
Anonymized Network Sensing Graph Challenge

Hayden Jananthan1, Michael Jones1, William Arcand1, David Bestor1, William Bergeron1, Daniel Burrill1,
Aydin Buluc2, Chansup Byun1, Timothy Davis3, Vijay Gadepally1, Daniel Grant4, Michael Houle1, Matthew Hubbell1,

Piotr Luszczek1,5, Peter Michaleas1, Lauren Milechin1, Chasen Milner1, Guillermo Morales1, Andrew Morris4,
Julie Mullen1, Ritesh Patel1, Alex Pentland1, Sandeep Pisharody1, Andrew Prout1, Albert Reuther1, Antonio Rosa1,

Gabriel Wachman1, Charles Yee1, Jeremy Kepner1
1MIT, 2LBNL, 3Texas A&M, 4GreyNoise, 5University of Tennessee

Abstract—The MIT/IEEE/Amazon GraphChallenge encour-
ages community approaches to developing new solutions for ana-
lyzing graphs and sparse data derived from social media, sensor
feeds, and scientific data to discover relationships between events
as they unfold in the field. The anonymized network sensing
Graph Challenge seeks to enable large, open, community-based
approaches to protecting networks. Many large-scale networking
problems can only be solved with community access to very broad
data sets with the highest regard for privacy and strong com-
munity buy-in. Such approaches often require community-based
data sharing. In the broader networking community (commercial,
federal, and academia) anonymized source-to-destination traffic
matrices with standard data sharing agreements have emerged as
a data product that can meet many of these requirements. This
challenge provides an opportunity to highlight novel approaches
for optimizing the construction and analysis of anonymized
traffic matrices using over 100 billion network packets derived
from the largest Internet telescope in the world (CAIDA). This
challenge specifies the anonymization, construction, and analysis
of these traffic matrices. A GraphBLAS reference implementation
is provided, but the use of GraphBLAS is not required in
this Graph Challenge. As with prior Graph Challenges the
goal is to provide a well-defined context for demonstrating
innovation. Graph Challenge participants are free to select (with
accompanying explanation) the Graph Challenge elements that
are appropriate for highlighting their innovations.

Index Terms—privacy preserving, Internet analysis, packet
capture, streaming graphs, traffic matrices

I. INTRODUCTION

The MIT/IEEE/Amazon GraphChallenge encourages com-
munity approaches to developing new solutions for analyz-
ing graphs and sparse data. GraphChallenge.org provides a
well-defined community venue for stimulating research and
highlighting innovations in graph and sparse data analysis
software, hardware, algorithms, and systems. The target au-
dience for these challenges are any individual or team that
seeks to highlight their contributions to graph and sparse data
analysis software, hardware, algorithms, and/or systems. The
Sparse DNN [1]–[9], Stochastic Block Partitioning [10]–[14],

Research was sponsored by the Department of the Air Force Artificial
Intelligence Accelerator and was accomplished under Cooperative Agreement
Number FA8750-19-2-1000. The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the Department of the
Air Force or the U.S. Government. The U.S. Government is authorized to
reproduce and distribute reprints for Government purposes notwithstanding
any copyright notation herein.

1.1.1.1

2.
2.
2.
2

sent
4.4.4.4 8.8.8.8

network
traffic

anonymized
traffic matrix

so
ur
ce

destination

Fig. 1. Network Traffic Messages to Anonymized Traffic Matrix. Network
traffic uses numbers to denote the source and destination addresses of
messages. Network traffic messages can be aggregated and summarized into
traffic matrices for analysis. These traffic matrices, when coupled with data
sharing agreements, can be anonymized by relabeling source addresses (e.g.,
4.4.4.4 → 1.1.1.1) and destination addresses (e.g., 8.8.8.8 → 2.2.2.2)
using various anonymization schemes. The Anonymized Network Traffic
Graph Challenge provides an opportunity to highlight novel approaches for
optimizing the construction and analysis of anonymized traffic matrices from
network traffic.

Subgraph Isomorphism [15]–[29], and PageRank [30]–[32]
Graph Challenges have enabled a new generation of graph
analysis by highlighting the benefits of novel innovations.
Graph Challenge is part of the long tradition of challenges that
have played a key role in advancing computation, AI, and other
fields, such as, YOHO [33], MNIST [34], HPC Challenge [35],
ImageNet [36] and VAST [37], [38]. More recently, major
community activities, such as the NeurIPS conference and
the MIT AI Accelerator [39], have prioritized the regular
development of datasets, benchmarks, and challenges.

The Anonymized Network Sensing Graph Challenge seeks
to enable large, open, community-based approaches to protect-
ing networks [40]–[44]. Many large-scale networking prob-
lems can only be solved with community access to very
broad data sets with the highest regard for privacy and
strong community buy-in [45]–[47]. In the broader networking
community (commercial, federal, and academia) anonymized
source-to-destination traffic matrices with standard data shar-
ing agreements have emerged as a data product that can meet
many of these requirements (see Figure 1). This challenge
provides an opportunity to highlight novel approaches for
optimizing the construction and analysis of anonymized traffic
matrices.

A GraphBLAS reference implementation is provided, but
the use of GraphBLAS is not required in this Graph Challenge.
GraphBLAS anonymized hypersparse traffic matrices repre-
sent one set of design choices for analyzing network traffic
[3], [48]–[60]. Specifically, the use cases requiring some data
on all packets (no down-sampling), high performance, high
compression, matrix-based analysis, anonymization, and open
standards. There are a wide range of alternative graph/network
analysis technologies and many good implementations achieve
performance close to the limits of the underlying computing
hardware [61]–[71]. Likewise, there are many network analysis
tools that focus on providing a rich interface to the full
diversity of data found in network traffic [72]–[74]. Each of
these technologies has appropriate use cases in the broad field
of Internet traffic analysis.

The outline of the rest of the paper is as follows. First,
some basic network quantities are defined in terms of traffic
matrices. Second, the steps of the Anonymized Network Sens-
ing Graph Challenge and computational metrics are described.
Next, the test data sets both real and random are presented.
Finally, some preliminary performance results of the reference
implementation are provided.

II. ANONYMIZED NETWORK TRAFFIC MATRICES

Network data must be handled with care. The Center
for Applied Internet Data Analysis (CAIDA) based at the
University of California’s San Diego Supercomputer Center
has pioneered trusted data sharing best practices that combine
anonymizing source and destination internet addresses using
CryptoPAN [75] with data sharing agreements. These data
sharing best practices include the following principles [45].

• Data is made available in curated repositories.
• Using standard anonymization methods where needed:

hashing, sampling, and/or simulation.
• Registration with a repository and demonstration of le-

gitimate research need.
• Recipients legally agree to neither repost a corpus nor

deanonymize data.
• Recipients can publish analysis and data examples nec-

essary to review research.
• Recipients agree to cite the repository and provide pub-

lications back to the repository.
• Repositories can curate enriched products developed by

researchers.
Network traffic data can be viewed as a traffic matrix

where each row is a source and each column is a destination
(see Figure 1). A primary benefit of constructing anonymized
traffic matrices is the efficient computation of a wide range of
network quantities via matrix mathematics. Figure 2 illustrates
essential quantities found in all streaming dynamic networks.
These quantities are all computable from anonymized traffic
matrices created from the source and destination addresses
found in Internet packet headers [79]–[82]. It is common to
filter the Internet Protocol (IP) packets down to a valid set
for any particular analysis. Such filters may limit particular
sources, destinations, protocols, and time windows. To reduce

valid
source packet

window
NV=217,218,…,227
(time window)

valid
destination packet

window
NV=217,218,…,227
(time window)

source packets
(packets from a source)

destination packets
(packets to a destination)

unique
destinations

unique
sources

unique
links

source
fan-out

destination
fan-in

link
packets

Fig. 2. Streaming Network Traffic Quantities. Internet traffic streams of
NV valid packets are divided into a variety of quantities for analysis: source
packets, source fan-out, unique source-destination pair packets (or links),
destination fan-in, and destination packets. Figure adapted from [76].

TABLE I
NETWORK QUANTITIES FROM TRAFFIC MATRICES

Formulas for computing network quantities from a traffic matrix At at time
t in both summation and matrix notation. 1 is a column vector of all 1’s, T

is the transpose operation, and | |0 is the zero-norm that sets each nonzero
value of its argument to 1 [77]. These formulas are unaffected by matrix
permutations and work on anonymized data. Underlined quantities are those
specified in the anonymized network sensing Graph Challenge. Table adapted
from [78].

Aggregate Summation Matrix
Property Notation Notation
Valid packets NV

∑
i

∑
j At(i, j) 1TAt1

Unique links
∑

i

∑
j |At(i, j)|0 1T|At|01

Link packets from i to j At(i, j) At

Max link packets (dmax) maxij At(i, j) max(At)

Unique sources
∑

i |
∑

j At(i, j)|0 1T|At1|0
Packets from source i

∑
j At(i, j) At1

Max source packets (dmax) maxi
∑

j At(i, j) max(At1)
Source fan-out from i

∑
j |At(i, j)|0 |At|01

Max source fan-out (dmax) maxi
∑

j |At(i, j)|0 max(|At|01)
Unique destinations

∑
j |

∑
i At(i, j)|0 |1TAt|01

Destination packets to j
∑

i At(i, j) 1T|At|0
Max destination packets (dmax) maxj

∑
i At(i, j) max(1T|At|0)

Destination fan-in to j
∑

i |At(i, j)|0 1T At

Max destination fan-in (dmax) maxj
∑

i |At(i, j)|0 max(1T At)

statistical fluctuations, the streaming data should be partitioned
so that for any chosen time window all data sets have the
same number of valid packets [78]. At a given time t, NV

consecutive valid packets are aggregated from the network
traffic into a matrix At, where At(i, j) is the number of valid
packets between the source i and destination j. The sum of
all the entries in At is equal to NV :∑

i,j

At(i, j) = NV

Constant packet, variable time samples simplify the statistical
analysis of the heavy-tail distributions commonly found in
network traffic quantities [76], [83], [84]. All the network
quantities depicted in Figure 2 can be readily computed from
At using the formulas listed in Table I. Because matrix opera-
tions are generally invariant to permutation (reordering of the
rows and columns), these quantities can readily be computed

stream of traffic

matrices NV=217

so
ur

ce
s sparse

traffic
matrix
At:t+T

NV=218

so
ur

ce
s sparse

traffic
matrix
At:t+2T

++
++

NV=219

so
ur

ce
s sparse

traffic
matrix
At:t+4T

+
+

so
ur
ce
s

destinations

so
ur
ce
s

destinations

so
ur
ce
s

destinations

Fig. 3. Binary Summation of Traffic Matrices. Summing traffic matrices
as binary pairs can result in more efficient memory access and more efficient
analysis of matrices at each intermediate level. Figure adapted from [78].

from anonymized data. Furthermore, the anonymized data can
be analyzed by source and destination subranges (subsets when
anonymized) using simple matrix multiplication. For a given
subrange represented by an anonymized diagonal matrix Ar,
where Ar(i, i) = 1 implies source/destination i is in the
range, the traffic within the subrange can be computed via:
ArAtAr. Likewise, for additional privacy guarantees that can
be implemented at collection, the same method can be used
to exclude a range of data from the traffic matrix:

At −ArAtAr

Efficient computation of network quantities on multiple time
scales can be achieved by hierarchically aggregating data in
different time windows [78]. Figure 3 illustrates a binary
aggregation of different streaming traffic matrices. Computing
each quantity at each hierarchy level eliminates redundant
computations that would be performed if each packet window
was computed separately. Hierarchy also ensures that most
computations are performed on smaller matrices residing in
faster memory. Correlations among the matrices mean that
adding two matrices each with NV entries results in a matrix
with fewer than 2NV entries, reducing the relative number of
operations as the matrices grow.

III. THE GRAPH CHALLENGE

This challenge provides an opportunity to highlight novel
approaches for optimizing the construction and analysis
of anonymized traffic matrices. This paper describes the
anonymization, construction, and analysis of these traffic
matrices. The overall steps of the challenge are depicted in
Figure 4. The Anonymized Network Traffic Graph Challenge
consist of several timed steps, each of which can be impor-
tant to optimize in a real system. The complete process for
performing the challenge consists of the following steps

1) Timed: Read/stream each network packet capture
(PCAP) file containing 230 packets.

2) Timed: Extract the source IP address and destination IP
address from each packet header.

3) Timed: Anonymize the source IP and destination IP.
Anonymization should be consistent over all files so
all the data can be meaningfully further aggregated.
Assume that any pair in the 232×232 IPv4 traffic space
is possible. Novel approaches that also handle 128-bit

IPv6 are encouraged. Anonymization can be done at
different levels as long as it is explicitly stated: [trivial]
no anonymization, [reference implementation] trusted
sharing employing anonymization (e.g., CryptoPAN)
that assumes the existence of an agreement prohibiting
deanonymization, [advanced research] semantically se-
cure anonymization.

4) Timed: Construct sequential traffic matrices with NV =
217 packets (this size is large enough for meaningful
statistics but small enough to preserve enough temporal
information for statistical analysis given that Internet
packets can arrive in any order). Matrices should be
aligned with the mathematical definition of a matrix and
can be read directly into an available matrix analysis
environment. Avoid internal redundancy and store each
(i,j) pair only once. Valid matrix formats include, but
are not limited to, compressed sparse rows (CSR),
compressed sparse columns (CSC), and sorted triples.
Proprietary binary formats are allowed.

5) Timed: Save the traffic matrices to files. Valid file for-
mants include, but are not limited to, comma separated
values (CSV), tab separated values (TSV), SuiteSparse
GraphBLAS [reference implementation], HDF, CDF,
and NetCDF. The number of files and number of traffic
matrices per file is up to the implementor and range from
213 files each containing 1 traffic matrix to 1 file with
213 traffic matrices. The reference implementation saves
27 .tar files each containing 26 SuiteSparse GraphBLAS
traffic matrices.

6) Timed: Read in the 213 traffic matrices associated with
230 packets, sum the traffic matrices into a single large
traffic matrix At (see Figure 3), and perform the analysis
highlighted in Table I.

Reference serial implementations in various programming
languages are available at GraphChallenge.org. The pseudo-
code for the reference implementation is shown in Figure 5.
For a given implementation of the Graph Challenge an
implementor should keep the following guidance in mind.

Do

• Use an implementation that could work on real-world
data.

• Distribute inputs and run in data parallel mode to achieve
higher performance (this may require storing traffic ma-
trices on every processor and increase the memory foot-
print).

• Split up steps and run in a pipeline parallel mode to
achieve higher performance (this saves memory, but re-
quires communicating results after each group of steps).

• Use other reasonable optimizations that would work on
real-world data.

Avoid

• Using optimizations that would not work on real-world
data.

• Unnecessarily pre-computing quantities for a subsequent
step in a previous step.

source IP destination IP

destination IPsource IP
destination IP1source IP1
destination IP2source IP2
destination IP3source IP3
destination IP4source IP4
destination IP5source IP5

2. Extract source IP and destination IP of NV valid packets

A

so
ur

ce
s

destinations

5. Save sparse
traffic matrix

1

2

3

4

…

…

232

3. Anonymization
scheme/table

matrix files

version IHL service type ECN total length

identification flags fragment offset

header checksumtransport protocoltime to live

source IP address
destination IP address

options + padding

bit
0

bit
31

IP
 h

ea
de

r
(2

4
by

te
s)

network packet format

payload

PCAP Files

1. Read/stream
PCAP Files

6. Read, sum,
and analyze

4. Construct
traffic matrix

Anonymized
Network Sensing
Graph Challenge

Steps

Fig. 4. Anonymized Network Traffic Graph Challenge Steps. (1) Read/stream each network packet capture (PCAP) file. (2) Extract the source IP and
destination IP addresses from the packet headers and buffer NV valid packets. (3) Anonymize the source IP and destination IP. Anonymization should be
consistent over all files so all the data can be meaningfully further aggregated. Assume that any pair in the 232×232 IPv4 traffic space is possible. (4)
Construct sequential traffic matrices from NV valid packets. Matrices should align with the mathematical definition of a matrix. (5) Save the traffic matrices
to files (granularity is up to the implementor). (6) Read in the traffic matrix files, sum the traffic matrices associated with a PCAP file into one large traffic
matrix At (see Figure 3), and perform the analysis highlighted in Table I.

IV. COMPUTATIONAL METRICS

Submissions to the Anonymized Network Sensing Graph
Challenge will be evaluated on the overall innovations high-
lighted by the implementation and two metrics: correctness
and performance.

A. Correctness

Correctness is evaluated by comparing the reported Table I
quantities for each 230 packet PCAP file with the ground truth
provided.

B. Performance

The performance of the algorithm implementation should
be reported in terms of the following metrics.

• Total number of packets processed: this measures the
amount of data processed.

• Execution time: total time required to perform the Graph
Challenge.

• Rate: measures the throughput of the implementation as
the ratio of the number of packets processed divided by
the execution time.

• Processor: number and type of processors used in the
computation.

Graph Challenge participants are free to select (with accom-
panying explanation) the elements of any of the Graph Chal-
lenges that are appropriate for highlighting their innovations.
Reporting the performance of individual steps in the Graph
Challenge are encouraged. It is often the case that a particular
innovation is focused on improving a single step.

V. ANONYMIZED TEST DATA

The test data consists of two types (1) randomized and (2)
anonymized real data derived the from the CAIDA telescope.
The randomized data consists of a single freely available 230

packet PCAP file with source and destination IP addresses
generated with 2×230 calls of the C PCG32 (Permuted Con-
gruential Generator 32 bit) pseudo random number generator
function [85]. The CAIDA darknet telescope is a significant
portion of a globally routed /8 network carrying essentially no
legitimate traffic since it is an Internet darkspace, providing an
ideal vantage point by which to observe and study unsolicited
anomalous traffic. The CAIDA network traffic is collected
and anonymized into traffic matrices in a process similar to
steps 1-5 shown in Figure 4 [86]. Subsets of these traffic
matrices representing 230 contiguous packets were selected
around noon and midnight from many days around the first
quarter of 2022 (see Table II) [87]. These traffic matrices were
then converted back into 230 packet PCAP files. For both the
random and CAIDA data, the other fields in the PCAP header
are populated using the values or methods shown in Figure 6.

An additional enrichment data set is also included that
looks up sources found in the CAIDA telescope data in
the GreyNoise honeyfarm database [87]–[89]. The GreyNoise
honeyfarm is made up of thousands of servers carrying out
conversations with sources scanning the Internet; based on
these conversations GreyNoise can associate various metadata
with those sources to collectively build a refined picture of
the malicious sources regularly scanning the Internet and the
techniques they employ. The GreyNoise enrichment of CAIDA
data uses anonymized IP addresses throughout and is provided

AnonNetSensingGraphChallenge(
PCAPfile, # name of PCAP file
Np, # packets in file (230)
Nv, # packets per matrix (217)
NmatPerFile, # matrices per output file (26)
anonKey # anonymization key

);
PCAPbuffer = read(PCAPfile);
p = 0;
for i = 0 to (Np/(NmatPerFile*Nv))-1 # (27 − 1)

for j = 0 to NmatPerFile-1
for k = 0 to Nv-1
[srcIP(k) destIP(k)] = readPCAPheader(PCAPbuffer,p);
srcIPanon(k) = anonymize(srcIP,anonKey);
destIPanon(k) = anonymize(destIP,anonKey);
p++;

end
A[j] = constructMatrix(srcIPanon,destIPanon);

end
saveMatrices(A,i);
end
At(:,:) = 0;
for i = 0 to (Np/(NmatPerFile*Nv))-1
A = readMatrices(i);
for j = 0 to NmatPerFile-1
At += A[j];

end
end
perform the analysis on At listed in Table I
end

Fig. 5. Anonymized Network Traffic Graph Challenge Pseudocode.
Code begins by reading a 230 packet PCAP file in groups of NV = 217

valid packets. The source and destination IP addresses of the packets are
anonymized and then used to populate the entries of a traffic matrix A[j]. 26
of these traffic matrices are then saved as individual files within a .tar file. 27
.tar files are saved per PCAP files. After all the traffic matrices are constructed
and saved, the .tar files are then read again and all the traffic matrices are
summed into one traffic matrix At. The analysis highlighted in Table I are
then performed on At and reported.

TABLE II
ANONYMIZED DATA SETS

Characteristics of CAIDA Telescope derived anonymized PCAP files and
corresponding GreyNoise enrichment data.

CAIDA CAIDA data size GreyNoise
Month 230 packet sets compressed data size
2022-01 25 (noon); 24 (midnight) 375 GB 3.6 GB
2022-02 17 (noon); 18 (midnight) 271 GB 3.6 GB
2022-03 24 (noon); 26 (midnight) 432 GB 3.6 GB
2022-04 13 (noon); 14 (midnight) 242 GB

as a point of departure for future investigations (see [87], [88]
for details on the enriched fields provided).

VI. PERFORMANCE MEASUREMENTS

Performance measurements of the reference C traffic ma-
trix constructor code and the Python traffic matrix sum and
analysis code are shown in Figure 7 and provide one ex-
ample for reporting results. Parallel implementations of the
reference code were developed and tested using dual 2.4

Magic Number = D4C3B2A1 (hex little-endian format)

Major Version Number = 2 Minor Version Number = 4

GMT to Local Correction = 0

Data Link Type = 101 (raw)

Bit
0

Bit
31

G
lo

ba
l P

C
AP

H
ea

de
r

(2
4

By
te

s)

Packet Records …

Accuracy of Timestamps = 0

Max Length of Captured Packets in Octets = 216-1

Timestamp Seconds = interpolated over 10 seconds

Timestamp Microseconds = increments by 1 every 10 packets

Number of Octets of Packet Saved in File = 40

Bit
0

Bit
31

PC
AP

 R
ec

or
d

H
ea

de
r

(1
6

By
te

s)

Data = IPv4 packet

Actual Length of Packet = 40

Version=4 IHL=5 Service Type=0 EC
N=0 Total Length=40

Identification=10001 Flags=
0 Fragment Offset=0

Header Checksum=derivedTransport Protocol=6Time to Live=64

Source IP Address

Destination IP Address

Bit
0

Bit
31

IP
v4

H
ea

de
r

(2
0

By
te

s)

Payload = TCP segment

Bit
0

Bit
31

TC
P

Se
gm

en
t

H
ea

de
r

(2
0

By
te

s)

Source Port = 10002 Destination Port = 10003

Sequence Number = 1000000004

Acknowledgement = 0
Data

Offset=5
Reserved

=0
TCP Flags (SYN=1,

others=0) Window Size=10005

Checksum=derived from headers Urgent pointer = 0

Fig. 6. Packet Capture (PCAP) File Format. Each of 230 packets are
stored in a PCAP file in the above format. PCAP files begin with a global
header followed by a sequence of PCAP records. Each PCAP record consists
of a header and data containing an Internet Protocol version 4 (IPv4) packet.
An IPv4 packet consists of a header containing the source address and the
destination address fields. For completeness, the IPv4 payload contains a
Transmission Control Protocol (TCP) segment header. The specific values
or method used to populate the fields are listed in the figure. [Note: setting
data link type to 101 indicates this a raw data and there is no Ethernet frame
header between the PCAP record header and the IPv4 header.]

GHz Intel Xeon Platinum 8260 processor compute nodes on
the MIT SuperCloud TX-Green supercomputer [90]. These
results demonstrate that traffic matrix construction can be
done in a streaming fashion with modest memory enabling
large numbers of PCAP files to be processed simultaneously
on a single compute node. Reading the PCAP files can take
significant time as shown by the rate increase achieved by
caching the files in memory. Likewise, in-line anonymization
has the opposite effect. Prior work shows that anonymization
time can be effectively eliminated by using look-up tables
[58]. Sum and analysis of the traffic matrices requires a larger
memory footprint which can be accelerated with threads. In
both cases, multiple files can be processed simultaneously and
the performance scales linearly with nodes.

VII. CONCLUSIONS

The anonymized network sensing Graph Challenge seeks to
enable large, open, community-based approaches to protecting
networks. Community access to very broad data sets with the
highest regard for privacy is essential for solving many large-
scale networking problems. Anonymized source-to-destination
traffic matrices with standard data sharing agreements have
emerged in the broader networking community as a data
product that can meet many of these requirements. Using over
100 billion network packets derived from the largest Internet
telescope in the world (CAIDA) the anonymized network
sensing Graph Challenge provides an opportunity to highlight

100 101 102 103

number of cores

105

106

107

108

109

1010
ra

te
 (p

ac
ke

ts
/s

ec
)

construct (C)
construct w/cache (C)
construct w/anon (C)
sum (Python)
analyze (Python)

ef
fe

ct
iv

e
ne

tw
or

k
ba

nd
w

id
th

 (b
its

/s
ec

)

1014

1013

1012

1011

1010

109
single
node

multi
node

Fig. 7. Reference Performance. Average performance measurements of the
reference C traffic matrix constructor code (with anonymization and with
file caching) and the Python traffic matrix sum and analyze code. Effective
bandwidth is computed assuming 10,000 bits/packet for real packet data on
a real network. The constructor code has a small memory footprint and 48
distinct instances each processing a separate PCAP file can be run on a 48
core node. The sum and analyze code have a larger memory footprint and 3
distinct instances each with 16 OpenMP threads each processing a separate
PCAP file can be run on a 48 core node with 192 GB of RAM. The multi-
node performance scales linearly over distinct PCAP files.

novel approaches for optimizing the construction and analy-
sis of anonymized traffic matrices. A GraphBLAS reference
implementation is provided, but the use of GraphBLAS is
not required in this Graph Challenge. As with prior Graph
Challenges the goal is to provide a well-defined context for
demonstrating innovation. Graph Challenge participants are
free to select (with accompanying explanation) the elements
of any of the Graph Challenges that are appropriate for
highlighting their innovations.

ACKNOWLEDGMENTS

The authors wish to acknowledge the following individuals
for their contributions and support: Daniel Andersen, LaToya
Anderson, Sean Atkins, David Bader, Chris Birardi, Bob Bond,
Alex Bonn, Koley Borchard, Stephen Buckley, Aydin Buluc,
K Claffy, Cary Conrad, Chris Demchak, Phil Dykstra, Alan
Edelman, Peter Fisher, Garry Floyd, Jeff Gottschalk, Dhruv
Gupta, Oded Green, Thomas Hardjono, Chris Hill, Miriam
Leeser, Charles Leiserson, Chris Long, Kirsten Malvey, San-
jeev Mohindra, Roger Pearce, Heidi Perry, Ali Pinar, Christian
Prothmann, Steve Rejto, Josh Rountree, Daniela Rus, Sid-
dharth Samsi, Mark Sherman, Scott Weed, Michael Wright,
Marc Zissman.

REFERENCES

[1] J. Kepner, S. Alford, V. Gadepally, M. Jones, L. Milechin, R. Robi-
nett, and S. Samsi, “Sparse deep neural network graph challenge,” in
2019 IEEE High Performance Extreme Computing Conference (HPEC),
pp. 1–7, 2019.

[2] M. Bisson and M. Fatica, “A gpu implementation of the sparse deep
neural network graph challenge,” in 2019 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1–8, 2019.

[3] T. A. Davis, M. Aznaveh, and S. Kolodziej, “Write quick, run fast:
Sparse deep neural network in 20 minutes of development time via
suitesparse:graphblas,” in 2019 IEEE High Performance Extreme Com-
puting Conference (HPEC), pp. 1–6, 2019.

[4] D.-L. Lin and T.-W. Huang, “A novel inference algorithm for large
sparse neural network using task graph parallelism,” in 2020 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1–7, 2020.

[5] M. Hidayetoglu, C. Pearson, V. S. Mailthody, E. Ebrahimi, J. Xiong,
R. Nagi, and W.-m. Hwu, “At-scale sparse deep neural network inference
with efficient gpu implementation,” in 2020 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1–7, 2020.

[6] J. Xin, X. Ye, L. Zheng, Q. Wang, Y. Huang, P. Yao, L. Yu, X. Liao,
and H. Jin, “Fast sparse deep neural network inference with flexible
spmm optimization space exploration,” in 2021 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1–7, 2021.

[7] Y. Sun, L. Zheng, Q. Wang, X. Ye, Y. Huang, P. Yao, X. Liao, and H. Jin,
“Accelerating sparse deep neural network inference using gpu tensor
cores,” in 2022 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–7, 2022.

[8] S. Xu, M. Wu, L. Zheng, Z. Shao, X. Ye, X. Liao, and H. Jin, “Towards
fast gpu-based sparse dnn inference: A hybrid compute model,” in
2022 IEEE High Performance Extreme Computing Conference (HPEC),
pp. 1–7, 2022.

[9] M. Dun, X. Zhang, H. Cao, Y. Zhang, J. Huang, and X. Ye, “Adaptive
sparse deep neural network inference on resource-constrained cost-
efficient gpus,” in 2023 IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1–7, 2023.

[10] E. Kao, V. Gadepally, M. Hurley, M. Jones, J. Kepner, S. Mohindra,
P. Monticciolo, A. Reuther, S. Samsi, W. Song, D. Staheli, and S. Smith,
“Streaming graph challenge: Stochastic block partition,” in 2017 IEEE
High Performance Extreme Computing Conference (HPEC), pp. 1–12,
2017.

[11] M. Halappanavar, H. Lu, A. Kalyanaraman, and A. Tumeo, “Scalable
static and dynamic community detection using grappolo,” in 2017 IEEE
High Performance Extreme Computing Conference (HPEC), pp. 1–6,
2017.

[12] B. W. Priest, A. Dunton, and G. Sanders, “Scaling graph clustering
with distributed sketches,” in 2020 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–7, 2020.

[13] A. J. Uppal, J. Choi, T. B. Rolinger, and H. Howie Huang, “Faster
stochastic block partition using aggressive initial merging, compressed
representation, and parallelism control,” in 2021 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1–7, 2021.

[14] F. Wanye, V. Gleyzer, E. Kao, and W.-c. Feng, “An integrated approach
for accelerating stochastic block partitioning,” in 2023 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1–7, 2023.

[15] S. Samsi, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra,
P. Monticciolo, A. Reuther, S. Smith, W. Song, D. Staheli, and J. Kepner,
“Static graph challenge: Subgraph isomorphism,” in 2017 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1–6, 2017.

[16] M. M. Wolf, M. Deveci, J. W. Berry, S. D. Hammond, and S. Raja-
manickam, “Fast linear algebra-based triangle counting with kokkosker-
nels,” in 2017 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–7, 2017.

[17] R. Pearce, “Triangle counting for scale-free graphs at scale in distributed
memory,” in 2017 IEEE High Performance Extreme Computing Confer-
ence (HPEC), pp. 1–4, 2017.

[18] C. Voegele, Y.-S. Lu, S. Pai, and K. Pingali, “Parallel triangle counting
and k-truss identification using graph-centric methods,” in 2017 IEEE
High Performance Extreme Computing Conference (HPEC), pp. 1–7,
2017.

[19] M. Bisson and M. Fatica, “Static graph challenge on gpu,” in 2017 IEEE
High Performance Extreme Computing Conference (HPEC), pp. 1–8,
2017.

[20] Y. Hu, H. Liu, and H. H. Huang, “High-performance triangle counting on
gpus,” in 2018 IEEE High Performance extreme Computing Conference
(HPEC), pp. 1–5, 2018.

[21] M. Bisson and M. Fatica, “Update on static graph challenge on gpu,” in
2018 IEEE High Performance extreme Computing Conference (HPEC),
pp. 1–8, 2018.

[22] A. Yasar, S. Rajamanickam, M. Wolf, J. Berry, and U. V. Çatalyurek,
“Fast triangle counting using cilk,” in 2018 IEEE High Performance
extreme Computing Conference (HPEC), pp. 1–7, 2018.

[23] R. Pearce and G. Sanders, “K-truss decomposition for scale-free graphs
at scale in distributed memory,” in 2018 IEEE High Performance extreme
Computing Conference (HPEC), pp. 1–6, 2018.

[24] S. Pandey, X. S. Li, A. Buluc, J. Xu, and H. Liu, “H-index: Hash-
indexing for parallel triangle counting on gpus,” in 2019 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1–7, 2019.

[25] M. P. Blanco, T. M. Low, and K. Kim, “Exploration of fine-grained
parallelism for load balancing eager k-truss on gpu and cpu,” in
2019 IEEE High Performance Extreme Computing Conference (HPEC),
pp. 1–7, 2019.

[26] R. Pearce, T. Steil, B. W. Priest, and G. Sanders, “One quadrillion
triangles queried on one million processors,” in 2019 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1–5, 2019.

[27] S. Samsi, J. Kepner, V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mo-
hindra, A. Reuther, S. Smith, W. Song, D. Staheli, and P. Monticciolo,
“Graphchallenge.org triangle counting performance,” in 2020 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1–9, 2020.

[28] S. Ghosh and M. Halappanavar, “Tric: Distributed-memory triangle
counting by exploiting the graph structure,” in 2020 IEEE High Per-
formance Extreme Computing Conference (HPEC), pp. 1–6, 2020.

[29] Z. Wang, Z. Meng, X. Li, X. Lin, L. Zheng, C. Tian, and S. Zhong,
“Smog: Accelerating subgraph matching on gpus,” in 2023 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1–7, 2023.

[30] P. Dreher, C. Byun, C. Hill, V. Gadepally, B. Kuszmaul, and J. Kepner,
“Pagerank pipeline benchmark: Proposal for a holistic system bench-
mark for big-data platforms,” in 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 929–937,
2016.

[31] S. Zhou, K. Lakhotia, S. G. Singapura, H. Zeng, R. Kannan, V. K.
Prasanna, J. Fox, E. Kim, O. Green, and D. A. Bader, “Design and im-
plementation of parallel pagerank on multicore platforms,” in 2017 IEEE
High Performance Extreme Computing Conference (HPEC), pp. 1–6,
2017.

[32] F. Sadi, J. Sweeney, S. McMillan, T. M. Low, J. C. Hoe, L. Pileggi,
and F. Franchetti, “Pagerank acceleration for large graphs with scalable
hardware and two-step spmv,” in 2018 IEEE High Performance extreme
Computing Conference (HPEC), pp. 1–7, 2018.

[33] J. P. Campbell, “Testing with the yoho cd-rom voice verification corpus,”
in 1995 International Conference on Acoustics, Speech, and Signal
Processing, vol. 1, pp. 341–344 vol.1, May 1995.

[34] C. C. Y. LeCun and C. J. Burges, “The MNIST Database.” http://www.
hpcchallenge.org, 2017. [Online; accessed 01-January-2017].

[35] J. Dongarra and P. Luszczek, “Hpc challenge: design, history, and imple-
mentation highlights,” in Contemporary High Performance Computing,
pp. 13–30, Chapman and Hall/CRC, 2017.

[36] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3,
pp. 211–252, 2015.

[37] K. A. Cook, G. Grinstein, and M. A. Whiting, “The VAST Challenge:
History, Scope, and Outcomes: An introduction to the Special Issue,”
Information Visualization, 13(4):301-312, Oct 2014.

[38] J. Scholtz, M. A. Whiting, C. Plaisant, and G. Grinstein, “A Reflection
on Seven Years of the VAST Challenge,” in Proceedings of the 2012
BELIV Workshop: Beyond Time and Errors - Novel Evaluation Methods
for Visualization, BELIV ’12, pp. 13:1–13:8, ACM, 2012.

[39] V. Gadepally, G. Angelides, A. Barbu, A. Bowne, L. J. Brattain,
T. Broderick, A. Cabrera, G. Carl, R. Carter, M. Cha, E. Cowen,
J. Cummings, B. Freeman, J. Glass, S. Goldberg, M. Hamilton, T. Heldt,
K. W. Huang, P. Isola, B. Katz, J. Koerner, Y.-C. Lin, D. Mayo,
K. McAlpin, T. Perron, J. Piou, H. M. Rao, H. Reynolds, K. Samuel,
S. Samsi, M. Schmidt, L. Shing, O. Simek, B. Swenson, V. Sze, J. Taylor,
P. Tylkin, M. Veillette, M. L. Weiss, A. Wollaber, S. Yuditskaya, and
J. Kepner, “Developing a series of ai challenges for the united states
department of the air force,” in 2022 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–7, 2022.

[40] S. Atkins and C. Lawson, “An improvised patchwork: success and failure
in cybersecurity policy for critical infrastructure,” Public Administration
Review, vol. 81, no. 5, pp. 847–861, 2021.

[41] S. Atkins and C. Lawson, “Cooperation amidst competition: cyber-
security partnership in the us financial services sector,” Journal of
Cybersecurity, vol. 7, no. 1, 2021.

[42] C. Demchak, “Achieving systemic resilience in a great systems conflict
era,” The Cyber Defense Review, vol. 6, no. 2, pp. 51–70, 2021.

[43] S. Weed, “Beyond zero trust: Reclaiming blue cyberspace,” Master’s
thesis, United States Army War College, 2022.

[44] S. Atkins and C. Lawson, “Beyond zero trust: Reclaiming blue cy-
berspace with ai,” Cyber Defense Review, vol. 7, no. 1, 2023.

[45] J. Kepner, J. Bernays, S. Buckley, K. Cho, C. Conrad, L. Daigle,
K. Erhardt, V. Gadepally, B. Greene, M. Jones, R. Knake, B. Maggs,
P. Michaleas, C. Meiners, A. Morris, A. Pentland, S. Pisharody,
S. Powazek, A. Prout, P. Reiner, K. Suzuki, K. Takhashi, T. Tauber,
L. Walker, and D. Stetson, “Zero botnets: An observe-pursue-counter
approach.” Belfer Center Reports, 6 2021.

[46] S. Pisharody, J. Bernays, V. Gadepally, M. Jones, J. Kepner, C. Meiners,
P. Michaleas, A. Tse, and D. Stetson, “Realizing forward defense in the
cyber domain,” in 2021 IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1–7, IEEE, 2021.

[47] A. Pentland, “Building a new economy: data, ai, and web3,” Communi-
cations of the ACM, vol. 65, no. 12, pp. 27–29, 2022.

[48] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert,
D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan,
C. Yang, J. D. Owens, M. Zalewski, T. Mattson, and J. Moreira, “Math-
ematical foundations of the graphblas,” in 2016 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1–9, 2016.

[49] A. Buluç, T. Mattson, S. McMillan, J. Moreira, and C. Yang, “Design
of the graphblas api for c,” in 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 643–652,
2017.

[50] C. Yang, A. Buluç, and J. D. Owens, “Implementing push-pull efficiently
in graphblas,” in Proceedings of the 47th International Conference on
Parallel Processing, pp. 1–11, 2018.

[51] J. Kepner and H. Jananthan, Mathematics of big data: Spreadsheets,
databases, matrices, and graphs. MIT Press, 2018.

[52] T. A. Davis, “Algorithm 1000: Suitesparse: Graphblas: Graph algorithms
in the language of sparse linear algebra,” ACM Transactions on Mathe-
matical Software (TOMS), vol. 45, no. 4, pp. 1–25, 2019.

[53] T. Mattson, T. A. Davis, M. Kumar, A. Buluc, S. McMillan, J. Moreira,
and C. Yang, “Lagraph: A community effort to collect graph algorithms
built on top of the graphblas,” in 2019 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 276–284,
IEEE, 2019.

[54] P. Cailliau, T. Davis, V. Gadepally, J. Kepner, R. Lipman, J. Lovitz, and
K. Ouaknine, “Redisgraph graphblas enabled graph database,” in 2019
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pp. 285–286, IEEE, 2019.

[55] M. Aznaveh, J. Chen, T. A. Davis, B. Hegyi, S. P. Kolodziej, T. G.
Mattson, and G. Szárnyas, “Parallel graphblas with openmp,” in 2020
Proceedings of the SIAM Workshop on Combinatorial Scientific Com-
puting, pp. 138–148, SIAM, 2020.

[56] B. Brock, A. Buluç, T. G. Mattson, S. McMillan, and J. E. Moreira,
“Introduction to graphblas 2.0,” in 2021 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 253–262,
IEEE, 2021.

[57] M. Pelletier, W. Kimmerer, T. A. Davis, and T. G. Mattson, “The
graphblas in julia and python: the pagerank and triangle centralities,” in
2021 IEEE High Performance Extreme Computing Conference (HPEC),
pp. 1–7, 2021.

[58] M. Jones, J. Kepner, D. Andersen, A. Buluç, C. Byun, K. Claffy,
T. Davis, W. Arcand, J. Bernays, D. Bestor, W. Bergeron, V. Gadepally,
M. Houle, M. Hubbell, H. Jananthan, A. Klein, C. Meiners, L. Milechin,
J. Mullen, S. Pisharody, A. Prout, A. Reuther, A. Rosa, S. Samsi,
J. Sreekanth, D. Stetson, C. Yee, and P. Michaleas, “Graphblas on the
edge: Anonymized high performance streaming of network traffic,” in
2022 IEEE High Performance Extreme Computing Conference (HPEC),
pp. 1–8, 2022.

[59] T. Trigg, C. Meiners, S. Pisharody, H. Jananthan, M. Jones,
A. Michaleas, T. Davis, E. Welch, W. Arcand, D. Bestor, W. Bergeron,
C. Byun, V. Gadepally, M. Houle, M. Hubbell, A. Klein, P. Michaleas,
L. Milechin, J. Mullen, A. Prout, A. Reuther, A. Rosa, S. Samsi,
D. Stetson, C. Yee, and J. Kepner, “Hypersparse network flow analysis
of packets with graphblas,” in 2022 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–7, 2022.

[60] T. A. Davis, “Algorithm 1037: Suitesparse: graphblas: Parallel graph
algorithms in the language of sparse linear algebra,” ACM Transactions
on Mathematical Software, vol. 49, no. 3, pp. 1–30, 2023.

[61] A. Tumeo, O. Villa, and D. Sciuto, “Efficient pattern matching on
gpus for intrusion detection systems,” in Proceedings of the 7th ACM
International Conference on Computing Frontiers, CF ’10, (New York,
NY, USA), p. 87–88, Association for Computing Machinery, 2010.

[62] M. Kumar, W. P. Horn, J. Kepner, J. E. Moreira, and P. Pattnaik,
“Ibm power9 and cognitive computing,” IBM Journal of Research and
Development, vol. 62, no. 4/5, pp. 10–1, 2018.

[63] J. Ezick, T. Henretty, M. Baskaran, R. Lethin, J. Feo, T.-C. Tuan, C. Co-
ley, L. Leonard, R. Agrawal, B. Parsons, and W. Glodek, “Combining
tensor decompositions and graph analytics to provide cyber situational
awareness at hpc scale,” in 2019 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–7, 2019.

[64] P. Gera, H. Kim, P. Sao, H. Kim, and D. Bader, “Traversing large graphs
on gpus with unified memory,” Proceedings of the VLDB Endowment,
vol. 13, no. 7, pp. 1119–1133, 2020.

[65] A. Azad, M. M. Aznaveh, S. Beamer, M. Blanco, J. Chen,
L. D’Alessandro, R. Dathathri, T. Davis, K. Deweese, J. Firoz, H. A.
Gabb, G. Gill, B. Hegyi, S. Kolodziej, T. M. Low, A. Lumsdaine,
T. Manlaibaatar, T. G. Mattson, S. McMillan, R. Peri, K. Pingali,
U. Sridhar, G. Szarnyas, Y. Zhang, and Y. Zhang, “Evaluation of
graph analytics frameworks using the gap benchmark suite,” in 2020
IEEE International Symposium on Workload Characterization (IISWC),
pp. 216–227, 2020.

[66] Z. Du, O. A. Rodriguez, J. Patchett, and D. A. Bader, “Interactive graph
stream analytics in arkouda,” Algorithms, vol. 14, no. 8, p. 221, 2021.

[67] S. Acer, A. Azad, E. G. Boman, A. Buluç, K. D. Devine, S. Ferdous,
N. Gawande, S. Ghosh, M. Halappanavar, A. Kalyanaraman, A. Khan,
M. Minutoli, A. Pothen, S. Rajamanickam, O. Selvitopi, N. R. Tal-
lent, and A. Tumeo, “Exagraph: Graph and combinatorial methods
for enabling exascale applications,” The International Journal of High
Performance Computing Applications, vol. 35, no. 6, pp. 553–571, 2021.

[68] M. P. Blanco, S. McMillan, and T. M. Low, “Delayed asynchronous
iterative graph algorithms,” in 2021 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–7, IEEE, 2021.

[69] N. K. Ahmed, N. Duffield, and R. A. Rossi, “Online sampling of
temporal networks,” ACM Transactions on Knowledge Discovery from
Data (TKDD), vol. 15, no. 4, pp. 1–27, 2021.

[70] A. Azad, O. Selvitopi, M. T. Hussain, J. R. Gilbert, and A. Buluç, “Com-
binatorial blas 2.0: Scaling combinatorial algorithms on distributed-
memory systems,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 33, no. 4, pp. 989–1001, 2021.

[71] D. Koutra, “The power of summarization in graph mining and learning:
smaller data, faster methods, more interpretability,” Proceedings of the
VLDB Endowment, vol. 14, no. 13, pp. 3416–3416, 2021.

[72] R. Hofstede, P. Čeleda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras, “Flow monitoring explained: From packet capture to data
analysis with netflow and ipfix,” IEEE Communications Surveys &
Tutorials, vol. 16, no. 4, pp. 2037–2064, 2014.

[73] R. Sommer, “Bro: An open source network intrusion detection system,”
Security, E-learning, E-Services, 17. DFN-Arbeitstagung über Kommu-
nikationsnetze, 2003.

[74] P. Lucente, “pmacct: steps forward interface counters,” Tech. Rep., 2008.
[75] J. Fan, J. Xu, M. H. Ammar, and S. B. Moon, “Prefix-preserving ip

address anonymization: measurement-based security evaluation and a
new cryptography-based scheme,” Computer Networks, vol. 46, no. 2,
pp. 253–272, 2004.

[76] J. Kepner, K. Cho, K. Claffy, V. Gadepally, P. Michaleas, and
L. Milechin, “Hypersparse neural network analysis of large-scale internet
traffic,” in 2019 IEEE High Performance Extreme Computing Confer-
ence (HPEC), pp. 1–11, 2019.

[77] J. Karvanen and A. Cichocki, “Measuring sparseness of noisy signals,”
in 4th International Symposium on Independent Component Analysis
and Blind Signal Separation, pp. 125–130, 2003.

[78] J. Kepner, C. Meiners, C. Byun, S. McGuire, T. Davis, W. Arcand,
J. Bernays, D. Bestor, W. Bergeron, V. Gadepally, R. Harnasch,
M. Hubbell, M. Houle, M. Jones, A. Kirby, A. Klein, L. Milechin,
J. Mullen, A. Prout, A. Reuther, A. Rosa, S. Samsi, D. Stetson, A. Tse,
C. Yee, and P. Michaleas, “Multi-temporal analysis and scaling relations
of 100,000,000,000 network packets,” in 2020 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1–6, 2020.

[79] A. Soule, A. Nucci, R. Cruz, E. Leonardi, and N. Taft, “How to
identify and estimate the largest traffic matrix elements in a dynamic
environment,” in ACM SIGMETRICS Performance Evaluation Review,
vol. 32, pp. 73–84, ACM, 2004.

[80] Y. Zhang, M. Roughan, C. Lund, and D. L. Donoho, “Estimating point-
to-point and point-to-multipoint traffic matrices: an information-theoretic
approach,” IEEE/ACM Transactions on Networking (TON), vol. 13,
no. 5, pp. 947–960, 2005.

[81] P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela,
“Community structure in time-dependent, multiscale, and multiplex
networks,” science, vol. 328, no. 5980, pp. 876–878, 2010.

[82] P. Tune, M. Roughan, H. Haddadi, and O. Bonaventure, “Internet traffic
matrices: A primer,” Recent Advances in Networking, vol. 1, pp. 1–56,
2013.

[83] J. Nair, A. Wierman, and B. Zwart, “The fundamentals of heavy tails:
Properties, emergence, and estimation,” Preprint, California Institute of
Technology, 2020.

[84] J. Kepner, K. Cho, K. Claffy, V. Gadepally, S. McGuire, L. Milechin,
W. Arcand, D. Bestor, W. Bergeron, C. Byun, M. Hubbell, M. Houle,
M. Jones, A. Prout, A. Reuther, A. Rosa, S. Samsi, C. Yee, and
P. Michaleas, “New phenomena in large-scale internet traffic,” in Mas-
sive Graph Analytics (D. Bader, ed.), pp. 1–53, Chapman and Hall/CRC,
2022.

[85] M. E. O’Neill, “Pcg: A family of simple fast space-efficient statistically
good algorithms for random number generation,” Tech. Rep. HMC-CS-
2014-0905, Harvey Mudd College, Claremont, CA, Sept. 2014.

[86] M. Jones, J. Kepner, A. Prout, T. Davis, W. Arcand, D. Bestor, W. Berg-
eron, C. Byun, V. Gadepally, M. Houle, M. Hubbell, H. Jananthan,
A. Klein, L. Milechin, G. Morales, J. Mullen, R. Patel, S. Pisharody,
A. Reuther, A. Rosa, S. Samsi, C. Yee, and P. Michaleas, “Deploy-
ment of real-time network traffic analysis using graphblas hypersparse
matrices and d4m associative arrays,” in 2023 IEEE High Performance
Extreme Computing Conference (HPEC), pp. 1–8, 2023.

[87] H. Jananthan, J. Kepner, M. Jones, W. Arcand, D. Bestor, W. Bergeron,
C. Byun, T. Davis, V. Gadepally, D. Grant, M. Houle, M. Hubbell,
A. Klein, L. Milechin, G. Morales, A. Morris, J. Mullen, R. Patel,
A. Pentl, S. Pisharody, A. Prout, A. Reuther, A. Rosa, S. Samsi,
T. Trigg, G. Wachman, C. Yee, and P. Michaleas, “Mapping of internet
“coastlines” via large scale anonymized network source correlations,” in
2023 IEEE High Performance Extreme Computing Conference (HPEC),
pp. 1–9, 2023.

[88] I. Kawaminami, A. Estrada, Y. Elsakkary, H. Jananthan, A. Buluç,
T. Davis, D. Grant, M. Jones, C. Meiners, A. Morris, S. Pisharody, and
J. Kepner, “Large scale enrichment and statistical cyber characterization
of network traffic,” in 2022 IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1–7, 2022.

[89] “Greynoise.” https://greynoise.io/.
[90] A. Reuther, J. Kepner, C. Byun, S. Samsi, W. Arcand, D. Bestor,

B. Bergeron, V. Gadepally, M. Houle, M. Hubbell, M. Jones, A. Klein,
L. Milechin, J. Mullen, A. Prout, A. Rosa, C. Yee, and P. Michaleas,
“Interactive supercomputing on 40,000 cores for machine learning and
data analysis,” in 2018 IEEE High Performance extreme Computing
Conference (HPEC), pp. 1–6, 2018.

