
Multiplication of Sparse Matrices and their
Transpose using Compressed Sparse Diagonals

1st Sardar Anisul Haque
School of Computing and Data Science

Oryx Universal College in Partnership with LJMU (UK)
Doha, Qatar

haque.sardar@gmail.com

2nd Mohammad Tanvir Parvez
Department of Computer Engineering, College of Computer

Qassim University
Buraydah 52571, Saudi Arabia

m.parvez@qu.edu.sa

3rd Shahadat Hossain
Department of Computer Science

University of Northern British Columbia
Prince George, BC V2N 4Z9, Canada

shahadat.hossain@unbc.ca

Abstract—Matrix-matrix multiplication is one of the most
important kernel in linear algebra operations with a multitude
of applications in scientific and engineering computing. Sparse
matrix computation on modern High-performance Computing
(HPC) architecture presents challenges such as load balancing,
data locality optimization, and computational scalability. Data
structures to store sparse matrices are designed to minimize
overhead information as well as to optimize the operations
count and memory access. In this study, we present a new data
structure, “compressed sparse diagonal” (CSD), to efficiently
store and compute with general sparse matrices. The CSD builds
upon the previously developed diagonal storage - an orientation-
independent uniform scheme to compute with “structured”
matrices [1]. Compared with the widely used compressed sparse
row/column (CSR/CSC), the CSD scheme avoids explicit trans-
position operation when multiplying a matrix with its transpose.
The results from preliminary numerical experiments with the
aforementioned types of matrices demonstrate the CSD scheme’s
effectiveness in matrix-transposed matrix multiplication.

Index Terms—Matrix Multiplication, Compressed Diagonal,
Sparse Matrix, Matrix Transpose

I. INTRODUCTION

Matrix-matrix multiplication where the arguments are sparse
is a fundamental computational kernel in numerous scientific
and graph applications such as computer graphics, network
analytics, algebraic multigrid solvers, triangle counting, multi-
source breadth-first searching, shortest path problems, col-
ored intersecting, and subgraphs matching [2]–[5]. An effi-
cient implementation of this ubiquitous operation on modern
computing architectures is challenging because of irregular
memory access and often becomes the performance bottleneck.
In particular, fast algorithms for computing strongly connected
component of a sparse graph [6], [7] (represented as a sparse
matrix A) require access to A and A⊤. It has been experimen-
tally shown that transposition operation does not scale well on
multicore processors [8]. In this paper we present a novel data
structure to compute products of the form AA⊤, A⊤A, for a

general sparse matrix A where explicit transposition of A is
avoided. Built upon its predecessor for efficient computation
with “banded (structured)” matrices [1], the proposed sparse
matrix data structure exhibit algorithmic and data abstraction
properties similar to the widely used CSR/CSC.

There exists a wide variety of storage formats to match
various features of sparse matrices [9]. In the case of general
sparse matrices, traditional triple-loop matrix multiplication
employs row-wise access with Compressed Sparse Row (CSR)
or the transposed access with Compressed Sparse Column
(CSC). The diagonal storage format [10] stores elements in
every diagonal and is found to be suitable for storing and
computing with banded matrices. A variant of it, Ellpack-
ltpack [11], is a generalized diagonal format that uses an
n×k array where k denotes the maximum number of non-zero
elements in a row.

The advantages of the orientation-neutral matrix storage
scheme of [1], [12], along with efficient cache usage and
reduced storage requirements, as identified in [13] are:

1) a one-dimensional storage alternative without padding
thus improving the previous diagonal storage schemes
that utilize a two-dimensional array to store the diago-
nals,

2) efficient scaling over increased bandwidth of the matri-
ces and parallel processing of the independent diagonal
calculations.

The main contributions of the paper are summarized below.

• To the best of our knowledge the compressed sparse
diagonal storage scheme is the first sparse matrix data
structure for general sparse matrices that is neutral of
column/row-oriented data layout.

• A detailed algorithmic description of CSD matrix-matrix
multiplication is given in terms of the sum-product calcu-
lations that occurs in the innermost loop of the triple-loop
algorithm. This procedure effectively provides conversion
between CSD and CSR/CSC formats.

• We present preliminary numerical results for serial and
multi-core shared memory parallel implementation of the
operation AA⊤ on large sparse benchmark instances from
the literature. The numerical results show that our non
tuned baseline implementation can be highly efficient as
it avoids explicit transposition.

The rest of the paper is organized as follows. Section II
introduces the compressed sparse diagonal and discusses it
under the traditional triple-loop matrix multiplication scenario.
The sparse matrix multiplication algorithm using CSD data
structure is described in Section III. Performance comparisons
that demonstrate the efficiency of our approach is given in
Section IV. Section V summarizes the paper with notes on
future research directions.

II. CONVERSION FROM COMPRESSED SPARSE ROW TO
DIAGONAL STORAGE SCHEME

Given a sparse matrix in Compressed Sparse Row (CSR)
format, one can find out the column and row indices of each
nonzero element by looking its column index and the row
offsets respectively. Logically, the conversion from CSR to
dense coordinate storage scheme is similar to conversion from
coordinate representation of a matrix to its diagonal storage
scheme. In this section, we are going to show such formula.
In addition, we will introduce a CSR type data structure for
diagonal storage scheme for sparse matrices.

In a square matrix of size n×n, we have 2n−1 diagonals.
We can divide these diagonals into two groups:

1) Non-negative diagonals: this group of diagonals in-
cludes the principle diagonal and all diagonals above
the principle diagonal (also termed super diagonals).
The diagonals in this group are labelled or numbered
as 0, 1, . . . , n − 1, where 0 is the label of the principal
diagonal.

2) Sub or negative diagonals: this group of diago-
nals includes all diagonals below the principle di-
agonal. The diagonals in this group are labelled as
−1,−2,−3,−(n − 1), where −1 is the label of the
diagonal immediately below the principal diagonal.

The number of elements in the kth diagonal is n − |k|,
k = −(n− 1),−(n− 2), ...,−1, 0, 1, ..., (n− 1). Below is an
example of a square matrix A of size 4×4 and its 7 diagonals.

A =

a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

diag[0] = [a00, a11, a22, a33]

diag[1] = [a01, a12, a23]

diag[2] = [a02, a13]

diag[3] = [a03]

diag[−1] = [a10, a21, a32]

diag[−2] = [a20, a31]

diag[−3] = [a30]

Note that, elements in a diagonal of A are listed in the order
of row numbers of the elements in A.

Now, we have two observations regarding the diagonal
representation given above. First, if ai,j appears in diagonal
diag[k] of a matrix A, then ai+1,j+1 is the element after ai,j
in diag[k]. Second, a0,i and ai,0 are the first elements in ith

and −ith diagonals, respectively.
We claim that ai,j is contained in (j − i)th diagonal at

min{i, j}th position. To see this, consider the index pair
(i, j). If i = j, the element is located on the principle
diagonal labelled j − i = 0 at position l = i = j where
l = 0, 1, . . . , (n− 1) as can be directly verified. If i < j, then
(i, j)th element is located on diagonal k = (j − i) > 0. The
elements on the kth diagonal are indexed i = 0, 1, . . . , (n −
k − 1). Also i < j implies min{i, j} = i. Therefore, (i, j)th

entry of matrix A is the ith entry of diagonal k. The case for
j < i is analogous.

An element a in A can be identified with two indices (k, p)
in the diagonal storage scheme. Here, k is the diagonal number
or label and p is the position or index of a in the diagonal.
Therefore, given an element ai,j of A (in coordinate system),
we represent ai,j in diagonal storage scheme as ad(k, p),
where k = j − i and p = min{i, j}. Thus, the elements of,
for example, −1st diagonal of A can be written as follows.

diag[−1] = [a1,0, a2,1, a3,2] = [ad−1,0, a
d
−1,1, a

d
−1,2]

We now propose a new data structure for general sparse
matrix. Our data structure is based on diagonal storage scheme
and is similar to CSR. We call our scheme Compressed Sparse
Diagonal or CSD. We can describe CSD structure using three
arrays:

1) An array nonZeros: Its size is equal to the number of
nonzeros in the sparse matrix A. The nonzeros of A are
laid out in the following order. As mentioned earlier, for
a matrix A of size n×n, the diagonals of A are labelled
as −(n− 1),−(n− 2), ...,−1, 0, 1, ..., (n− 1). To build
the array of nonzero elements in A, we consider the
elements sequentially in each diagonal of A, where the
diagonals of A are considered in this order: 0, 1, ..., (n−
1),−1,−2, ...,−(n−1). That means, the elements of the
principle diagonal are considered first, followed by the
super diagonals and then sub diagonals.

2) posID: it is an integer array of size equal to the number
of nonzero elements in the sparse matrix. This array
stores the indices of each nonzero element of A in
the corresponding diagonal it appears (the p value in
ad(k, p) above).

3) diagOffsets: it is an integer array of size 2n. The
ith entry of this array is the index of a value in
nonZeros array, which is the first nonzero value in
diagonal number i (if i < n) or in diagonal number
i− n− 1 (if i ≥ n).

To illustrate, consider the following matrix A shown in the
coordinate scheme. For clarity, we list the elements (including
zeros) in each diagonal of A.

A =

1 0 0 2
0 0 3 0
4 0 0 0
0 0 5 6

diag[0] = [1, 0, 0, 6]

diag[1] = [0, 3, 0]

diag[2] = [0, 0]

diag[3] = [2]

diag[−1] = [0, 0, 5]

diag[−2] = [4, 0]

diag[−3] = [0]

The matrix A represented in CSD scheme consists of three
arrays as shown below.

nonZeros = [1, 6, 3, 2, 5, 4]

posID = [0, 3, 1, 0, 2, 0]

diagOffsets = [0, 2, 3, 3, 4, 5, 6, 6]

A. Getting to the Transpose

As discussed in the Introduction, matrix transposition is an
important computational kernel and arises as a building block
of graph algorithms [4]. In mobile robotics, one of the most
computationally intensive operations is the computation of so
called information matrix I = A⊤A where A is sparse and
the sparsity changes in each of the outer iteration [14]. In the
accompanying numerical experiments the authors report that
the computation of I accounts approximately six times the
cost of computing the Cholesky factorization of matrix A.

The transpose of A in CSD is readily available. For each
index pair (i, j), its transposed position is (j, i) such that
entries in diagonal k = (j−i) of matrix A is found in diagonal
(−k = i − j). Thus, no additional storage or calculation is
needed to obtain the transposed access in CSD.

III. SPARSE MATRIX-MATRIX MULTIPLICATION USING
CSD

Given two matrices A and B, where both of them are of size
n× n, we need n3 scalar multiplications for computing C =
A ∗ B using traditional nested three for-loops algorithm. The
innermost for-loop executes the following code: C(i, k) +=
A(i, j) ∗B(j, k). We can rewrite this code when the matrices
are stored in CSD format. The details are discussed below.

A. Matrix Multiplication in CSD

When all the matrices are stored in CSD format, the
code C(i, k) += A(i, j) ∗ B(j, k) takes the form:
cd(k − i,min{i, k}) += ad(j − i,min{i, j}) ∗ bd(k −
j,min{j, k}). Here, all three indices i, j, k have the same
range: [0, 1, . . . , n− 1].

For dense matrix-matrix multiplication in coordinate storage
scheme, the result Cik is obtained as the inner product of
row i of matrix A and column k of matrix B. With diagonal
storage scheme, the corresponding elements are identified by
their diagonal index and the position in the diagonal. We now
show six inequalities among i, j and k that cover all possible
scenarios.

1) Case 1: Multiplying an element from a non-negative
diagonal of A with an element from a non-negative diag-
onal of B. Therefore, i ≤ j ≤ k. In this case k− i ≥ 0.
So, this type of multiplication will contribute to a non-
negative diagonal of matrix C. We can simplify the
computation as cd(k− i, i) += ad(j− i, i)∗bd(k−j, j).
We can rewrite it as cd(x+y, i) += ad(x, i)∗bd(y, x+i)
where x = j−i ≥ 0 and y = k−j ≥ 0. Note that, x and
y represent the diagonal numbers of the elements from
A and B, respectively. The result of the multiplication
is stored in an element of C whose diagonal number is
x + y. Therefore, Case 1 type of multiplication occurs
only when 0 ≤ (x+ y) < n.
The location of the elements in their respective diagonals
from the three matrices are obtained from the indices
i, j, x, y as shown earlier.

2) Case 2 and 3: Multiplying an element from a non-
negative diagonal of A with an element from a sub
diagonal of B. Therefore, i ≤ j and j > k. We have
two scenarios based on the values of i and k.

a) Case 2: if i ≤ k, we can rewrite the computation of
c(i, k) as: cd(k−i, i) += ad(j−i, i)∗bd(k−j, k).
We can further simplify it as cd(x + y, i) +=
ad(x, i) ∗ bd(y, x + y + i) where x = j − i and
y = k− j. Result of this multiplication contributes
to an element of C whose diagonal number is
(k − i) = (x + y), where x and y are the
diagonal numbers of b and a respectively. Note
that, (k− i) ≥ 0 here, as i ≤ k. That means, Case
2 type of multiplications contribute to the elements
in non-negative diagonals of C.

b) Case 3: if i > k, we can rewrite the computation of
c(i, k) as: cd(k−i, k) += ad(j−i, i)∗bd(k−j, k).
We can further simplify it as: cd(x + y, k) +=
ad(x, i) ∗ bd(y, x + y + i) where x = j − i and
y = k − j. Similar to the previous cases, result
of this multiplication contributes to an element of
C whose diagonal number is (k − i) = (x + y),
where x and y are the diagonal numbers of b and
a respectively. However, (k − i) < 0 here, as
i > k. That means, Case 3 type of multiplications
contribute to the elements in sub diagonals of C,

as opposed to Case 2.
3) Case 4 and 5: Multiplying an element from a sub

diagonal of A with an element from a non-negative
diagonal of B. Therefore, i > j and j ≤ k. Again,
analogous to Cases 2 and 3, we have two scenarios based
on the values of i and k.

a) Case 4: if i ≤ k we can rewrite the computation of
c(i, k) as: cd(k−i, i) += ad(j−i, j)∗bd(k−j, j).
We can further simplify it as: cd(x+ y, j−x) +=
ad(x, j) ∗ bd(y, j) where x = j − i and y = k− j.
Similar to the previous cases, result of this mul-
tiplication contributes to an element of C whose
diagonal number is (k− i) = (x+y), where x and
y are the diagonal numbers of b and a respectively.
Note that, (k− i) ≥ 0 here, as i ≤ k. That means,
Case 4 type of multiplications contribute to the
elements in non-negative diagonals of C.

b) Case 5: if i > k, we can rewrite the computation of
c(i, k) as: cd(k−i, k) += ad(j−i, j)∗bd(k−j, j).
We can further simplify it as: cd(x+ y, j+ y) +=
ad(x, j) ∗ bd(y, j) where x = j − i and yk − j.
Similar to the previous cases, result of this multi-
plication goes to an element of C whose diagonal
number is (k− i) = (x+y), where x and y are the
diagonal numbers of b and a respectively. However,
as in Case 3, (k − i) < 0 here, as i > k. That
means, Case 5 type of multiplications contribute
to the elements in sub diagonals of C.

4) Case 6: Multiplying an element from a sub diagonal of
A with an element from a sub diagonal of B. Therefore,
i > j > k.
We can rewrite the computation of c(i, k) as: cd(k −
i, k) += ad(j − i, j) ∗ bd(k − j, k). We can further
simplify it as: cd(x + y, k) += ad(x, k − y) ∗ bd(y, k)
where x = j−i and y = k−j with x and y respectively.
Note that, the diagonal number of c in this case is (k−
i) < 0, as i > k. Therefore, the condition −1 ≥ (k −
i) ≥ −(n−1) must satisfy for Case 6. This means, Case
6 type of multiplications contribute to the elements in
sub diagonals of C.

The above analysis effectively gives an algorithm for per-
forming matrix-matrix multiplication where the elements are
stored in CSD scheme.

B. Illustrative Example

Let A and B be two matrices of size 3× 3:

A =

a00 a01 a02
a10 a11 a12
a20 a21 a22

 , B =

b00 b01 b02
b10 b11 b12
b20 b21 b22

 .

To compute C = A∗B, we need a total of 27 multiplication
operations using the traditional triple-loop algorithm. As an
illustration, among these 27 required symbolic multiplications
of the element of A and B, we list below nine multiplication
operations that contribute to the elements of diagonal number

1 and −2 of the resultant matrix C. For each multiplication
operation, we also show its indices in CSD scheme with case
number.

Table I: Mapping traditional matrix multiplications to the cases
in CSD multiplications.

Coordinate format CSD format Case number

a00b01 contributes to c01 ad00b
d
10 contributes to cd10 Case 1

a01b11 contributes to c01 ad10b
d
01 contributes to cd10 Case 1

a02b21 contributes to c01 ad20b
d
−11 contributes to cd10 Case 2

a10b02 contributes to c12 ad−10b
d
20 contributes to cd11 Case 4

a11b12 contributes to c12 ad01b
d
11 contributes to cd11 Case 1

a12b22 contributes to c12 ad11b
d
02 contributes to cd11 Case 1

a20b00 contributes to c20 ad−20b
d
00 contributes to cd−20 Case 5

a21b10 contributes to c20 ad−11b
d
−10 contributes to cd−20 Case 6

a22b20 contributes to c20 ad02b
d
−20 contributes to cd−20 Case 3

For our sparse matrix-matrix multiplication, we assume that
the indices in posID are stored in increasing order. The
algorithm works as follows.

1) We have two loops. The outer and inner loops works
for each diagonal of C and A respectively. For each
pair of diagonals in C and A, we find the diagonal in
B, whose nonzeros can multiply with those of A and
can contribute to that diagonal of C.

2) In the inner loop, based on the diagonals from A, B
and C, the multiplication rule falls into one of the 6
categories described above.

3) Before entering the inner loop, we initialize a zero vector
of length equal to the length of the corresponding diago-
nal of matrix C. This vector act as a dense representation
of the corresponding diagonal of C.

4) Once the diagonal of C is computed in the inner loop
by enumerating all possible pairs between A and B, we
copy the elements from the vector to the nonZeros
array of C’s CSD representation.

In numerical experiments described in the next section,
we assume that the sparsity pattern of the result matrix
C has already been computed. This is done to enable a
fair performance comparison of CSD and CRS matrix-matrix
multiplication on a set of standard benchmark instances.

IV. NUMERICAL EXPERIMENTS

In this section we present test results from a preliminary
computational study of our compressed sparse diagonal stor-
age scheme for sparse matrix-matrix algorithm from Section
III. All experiments are carried out on a computer with i7-
13700H (14 core, 2.40 GHz base speed) processor containing
32 GB RAM and running Window 11 Pro operating system.
The implementation language is VISUAL C++.

We use a select subset of test matrices from SuiteSparse
Matrix Collection, also used in [3]. As a proof-of-concept
implementation, we do not use any compiler optimization
flag in our numerical testing and use float data type for
test matrices to enable largest test instances possible on the

matrix no. no. no. of total time (in sec) time (in sec) time (in sec)
Name of nonzeros nonzeros multiplication to compute to compute to compute
(A) rows in A in A⊤A in computing A⊤A A⊤ A⊤A in CSR A⊤A in CSD

Chebyshev4 68121 5377761 18870336 277056025 5.31 90.151 106.65
Goodwin 127 178437 5778545 26891956 231353414 4.846 2.77 1.773

marine1 400320 6226538 28952191 98739729 5.608 4.35 160.649
ohne2 181343 11063545 72432047 755597643 10.761 20.155 1767.15
PR02R 161070 8185136 30969453 471911391 7.344 7.361 8.957

test1 392908 12968200 75250370 468508270 12.811 62.757 701.495
torso1 116158 8516500 19600778 3303780828 7.887 76.099 182.173

TSOPF RS b678 c2 35696 8781949 40139105 69226453 8.292 141.846 3.199
TSOPF RS b2052 c1 25626 6761100 30950093 53335853 6.316 89.397 2.76

largebasis 440020 5560100 17040280 70840580 5.132 1.671 929.294

Table II: Runtime comparison of matrix multiplication operation for CSR and CSD

hardware used. All experiments are carried on a machine i7-
13700H (14 core, 2.40 GHz base speed), 32 GB RAM with
Window 11 Pro operating system.

Table II displays the test matrix statistics (matrix name,
number of rows (=number of columns), number of nonzeros),
the time in seconds required to compute explicit transposition
and to compute the product A⊤A, and the total number
of scalar multiplications. The comparative timing results are
mixed for CSD and CSR. Test instances where CSD performs
better are shown in boldface. Closer examination of the test
instances (see Figure 2) reveals that, the sparsity pattern
of instances TSOPF RS b678 c1, TSOPF RS b678 c2, and
Goodwin are “strucured” in that several “band-type” nonzero
patterns can be visualized and CSR being most suitable for
general sparsity pattern, the memory access overhead domi-
nates possibly due to relatively small number of nonzeros in
rows. On the other hand, CSD naturally exploits the banded
sections in the matrix.

In our next experiment, we employ multicore capability
of the computer under OpenMP environment to test CDS
multiplication. Figure 1 displays the speedup obtained over
serial execution. Only the outer for-loop is parallelized with
default scheduling of the threads. The speedup over sequential
execution varies between 2x and 6x. This represents a reason-
ably good speedup considering the implementation of CSD
being “baseline”.

Among the matrix instances it is evident that best speedup
performance is obtained with ohne2. This is most likely due
to the relatively high volume of work available to the threads
as indicated by the sparsity pattern of matrix ohne in Figure
2.

Although the results from limited experiments provide some
general trend on the performance of CSD based matrix mul-
tiplication, more elaborate experimentation is needed.

V. SUMMARY AND CONCLUDING REMARKS

In this paper we have presented a new diagonally structured
storage scheme, the CSD, for general sparse matrices. We have
presented a matrix-matrix multiplication algorithm where the
argument matrices and the result are stored using CSD scheme.
The algorithm is given in relation to the standard coordinate
indexing scheme and it can be used to convert between
different storage schemes for dense as well as sparse matrices.

Figure 1: Relative performance in computational time by
OpenMP

Figure 2: Sparsity pattern of TSOPF RS b2383 (left) and
ohne2 (right)

Numerical experiments with a small yet representative bench-
mark test instances demonstrate that CSD is competitive with
CSR with respect to matrix multiplication.

The current work is an overview of early experience with
the alternative storage scheme based on matrix diagonals
(as opposed to rows/columns) to provide linear algebraic
kernel operations in BLAS specification. More specifically,
this new storage scheme avoids explicit matrix transposition
and thereby has the potential to improve the performance

of BLAS level-2 and level-3 operations. We are currently
developing a blocked version of sparse and structured matrix-
matrix multiplication for serial and hybrid massively threaded
(e.g., GPU) parallel environments.

ACKNOWLEDGMENT

This research was supported in part by Natural Sciences and
Engineering Research Council of Canada Discovery Grant.

REFERENCES

[1] S. Hossain and M. S. Mahmud, “On computing with diagonally struc-
tured matrices,” in 2019 IEEE High Performance Extreme Computing
Conference (HPEC), pp. 1–6, IEEE, 2019.

[2] W. M. Abdullah, D. Awosoga, and S. Hossain, “Efficient calculation
of triangle centrality in big data networks,” in 2022 IEEE High Perfor-
mance Extreme Computing Conference (HPEC), pp. 1–7, 2022.

[3] J. Gao, W. Ji, F. Chang, S. Han, B. Wei, Z. Liu, and Y. Wang, “A
systematic survey of general sparse matrix-matrix multiplication,” ACM
Computing Surveys, vol. 55, no. 12, pp. 1–36, 2023.

[4] J. Kepner and J. Gilbert, Graph algorithms in the language of linear
algebra. SIAM, 2011.

[5] J. Kepner and H. Jananthan, Mathematics of big data: Spreadsheets,
databases, matrices, and graphs. MIT Press, 2018.

[6] S. Hong, N. C. Rodia, and K. Olukotun, “On fast parallel detection
of strongly connected components (scc) in small-world graphs,” in
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pp. 1–11, 2013.

[7] W. Mclendon Iii, B. Hendrickson, S. J. Plimpton, and L. Rauchwerger,
“Finding strongly connected components in distributed graphs,” Journal
of Parallel and Distributed Computing, vol. 65, no. 8, pp. 901–910,
2005.

[8] H. Wang, W. Liu, K. Hou, and W.-c. Feng, “Parallel transposition
of sparse data structures,” in Proceedings of the 2016 international
conference on supercomputing, pp. 1–13, 2016.

[9] W. Yang, K. Li, Y. Liu, L. Shi, and L. Wan, “Optimization of quasi-
diagonal matrix–vector multiplication on gpu,” The international journal
of high performance computing applications, vol. 28, no. 2, pp. 183–
195, 2014.

[10] D. Langr and P. Tvrdik, “Evaluation criteria for sparse matrix storage
formats,” IEEE Transactions on parallel and distributed systems, vol. 27,
no. 2, pp. 428–440, 2015.

[11] Y. Saad and K. SPARS, “A basic tool kit for sparse matrix computa-
tions,” RIACS, NA SA Ames Research Center, TR90-20, Moffet Field,
CA, 1990.

[12] S. A. Haque, M. T. Parvez, and S. Hossain, “Gpu algorithms for
structured sparse matrix multiplication with diagonal storage schemes,”
Algorithms, vol. 17, no. 1, p. 31, 2024.

[13] J. Eagan, M. Herdman, C. Vaughn, N. Bean, S. Kern, and M. Pirouz, “An
efficient parallel divide-and-conquer algorithm for generalized matrix
multiplication,” in 2023 IEEE 13th Annual Computing and Communi-
cation Workshop and Conference (CCWC), pp. 0442–0449, IEEE, 2023.

[14] F. Dellaert and M. Kaess, “Square root sam: Simultaneous localization
and mapping via square root information smoothing,” The International
Journal of Robotics Research, vol. 25, no. 12, pp. 1181–1203, 2006.

