and several demonstration examples [10].
The P4 design further supports the potential of FPGAs as
programmable network devices.

In this paper, we make use of the P4-based tool flow as
the basic framework and combine it with HLS. Specifically,
this paper demonstrates the first example of the combination
of P4+HLS on the FPGA-based SmartNICs.

Deployment Stage: After creating the bitstreams and
host executables/drivers, users transfer them to bare metal
servers that host the FPGAs. The subsequent process involves
programming the FPGAs, executing the host executables,
and optionally fetching the results back to the development
machine.

E. Related Work

Several studies have explored the potential of FPGAs in-
network processing due to their customizable pipelines and
high throughput. Since the inception of P4 [4], [12], various
compilers and frameworks have been developed for FPGAs. In
2023, ESNet introduced a framework that integrates the latest
AMD FPGA with their VitisNetP4 compiler [7]. Similarly,
[10] presented a framework that offers additional features such
as support for extern functions and partial reconfiguration.
In this work, we extend the framework from [10] by utilizing
simplified C-based HLS functions as extern functions. For the
graph challenge, others have investigated the performance of
deploying a solution on the edge with two Accolade Tech-
nology ANIC-200Kq dual port 100 gigabit NICs [13]. Their
work demonstrates an example of the anonymized networking
sensing challenge with high throughput. Our design achieves
a comparable throughput as [13]. Similar to this work,
we deploy our solution on an FPGA-based NIC. Our work
demonstrates comparative results that saturate the 100Gbps
link on the FPGA and also showcases a development with
state-of-the-art domain-specific language P4.

III. PROPOSED DESIGN

Fig. 3. Design illustration: the numbers shows the order of data flows.

We proposed a design solution for the Anonymized Network
Sensing Challenge that focuses on the first two steps shown
in Fig. 1. This optimized hardware design provides a high-
performance solution to in-network packet processing and
header extraction. In this section, we explore the utilization
of our P4-based FPGA framework for implementing high-
performance packet header extraction. The design consists of
an overlay and a plug in. The overlay establishes a shell that
facilitates basic connections between physical interfaces and
host CPUs, and is common among P4 designs. The plugin
houses the P4 application including the extern. The P4 parts
handles the packet parsing and deparsing and the HLS parts are



used to save the extracted headers.. The framework consisting
of the the overlay and plugin is shown in Fig. 3.

A. Overlay Design

The overlay is built on AMD/Xilinx’s OpenNIC shell [1], an
open-source, FPGA-based 100G NIC platform. The OpenNIC
shell features a Queue-based Direct Memory Access (QDMA)
block for transferring packets between the NIC shell and the
host CPU via the PCIe bus, and a 100G MAC block (CMAC)
for Ethernet communication. The user plugin connects the
QDMA and CMAC components.

Fig. 4. OpenNIC shell structure. Figure adapted from the OpenNIC shell
documentation [1]

As shown in Figure 4, we populate the block labeled User
Plugin@250MHz with the P4 hardware IP block produced by
AMD/Xilinx’s Vitis Networking P4 (VitisNetP4) toolchain [2].
This toolchain generates hardware IP from P4 source code.
The OpenNIC shell delivers NIC functionality capable of
supporting 100Gb/s throughput. Our framework establishes
the required packet and control logic pathways between the
OpenNIC shell and the outputs from VitisNetP4.

With this approach, users only needs to provide P4 code as
input, and can quickly generate a P4-enabled NIC and achieve
fast deployment on OCT using this tool flow. It provides an
easy way for network researchers unfamiliar with FPGAs or
hardware design to conduct their research on OCT. Under
this framework, users can easily focus on network functions
while the OpenNIC shell provides the development of the NIC
design.

B. Header Extraction

The key to achieving the challenge lies in utilizing the
plugin. This plugin is a combination of P4 and HLS blocks.
The P4 block consists of a parser and a deparser. The parser is
employed to extract source and destination IP addresses, while
the deparser is used to reconstruct the packets and forward
them to the host. A limitation of the P4 processing model is
its stateless nature; the extracted header information cannot
be stored under the P4 description. For this reason, we use
an HLS block as a P4 extern struct to describe the
behaviors of storing and processing this information on the
FPGA. The HLS-based extern function is instantiated in the
processing block between the parser and deparser of the P4
code.

We store the extracted headers on the FPGA on-chip Block
RAM. Since the traffic matrix is constructed on the host CPU,

we pack the information from a fixed number of Np packets
received from the network into one packet and forward it to
the host CPU. Similar to a network packet, we need eight
bytes for the address of these information packets. Therefore,
a fixed size 8 ×Np bytes network packet is sent to the host.
It will yield a theoretical packet drop rate 1 ÷ (Np + 1).
Although the larger Np yields a lower drop rate, it also requires
a wider data bus between the P4 block and HLS block to
exchange information as 8 ×Np data need to be transferred.
A wide data bus will increase the hardware design difficulties
and eventually cause a larger packet drop rate than expected.
This design accommodates the current FPGA configuration.
To further improve the performance and reduce the drop rate,
instead of sending data as a network packet, we can establish
a direct data link between the HLS block and the host as
described in section V.

IV. IMPLEMENTATION AND EVALUATIONS

Fig. 5. Testbed Illustration

To evaluate the performance of our solution, we imple-
mented it on OCT, as illustrated in Fig. 5. We deployed our
solution on one FPGA node in the OCT as the receiver.
To generate a sufficient number of packets for testing, we
utilized another U280 FPGA node as the sender. Both nodes
are capable of handling 100Gbps traffic through their network
connections. On the sender side, with an empty plugin, packets
are directly transmitted through the FPGA. To fully utilize the
hardware’s speed and minimize performance bottlenecks from
the host CPU processing rate, we also employed DPDK on
both hosts.

Table I shows the performance results of processing differ-
ent size packets using our implementation. We use the CAIDA
Anonymized Internet Traces Dataset [5]. In particular, we
use the traces captured by the Equinix-Chicago monitor on



1 ...
2 parser MyParser(packet_in packet,
3 out headers hdr,
4 inout metadata meta,
5 inout standard_metadata_t smeta) {
6 state start {
7 transition parse_eth;}
8 state parse_eth {
9 packet.extract(hdr.eth);

10 transition select(hdr.eth.type) {
11 IPV4_TYPE : parse_ipv4;
12 default : accept;}}
13 state parse_ipv4 {
14 packet.extract(hdr.ipv4);
15 packet.extract(hdr.ipv4opt, (((bit<32>)hdr

.ipv4.hdr_len - 5) * 32));
16 transition select(hdr.ipv4.protocol) {
17 TCP_PROT : parse_tcp;
18 UDP_PROT : parse_udp;
19 default : accept;}}
20 state parse_tcp {
21 packet.extract(hdr.tcp);
22 packet.extract(hdr.tcpopt, (((bit<32>)hdr.

tcp.dataOffset - 5) * 32));
23 transition accept;}
24 state parse_udp {
25 packet.extract(hdr.udp);
26 transition accept;}
27 }
28 ...

Listing 1. P4-based front-end

TABLE I
FPGA PROCESSING RATE

Packet Size (Byte) Data Rate (Mbps) Packet Rate (pps)
64 27,704 41,210,656
128 47,432 39,790,209
256 77,718 35,098,591
512 94,238 22,428,831
1024 95,759 11,447,680
1518 95,359 7,746,182

high-speed internet backbone links in 2016. These traces only
contain the TCP/IP headers. To test on a real network, we pad
these packets with zeros to simulate real traffic data. Table I
shows that for 512-byte packets, we can fully saturate the
100Gbps link. The packet rate for small packets can be further
improved as the theoretical performance of the OpenNIC shell
overlay is 100 million packets per second.

Through the use of P4 and HLS, we were able to reduce the
effort of developing hardware logic. The FPGA design consists
of a few hundred lines of P4 codes in place of thousands of
lines of HDL code. The shorter code base makes it easier
to develop, debug, and improve our FPGA design. Listing. 1
shows the P4 parser code to extract the headers. If this code
were developed in HLS, thousands of lines of detailed logic
description would have been required to describe the parsing
logic.

The packet that summarizes the information contains an
Ethernet header with a customized protocol as shown in
Fig. 6. With the help of the P4 deparser, we can easily define
and reconstruct any customized protocol. The byte following

the header contains the number of source-destination pairs
included in the payload, i.e. Np. In our implementation, we
set Np to 150 in order to transfer as much information as
possible. Then we pack the source and destination IP pairs
into the payload. For 150 packets, there will be a 1200-byte
payload.

Fig. 6. Received packet example showing the first hundred bytes of the packet.

V. FUTURE IMPROVEMENTS

Our approach, as described in this paper, tackles the first two
steps of the Anonymized Network Traffic Graph Challenge,
namely extracting source and destination IP addresses at line
speed. Our solution makes use of a network connected FPGA
to receive and process packets and transmit the extracted
information to the host.

For ease of implementation, we gathered source and des-
tination IPs, stored them in memory on the FPGA, and used
network packets to transfer this information to the host. We
accomplish this by replacing one out of every 150 packets
with the collected information. This solution did not require
the addition of any additional mechanism to implement host-
to-FPGA communication. It also results in one out of every
150 packets of original data being dropped and not forwarded
to the host to accommodate the IP addresses.

In the future, we plan to investigate different mechanisms
for transferring the information to the host machine, indepen-
dent of the packet data bus. For example, it is possible to
establish an independent data bus for the desired information
through the QDMA, which will require modifications on both
the FPGA and host sides.

Second, due to the limitations of the on-chip BRAM, we
cannot store a significant amount of data on the FPGA. Our
design assumes that steps 3 and 4 in Fig. 1 will be executed on
the host computer and only IP address extraction is executed
on the FPGA. However, the FPGA is equipped with an 8GB
high-bandwidth memory (HBM) offering 460GBps bandwidth
as well as an additional 32GB DDR4 memory with a lower
bandwidth of around 30GBps. A potential improvement to the
design is to utilize this memory to construct the data tables
directly on the FPGA.

By incorporating these changes, a comprehensive solution
for the Anonymized Network Sensing Challenge can be im-
plemented based on the initial design presented in this paper.

VI. CONCLUSION

This paper proposes an FPGA-based hardware solution for
the first few steps of the Anonymized Network Traffic Graph



Challenge. Our solution leverages in-network processing to ex-
tract and construct anonymized network traffic data structures,
demonstrating high throughput that maximizes the potential of
an FPGA-based NIC. The design is implemented through a P4-
based framework deployed on the Open Cloud Testbed (OCT).
extern functions in P4 and High Level Synthesis (HLS)
are used to implement portions of the design that require
state, as P4 is a stateless language. This paper describes the
first example of the combination of using P4 and High-level
Synthesis in developing network functions on the latest AMD
FPGAs.

In the future we plan to investigate implementing more
of the Anonymized Network Traffic Graph Challenge by
improving the communication of information between FPGA
and local host computer, as well as implementing more of the
graph challenge on the FPGA itself.

REFERENCES

[1] AMD OpenNIC Project. https://github.com/Xilinx/open-nic, 2022. [On-
line; accessed 01-01-2023].

[2] Vitis Networking P4. https://www.xilinx.com/products/
intellectual-property/ef-di-vitisnetp4.html, 2022. [Online; accessed
01-01-2023].

[3] Sandeep Bal, Zhaoyang Han, Suranga Handagala, Mert Cevik, Michael
Zink, and Miriam Leeser. P4-based in-network telemetry for fpgas
in the open cloud testbed and fabric. In IEEE INFOCOM 2024-
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pages 1–6. IEEE, 2024.

[4] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. P4: Programming protocol-independent packet proces-
sors. ACM SIGCOMM Computer Communication Review, 44(3):87–95,
2014.

[5] The caida anonymized internet traces. [Online; accessed 07-12-2024].
[6] Dana Diaconu, Yanyue Xie, Mehmet Gungor, Suranga Handagala, Xue

Lin, and Miriam Leeser. Machine learning across network-connected
fpgas. In 2023 IEEE High Performance Extreme Computing Conference
(HPEC), pages 1–7. IEEE, 2023.

[7] ESNet SmartNIC. https://github.com/esnet/esnet-smartnic-hw, 2022.
[Online; accessed 01-01-2023].

[8] Jananthan et al. Anonymized network sensing graph challenge. In
2024 IEEE High Performance Extreme Computing Conference (HPEC)
Submitted, pages 1–8, 2024.

[9] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian
Caulfield, Eric Chung, et al. Azure Accelerated Networking:SmartNICs
in the Public Cloud. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18), pages 51–66, 2018.

[10] Zhaoyang Han, Suranga Handagala, Kalyani Patle, Michael Zink, and
Miriam Leeser. A framework to enable runtime programmable p4-
enabled fpgas in the open cloud testbed. In IEEE INFOCOM 2023-
IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pages 1–6. IEEE, 2023.

[11] Suranga Handagala, Miriam Leeser, Kalyani Patle, and Michael Zink.
Network Attached FPGAs in the Open Cloud Testbed (OCT). In
IEEE INFOCOM 2022-IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pages 1–6. IEEE, 2022.

[12] Stephen Ibanez, Gordon Brebner, Nick McKeown, and Noa Zilberman.
The P4->NetFPGA workflow for line-rate packet processing. In Pro-
ceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 1–9, 2019.

[13] Michael Jones, Jeremy Kepner, Daniel Andersen, Aydin Buluç, Chansup
Byun, K Claffy, Timothy Davis, William Arcand, Jonathan Bernays,
David Bestor, William Bergeron, Vijay Gadepally, Micheal Houle,
Matthew Hubbell, Hayden Jananthan, Anna Klein, Chad Meiners, Lau-
ren Milechin, Julie Mullen, Sandeep Pisharody, Andrew Prout, Albert
Reuther, Antonio Rosa, Siddharth Samsi, Jon Sreekanth, Doug Stetson,
Charles Yee, and Peter Michaleas. Graphblas on the edge: Anonymized

high performance streaming of network traffic. In 2022 IEEE High
Performance Extreme Computing Conference (HPEC), pages 1–8, 2022.

[14] Miriam Leeser, Suranga Handagala, and Michael Zink. FPGAs in the
Cloud. Computing in Science & Engineering, 23(6):72–76, 2021.

[15] MIT Graph Challenge. https://graphchallenge.mit.edu/, 2024. [Online;
accessed 07-11-2024].

[16] S.Handagala. OCT FPGA Tutorial. https://github.com/OCT-FPGA,
2021. [Online; accessed 07-11-2024].

[17] Nik Sultana, John Sonchack, Hans Giesen, Isaac Pedisich, Zhaoyang
Han, Nishanth Shyamkumar, Shivani Burad, André DeHon, and
Boon Thau Loo. Flightplan: Dataplane disaggregation and placement
for p4 programs. In 18th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 21), pages 571–592, 2021.

[18] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, Ishan Gaur,
and Kunle Olukotun. Taurus: a data plane architecture for per-packet
ml. In Proceedings of the 27th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 1099–1114, 2022.

[19] Abbas Yazdinejad, Reza M Parizi, Ali Dehghantanha, and Kim-
Kwang Raymond Choo. P4-to-blockchain: A secure blockchain-enabled
packet parser for software defined networking. Computers & Security,
88:101629, 2020.

[20] Michael Zink, David Irwin, Emmanuel Cecchet, Hakan Saplakoglu,
Orran Krieger, Martin Herbordt, Michael Daitzman, Peter Desnoyers,
Miriam Leeser, and Suranga Handagala. The Open Cloud Testbed
(OCT): A platform for research into new cloud technologies. In 2021
IEEE 10th International Conference on Cloud Networking (CloudNet),
pages 140–147. IEEE, 2021.


