
Dynamic Task Scheduling with Data Dependency
Awareness Using Julia

Rabab Alomairy1,2,4, Felipe Tome1,3,5, Julian Samaroo1,6, and Alan Edelman1,7

1Computer Science & Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, USA.

2College of Computer Science and Engineering, University of Jeddah, KSA.
3São Carlos School of Engineering, University of São Paulo, BR.

4rabab.alomairy@mit.edu 5felipe0@mit.edu 6jsamaroo@mit.edu 7edelman@mit.edu

Abstract—Dynamic task scheduling is vital for optimizing
performance and resource utilization, particularly in heteroge-
neous computing environments. The LLVM-based Julia pro-
gramming language offers a unique opportunity for developing
efficient task-based runtime systems. This paper introduces the
Dagger.jl package, a Julia-native implementation for dynamic
task scheduling with data dependency awareness. We design a
high-performance scheduler that leverages Julia’s type infer-
ence capabilities to support various computational tasks and
data types. Our approach provides an unified API, facilitating
the development and deployment of applications across different
architectures. We evaluate the performance and overhead of
Dagger through several tiled dense linear algebra computations
on shared memory systems. Notably, our results show that
Dagger with data dependency awareness outperforms other
parallel paradigms in Julia and achieves performance compa-
rable to vendor-optimized operations. Dagger also leverages the
implementation of the QR communication-avoiding algorithm,
delivering significant performance improvements, and highlight-
ing its potential for scalable and efficient parallel computing.

I. INTRODUCTION

Task-based programming models have emerged as a promis-
ing approach to harness the computational power of modern
supercomputers. These models allow for the expression of par-
allelism at a fine-grained level, enabling dynamic scheduling
and efficient resource utilization. They optimize the orches-
tration of computational resources, particularly enhancing ef-
ficiency in dense linear algebra algorithms. These algorithms,
vital for solving large-scale problems in physics simulations,
computational biology, and machine learning, are among the
foundational dwarfs of high-performance computing.

Several task-based runtime systems have been developed
over the past decade, including Legion [5], Kokkos [13],
OpenMP [19], StarPU [4], QUARK [26], and PaRSEC [7].
While these systems offer significant performance improve-
ments, they often rely on low-level programming languages
like C and C++, which can complicate optimization ef-
forts for developers and task scheduling interactions for
users. Task-based programming options can also be found in
PyCOMPSs [25] and Pygion [23]. These frameworks pro-
vide task interfaces with Python, but their runtime engines
are implemented in Java and C++, which can complicate

code production and force developers to manage multiple
languages, a challenge faced by many simulation efforts today.

The Julia programming language, designed to bridge the
gap between scientific computing and data science, offers a
powerful platform for developing task-based runtime systems.
Julia’s high-level syntax, combined with its performance ca-
pabilities, makes it an attractive alternative to traditional tools
such as MATLAB and Python. Julia’s compact, readable
code is well-suited for rapid prototyping, while its rich set of
scientific libraries, including tools for numerical computation,
data processing, and visualization, further enhances its appeal.
Dagger.jl [22] is a Julia-native implementation for dy-

namic task scheduling, simplifying the development of com-
putational workflows in Julia, particularly for distributed
systems with diverse accelerators. To our knowledge, Dagger
is the first task-based engine written entirely in a high-level
language, offering unprecedented flexibility and performance
in task-based programming. It employs a sequential program-
ming model, allowing users to write straightforward Julia
code annotated for asynchronous parallel tasks. Dagger auto-
matically detects concurrency, orchestrates data dependencies
between tasks, and optimally distributes them across available
resources, maximizing efficiency and performance. This paper
demonstrates the potential of high-level languages, such as
Julia, for implementing asynchronous runtime systems,
paving the way for more flexible, scalable, and user-friendly
parallel computing solutions.

We evaluated Dagger using dense linear algebra opera-
tions: Cholesky and QR factorization, and general matrix-
matrix multiplication (GEMM). Dagger significantly reduces
synchronous overhead compared to other threading mecha-
nisms in Julia, achieving performance on par with vendor-
optimized BLAS/LAPACK operations. Additionally, we intro-
duced the Semi-Parallel Communication-Avoiding QR (SP-
CAQR) [16], which minimizes synchronization in factoriz-
ing tall and skinny matrices. Our implementation surpasses
LAPACK ’s performance when the height of the matrix
is doubled. This paper presents the first high-performance
implementation of dense linear algebra in a dynamic lan-
guage like Julia. While our benchmarks focus on shared-
memory CPUs, Dagger supports GPU and distributed-

memory scheduling. All implementations are publically avail-
able in the Dagger.jl 1 package.

The remainder of the paper is structured as follows: Sec-
tion II overviews task-based programming models and dense
linear algebra computation. Section III highlights Julia’s
parallel computing ecosystem. Section IV introduces Julia’s
task-based scheduler and DArray data layout. Section VI
evaluates Dagger’s performance and overhead compared to
other Julia’s threading mechanisms and vendor operations.

II. RELATED WORK

A. Task-based Programming Model
In the last decade, several engines have emerged to support

task-based programming models, enabling scientific applica-
tions to scale on today’s fastest supercomputers [9], [3]. Some
of these engines use compiler-based technologies embedded
in their parallel programming models, such as, to cite a few,
Charm++ [21], Legion [5], and Kokkos [13]. There are
also runtimes that utilize pragma-based tasking approaches,
such as OmpSs [12], [1], which have eventually been inte-
grated into the OpenMP standard specifications [18], and later
in [19] with inter-task dependencies.

Moreover, many dynamic runtime systems rely on user-
defined APIs, and make them portable across various software
and hardware configurations, such as StarPU [4], QUARK
[26], and ParalleX [17]. These systems are capable of
scheduling complex Directed Acyclic Graphs (DAGs), whose
nodes represent computational tasks whereas edges define the
data dependencies, while leveraging applications’ performance
on multiple hardware systems. Additionally, task-based frame-
works such as PaRSEC [7] offer a domain specific language
for advanced users, supported by a customized compiler
technology, to execute parameterized task graphs [10].

Task-based programming is no longer confined to C and
C++; users of high-level languages such as Python can
also benefit from asynchronous execution. PyCOMPSs [25],
for instance, is designed to operate on top of the COMPSs
Java runtime system, and Pygion [23] provides a Python
interface to the C++ Legion task-based runtime. Despite
offering high-level interfaces, their engines are written in low-
level languages, which complicates both optimization efforts
for developers and task scheduling interactions for users.

In contrast, the Dagger runtime system is natively im-
plemented in Julia, marking a significant advancement in
task-based engines. Julia’s design uniquely combines the
ease of use of high-level languages with the performance of
low-level languages, thanks to its advanced type system and
Just-In-Time (JIT) compilation via LLVM. This not only
simplifies optimization but also enhances the accessibility of
the task scheduling mechanism for users.

B. Tiled Dense Linear Algebra Computation
Scientific applications from diverse sources rely on dense

matrix operations. These operations arise in: Schur comple-
ments, integral equations, covariances in spatial statistics, ridge

1https://github.com/JuliaParallel/Dagger.jl

regression, radial basis functions from unstructured meshes,
and kernel matrices from machine learning, among others.
LAPACK and ScaLAPACK have been the de facto stan-

dard dense linear algebra libraries for decades, primarily due
to their effective use of vendor-optimized BLAS libraries
to achieve high performance. These libraries employ block
algorithm approaches to parallelize computations, adhering
to a Bulk Synchronous Parallel (BSP) paradigm. However,
this approach introduces unnecessary synchronization points
between the panel and update phases.
PLASMA [27] and recently SLATE [14] adopt tile compu-

tation techniques, which are crucial for architectures featur-
ing high parallelism and deep memory hierarchies. SLATE
advances tile formats by allocating distributed tiles with no
correlation between their positions in the matrix and their
memory locations. Similarly, Dagger adopts a strategy akin
to SLATE by providing DArray, or distributed array format,
which partitions a larger array into smaller ”tiles” or ”chunks”
that may be located anywhere in the memory subsystem.
Dagger leverages DArray as the standard block format

to efficiently manage tasks and transfer data across different
computing resources. This enables highly performant tiled
dense linear algebra computations within Julia’s high-level
programming environment. Notably, this marks the first in-
stance of transferring tile computation from low-level lan-
guages, such as C and C++, used by PLASMA and SLATE,
respectively, to a high-level language like Julia. This tile
approach has now been successfully implemented in Julia,
showcasing a significant advancement in making sophisticated
computational techniques more accessible and efficient in
modern programming languages.

III. OVERVIEW OF JULIA IN HPC

Julia leverages the LLVM (Low-Level Virtual Machine)
compiler infrastructure to achieve high performance and flex-
ibility in its Just-In-Time (JIT) compilation approach. It
combines the ease and expressiveness of high-level numerical
computing languages like R, MATLAB, and Python with
robust support for general programming. Features such as
type inference and specialization, multiple dispatch, interop-
erability, and advanced optimizations like loop unrolling and
vectorization enable Julia to achieve performance close to
low-level native code [15], [20]. Type inference in Julia
determines the types of variables and expressions, which
allows LLVM to generate highly optimized machine code for
specific types. Julia also supports intuitive polymorphic
behavior, defining function behavior across diverse argument
types to enhance flexibility, expressiveness, and performance.
Julia supports various parallel computing paradigms,

including multithreading, distributed computing, and GPU
acceleration. It provides built-in support for multi-threading
with the Threads standard library. The @threads/@spawn
macros simplify parallelizing loops across multiple threads,
facilitating easy concurrency without explicit management
of thread creation and synchronization. Julia’s Distributed
standard library enables distributed computing across multiple

https://github.com/JuliaParallel/Dagger.jl

processes, either on a single machine or across a network of
machines. This allows for scaling computations across differ-
ent architectures. Julia integrates well with all major GPUs
vendors through packages like CUDA.jl, AMDGPU.jl,
oneAPI.jl, Metal.jl and GPUArrays.jl [6].

Each of those paradigms follow different parallelism ap-
proaches and employ different APIs, posing challenges in
heterogeneous computing environments. This disparity has
highlighted the need for a composable solution to unify the
way tasks are coded and scheduled. To address this, Dagger
has been developed to support asynchronous, fine-grained
computations across heterogeneous execution environments.
Dagger offers a unified framework for task scheduling and
execution, making it easier to harness the full potential of
Julia’s parallel capabilities across diverse hardware systems.

IV. JULIA TASK BASED SCHEDULER

Julia is a LLVM-based dynamic programming language,
making it an excellent environment for designing native task-
based runtime systems similar to the OpenMP standard used
in Fortran, C, and C++. Julia’s Dagger is built on the
principle of separating algorithmic design from hardware com-
plexity, facilitating the deployment of software implementa-
tions on massively parallel systems. Dagger achieves this by
providing DArray as a basic block for defining and managing
data movement. It also manages task execution by creating
DTask objects and scheduling tasks on designated hardware
at runtime based on resource and function availability.

Fig. 1: Julia Dagger Software Stack.

A. DArray

Julia uses Array extensively due to their simplicity,
storage efficiency, and broad functionality. However, parallel
and heterogeneous Array operations are not fully supported,
as operations like sum, reduce, and broadcasting do not utilize
multi-threading even with multiple CPUs. Dagger’s DArray
supports parallelism for nearly all operations and allows
for type- and hardware-agnostic distributed arrays on both
personal computers and large-scale supercomputers. It also
enables MPI implementations of common array operations and
supports UCX and InfiniBand network protocols.

To integrate with the numerical linear algebra ecosystem,
DArray uses the Blocks data type (e.g. analogous to tile) to
divide itself into chunks of its underlying array, whether it be

a vector, matrix, or n-ranked tensor. Users can pass Blocks
as an argument to the array generation function to create a
DArray instead of a standard Julia array. For instance,
randn(10,10) returns a 10 × 10 matrix of Float64 num-
bers, while randn(Blocks(2,2),10,10) returns the
same matrix divided into 22 chunks. Blocks can have
user-specified dimensions or be an AutoBlocks type for
automatic column-major distribution. Each DArray partition
is treated as a task (DTask) with execution info, function,
task IDs, and scheduling data. For example, generating a
DArray and performing a broadcast sum retains references
to the allocation function and summation step, stored in the
chunks field for efficient task execution and tracking.

B. Dagger

Dagger is a powerful Julia package designed to sim-
plify parallelization. It allows users to write Dagger-based
applications in a manner as close as possible to sequential
code. In this model, users focus on (i) identifying tasks for
asynchronous execution, and (ii) annotating these tasks with
data direction. Dagger analyzes this information and builds a
task execution flow represented as a Directed Acyclic Graph
(DAG), where nodes are computational tasks and edges are data
dependencies. The DAG-based runtime system then effectively
exposes concurrency, reduces synchronization points, ensures
load balancing, shortens the critical path, and abstracts hard-
ware complexity, similar to out-of-order task scheduling on
superscalar processors.

Fig. 1 illustrates the software stack of Dagger. At the
bottom layer lies the heterogeneous hardware environment,
which includes various CPU architectures and GPU vendors,
as well as potential support for IPUs. Dagger treats tasks as
flexible units that can be scheduled on any available resource,
based on kernel availability. The Julia scheduler layer is
responsible for managing both the memory movements of
DArray chunks and the scheduling and execution phases of
tasks. The memory manager handles memory pools, file I/O,
and the allocation of CPU and GPU spaces. The task graph
component visually represents running, ready, and blocked
tasks, facilitating efficient task management. Dagger ab-
stracts the complexity of hardware and scheduling from the
applications.
Dagger provides unified and user-friendly APIs to boost

productivity and ensure code portability. These APIs allow
users to focus on their applications without dealing with
the intricacies of the underlying hardware and schedulers. In
Dagger, tasks are created using the @spawn macro, which
generates a DTask object and submits it to Dagger’s sched-
uler by calling the enqueue function. Task dependencies in
Dagger are managed by chaining tasks based on their tasks
dependencies. For example, if we define two tasks one to add
two matrices A and B and store the results to B and another
one to copy B to C as following:

A = rand (1 0 0 0)
B = rand (1 0 0 0)
C = z e r o s (1 0 0 0)

f u n c t i o n add ! (B , A)
B . = A . + B
r e t u r n

end
B = Dagger . @spawn add ! (B , A)
R = Dagger . @spawn co py to ! (C , B)

In this case the second task depends on first task because
it waits for the DTask holding B to be done before start
executing its function. In this case Dagger queues tasks
based on the task dependency and this is called Dagger
TaskDeps. Dagger provides as well data awareness mecha-
nism by chaining task graph according to it’s data dependency
as similar to OpenMP depend clause. The dependency di-
rection can be either In for read dependencies, Out for write
dependencies, and InOut for read and write dependencies.
Therefore, above code can be rewritten as following:
A = rand (1 0 0 0)
B = rand (1 0 0 0)
C = z e r o s (1 0 0 0)
f u n c t i o n add ! (B , A)

B . = A . + B
r e t u r n

end
Dagger . spawn da tadeps () do

Dagger . @spawn add ! (InOut (B) , In (A))
Dagger . @spawn co py t o ! (Out (C) , In (B))

end

This mechanism is called Dagger Datadeps. Dagger
tasks need to be enclosed within the spawn_datadeps
function to define a Datadeps region, with parallelism
controlled via dependencies. In the code above, the add task
specifies that A is only being read from, while B is being read
from and written to. Similarly, the copyto task specifies that
B is being read from, and C is only being written to.

The recent development of Dagger introduced an eager
dynamic scheduler that abstracts processing units, such as
CPUs and GPUs, as workers and manages data movement
based on task spawning. This approach allows tasks to execute
immediately as soon as workers become available, without re-
quiring synchronization (i.e. lazy execution). One of the latest
efforts by the authors was to transition the DArray from using
the legacy lazy scheduler to the new, more composable eager
scheduler. Dagger efficiently manages the memory spaces
of each argument and performs necessary data movement or
copies to the appropriate workers.

V. NUMERICAL LINEAR ALGEBRA IN DAGGER

All the aforementioned infrastructure constitutes a robust
toolset for numerical linear algebra. With Dagger’s data-
aware capabilities, it is possible to implement in-place, tiled,
and parallel data decomposition algorithms with ease and high
productivity. This is particularly effective for tiled algorithms
such as Cholesky, GEMM, QR, and CAQR, which are ex-
tensively studied in [8], [16], [24], [14], [2]. In Dagger,
we provide an implementation of those algorithms and use
multiple dispatch to ensure seamless integration with Julia.
Dagger ’s linear algebra implementation respects the

APIs of Julia’s LinearAlgebra.jl base ecosystem
to ensure easy adoption. For the Cholesky factorization,

Fig. 2: Asynchronous merging phases of R for SP-CAQR

TABLE I: Hardware specifications.
Vendor Intel AMD
Family Ice Lake EPYC Milan
Model 6330 7713
Socket(s) 2 2
Cores per Socket 28 64
GHz 2 2
DDR4 1 TB 256GB
L3 Cache 84 MiB 256MiB

users simply need to create a DArray and use it in the
LinearAlgebra.cholesky API function. Julia’s mul-
tiple dispatch will then automatically call the function de-
signed for DArray instead of the one for Array. The
LinearAlgebra.cholesky function will return an object
containing the upper and lower factors.

We implemented as well the Semi-Parallel Communication-
Avoiding QR (SP-CAQR) algorithm, known for its efficiency
with tall and skinny (TS) matrices [11]. SP-CAQR offers the
advantage of increased asynchrony while maintaining good
data locality. In this algorithm, the matrix is divided into sub-
domains, as illustrated in fig 2. Each subdomain performs local
QR factorization independently. Subsequently, the triangular
factors are merged in parallel using tree-like communication,
enhancing parallelism for this matrix structure and mitigating
the idleness observed in traditional tile QR algorithms, which
require the entire panel to be factorized before proceeding.
Julia’s Base defaults all matrices of different shapes to the
same underlying QR function. However, Dagger employs an
implementation tailored to the matrix dimensions, leveraging
Julia’s multiple dispatch capability.

VI. PERFORMANCE RESULTS

In this section, we analyze the performance of the Dagger
scheduler using three dense linear algebra operations: GEMM,
and Cholesky and QR factorization.

A. Apparatus

We conducted our experiments using Julia (v1.10.4),
Dagger (v0.18.12), and oneMKL (v2020.0.166). To
avoid conflicts with BLAS multithreading, we set
BLAS.set_num_threads(1). For BLAS and LAPACK
from oneMKL, we BLAS.set_num_threads(n) to the
available threads. The tile size for tiled computation was fixed
at 2048. Results were obtained on Intel and AMD machines
(see TABLE I). We also varied floating-point precisions to
demonstrate Julia’s type inference capabilities and the
simplicity of the API.

B. Julia Parallel Paradigms

Analyzing the performance of Julia’s parallel paradigms
is crucial for advancing optimization in parallel scheduling.
Fig. 3 shows incremental performance improvements of three
Julia-based parallelization strategies for Cholesky decom-
position: Threading, Dagger with TaskDeps, and Dagger
with Datadeps. As matrix sizes increase, Dagger with
DataDeps shows a speedup of approximately 2x over Julia’s
Threading. Dagger with Datadeps consistently achieves
the best results, demonstrating a speedup of about 3x. This
highlights the significant efficiency gains of Dagger, espe-
cially with Datadeps, for high-performance linear algebra.

Fig. 3: Comparing Julia’s parallel paradigms on Intel.

C. Performance Compared to Vendor Implementation

It is crucial to understand the performance of Dagger
Datadeps compared to vendor optimized implementation.
It schedules fine-grained computation as soon as their de-
pendencies are satisfied. Fig. 4 shows the performance of
Cholesky factorization in terms of time-to-solution (Fig. 4a)
and GFLOP/s (Fig. 4b), compared to LAPACK implementa-
tion in oneMKL. For relatively small matrix sizes, Dagger
exhibits a slight performance slowdown. However, as matrix
sizes increase, Dagger DataDeps becomes more competitive,
achieving performance levels closer to those of the vendor-
optimized oneMKL. This suggests that Dagger Datadeps
is a viable alternative for more computationally intensive tasks.

GEMM is a cornerstone of AI operations. For example,
transformers, foundational to most large language models,
heavily rely on this computation. Dagger utilizes a data-
aware mechanism to achieve competitive performance com-
parable to oneMKL GEMM across various data types and
different matrix shapes, as depicted in Fig. 5 and 6. This
provides a robust foundation for further optimization consider-
ations particularly in supporting fine-grained mixed-precision
operations, as discussed in [9].

QR factorization is essential for solving linear systems,
finding best-fit solutions, and computing eigenvalues. Fig. 7
illustrates performance of QR in Float64 using square
matrices. It compares tiled QR using Dagger Datadeps to
two QR kernels from oneMKL. GEQRT computes relies on
triangular block reflectors factors, whereas GEQRF employs
scalar reflectors of elementary reflectors. Dagger implements
a tiled QR based on triangular block reflectors as GEQRT. It

(a) Execution Time on Intel.

(b) Achieved GFLOP/s on Intel.

Fig. 4: Performance of Cholesky Factorization

(a) Execution Time on Intel.

(b) Achieved GFLOP/s on Intel.

Fig. 5: Performance of GEMM using square matrices.

outperforms GEQRT from oneMKL by up to 1.5x and matches
GEQRF’s performance as the matrix size increases.

Fig 8 illustrates SP-CAQR’s performance in Float64, com-
paring it with GEQRT and GEQRF from oneMKL. Dagger
implementation with a single subdomain (SP1), execution
defaults to regular tiled QR methods without communication
avoidance. However, this approach does not yield optimal

(a) Execution Time on Intel.

(b) Achieved GFLOP/s on Intel.

Fig. 6: Performance of GEMM using tall and wide matrices.
A of size M × 4096, B of size 4096×M , and C is square of
size M ×M .

Fig. 7: Performance of QR Factorization using square matri-
ces.

performance for matrices of this shape. Regular tiled QR
methods introduce heightened synchronization demands dur-
ing the panel phase and the constrained BLAS-3 phase (trailing
update), which is essential for achieving superior performance.

Dagger begins to exhibit superior performance as the
number of subdomains increases, particularly beyond 32. For
matrices with more rows than columns, Dagger SP-CAQR
achieves lower latency and reduced bandwidth costs com-
pared to the existing LAPACK implementation, outperforming
GEQRF with up to a 2x speedup. This advantage stems
from SP-CAQR’s ability to execute the panel and reflector
application phases of each subdomain in an embarrassingly
parallel manner, followed by a tree-like merge step. This
approach mitigates the synchronous aspects typical in QR
factorization’s panel computation.

Fig. 8: Performance of SP-CAQR using TS Matrices.

D. Strong Thread Scalability Results

To demonstrate the efficiency of Dagger Datadeps when
scaling number of cores within a node, Fig. 9 shows perfor-
mance advancement when doubling the number of threads,
reaching up to 128 threads for Cholesky operations using
DaggerDatadeps and oneMKL, with a matrix size of
61440. Dagger exhibits strong scalability comparable to
well-optimized vendor operations, highlighting the perfor-
mance efficiency of the Dagger scheduler.

Fig. 9: Strong thread scaling on AMD.

VII. CONCLUSION

We introduced the Dagger task-based scheduler with data
dependency awareness, marking the first implementation of an
asynchronous runtime system natively in a high-level language
like Julia. Dagger leverages dependency analysis of the
data flow within function arguments to construct a DAG of
tasks, ensuring that dependencies are respected during schedul-
ing and execution. Our demonstrations using tiled dense linear
algebra computations with the Dagger scheduler have show-
cased its capability to achieve high performance in dynamic
languages. Notably, Dagger Datadeps has outperformed
existing parallel paradigms within Julia and has shown com-
parable results to vendor-optimized operations. Dagger also
shows significant performance improvement when factorizing
TS matrices using SP-CAQR. Moving forward, we plan to
harness the power of GPUs and distributed environments to
further enhance its efficiency.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under grant no. OAC-1835443, grant

no. SII-2029670, grant no. ECCS-2029670, grant no. OAC-
2103804, and grant no. PHY-2021825. The information, data,
or work presented herein was funded in part by the Advanced
Research Projects Agency-Energy (ARPA-E), U.S. Depart-
ment of Energy, under Award Number DE-AR0001211 and
DE-AR0001222. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United
States Government or any agency thereof. This material was
supported by the Research Council of Norway and Equinor
ASA through Research Council project “308817 - Digital
wells for optimal production and drainage”. Research was
sponsored by the United States Air Force Research Laboratory
and the United States Air Force Artificial Intelligence Accel-
erator and was accomplished under Cooperative Agreement
Number FA8750-19-2-1000. The views and conclusions con-
tained in this document are those of the authors and should
not be interpreted as representing the official policies, either
expressed or implied, of the United States Air Force or the U.S.
Government. The U.S. Government is authorized to reproduce
and distribute reprints for Government purposes notwithstand-
ing any copyright notation herein. The authors would like to
also thank the support and resources provided by KAUST. This
material is also supported by grant #2022/07810-7, São Paulo
Research Foundation (FAPESP), furthermore the opinions,
hypotheses, conclusions, or recommendations expressed in
this material are the responsibility of the authors and do not
necessarily reflect the views of FAPESP. Additionally, authors
extend their appreciation to the KAUST Ibn Rushd Fellowship
and the São Paulo Research Foundation for their support.

REFERENCES

[1] Rabab Al-Omairy, Guillermo Miranda, Hatem Ltaief, Rosa M Badia,
Xavier Martorell, Jesus Labarta, and David Keyes. Dense Matrix Com-
putations on NUMA Architectures with Distance-Aware Work Stealing.
Supercomputing Frontiers and Innovations, 2(1):49–72, 2015.

[2] Rabab Alomairy, Wael Bader, Hatem Ltaief, Youssef Mesri, and David
Keyes. High-Performance 3D Unstructured Mesh Deformation Using
Rank Structured Matrix Computations. ACM Transactions on Parallel
Computing, 9(1):1–23, 2022.

[3] Rabab Alomairy, Hatem Ltaief, Mustafa Abduljabbar, and David Keyes.
Abstraction Layer for Standardizing APIs of Task-Based Engines. IEEE
Transactions on Parallel and Distributed Systems, 31(11):2482–2495,
2020.

[4] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-
André Wacrenier. StarPU: a Unified Platform for Task Scheduling on
Heterogeneous Multicore Architectures. Concurrency and Computation:
Practice and Experience, 23(2):187–198, 2011.

[5] Michael Bauer, Sean Treichler, Elliott Slaughter, and Alex Aiken.
Legion: Expressing Locality and Independence with Logical Regions. In
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC, 2012.

[6] Tim Besard, Valentin Churavy, Alan Edelman, and Bjorn De Sutter.
Rapid Software Prototyping for Heterogeneous and Distributed Plat-
forms. Advances in Engineering Software, 132:29–46, 2019.

[7] George Bosilca, Aurelien Bouteiller, Anthony Danalis, Mathieu Faverge,
Thomas Hérault, and Jack J Dongarra. PaRSEC: Exploiting Hetero-
geneity to Enhance Scalability. Computing in Science & Engineering,
15(6):36–45, 2013.

[8] Alfredo Buttari, Julien Langou, Jakub Kurzak, and Jack Dongarra.
A Class of Parallel Tiled Linear Algebra Algorithms for Multicore
Architectures. LAPACK Working Note 191, University of Tennessee,
2007.

[9] Qinglei Cao, Sameh Abdulah, Rabab Alomairy, Yu Pei, Pratik Nag,
George Bosilca, Jack Dongarra, Marc G Genton, David E Keyes, Hatem
Ltaief, and Others. Reshaping Geostatistical Modeling and Prediction
for Extreme-Scale Environmental Applications. In SC22: International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–12. IEEE, 2022.

[10] Anthony Danalis, George Bosilca, Aurelien Bouteiller, Thomas Herault,
and Jack Dongarra. PTG: an Abstraction for Unhindered Parallelism.
In 2014 Fourth International Workshop on Domain-Specific Languages
and High-Level Frameworks for High Performance Computing, pages
21–30. IEEE, 2014.

[11] James Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou.
Communication-Optimal Parallel and Sequential QR and LU Factoriza-
tions. SIAM Journal on Scientific Computing, 34(1):A206–A239, 2012.

[12] A. Duran, R. Ferrer, E. Ayguade, R. M. Badia, and J. Labarta. A
Proposal to Extend the OpenMP Tasking Model with Dependent Tasks.
International Journal of Parallel Programming, 37(3), 2009.

[13] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos:
Enabling Manycore Performance Portability Through Polymorphic
Memory Access Patterns. Journal of Parallel and Distributed Com-
puting, 74(12), 2014.

[14] Mark Gates, Jakub Kurzak, Ali Charara, Asim YarKhan, and Jack
Dongarra. SLATE: Design of a Modern Distributed and Accelerated
Linear Algebra Library. In Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
pages 1–18, 2019.

[15] Mosè Giordano, Milan Klöwer, and Valentin Churavy. Productivity
Meets Performance: Julia on A64FX. In 2022 IEEE International
Conference on Cluster Computing (CLUSTER), pages 549–555. IEEE,
2022.

[16] B. Hadri, H. Ltaief, E. Agullo, and J. Dongarra. Tile QR Factorization
with Parallel Panel Processing for Multicore Architectures. 2010 IEEE
International Symposium on Parallel & Amp; Distributed Processing
(IPDPS), 2010.

[17] T. Heller, H. Kaiser, and K. Iglberger. Application of the ParalleX
Execution Model to Stencil-Based Problems. Computer Science -
Research and Development, 28(2-3), 2013.

[18] OpenMP. OpenMP 3.0 Complete Specifications, 2008.
[19] OpenMP. OpenMP 4.0 Complete Specifications, 2013.
[20] Hendrik Ranocha, Michael Schlottke-Lakemper, Andrew R Winters,

Erik Faulhaber, Jesse Chan, and Gregor J Gassner. Adaptive Numerical
Simulations with Trixi. Jl: A Case Study of Julia for Scientific Com-
puting. ArXiv Preprint ArXiv:2108.06476, 2021.

[21] Michael P. Robson, Ronak Buch, and Laxmikant V. Kale. Runtime
Coordinated Heterogeneous Tasks in Charm++. In Proceedings of the
Second Internationsl Workshop on Extreme Scale Programming Models
and Middleware, ESPM2, Piscataway, NJ, USA, 2016. IEEE Press.

[22] Julian Samaroo, Rabab Alomairy, and Felipe Tome. Dagger.jl. https:
//github.com/JuliaParallel/Dagger.jl, 2024.

[23] Elliott Slaughter and Alex Aiken. PyGion: Flexible, Scalable Task-Based
Parallelism with Python. In 2019 IEEE/ACM Parallel Applications
Workshop, Alternatives to MPI (PAW-ATM), pages 58–72. IEEE, 2019.

[24] F. Song, H. Ltaief, B. Hadri, and J. Dongarra. Scalable tile
communication-avoiding qr factorization on multicore cluster systems.
2010 ACM/IEEE International Conference for High Performance Com-
puting, Networking, Storage and Analysis, Nov 2010.

[25] Enric Tejedor, Yolanda Becerra, Guillem Alomar, Anna Queralt, Rosa M
Badia, Jordi Torres, Toni Cortes, and Jesús Labarta. PyCOMPSs: Parallel
Computational Workflows in Python. The International Journal of High
Performance Computing Applications, 31(1):66–82, 2017.

[26] Asim Yarkhan. Dynamic Task Execution on Shared and Distributed
Memory Architectures. PhD Dissertation, 2012.

[27] Asim YarKhan, Jakub Kurzak, Piotr Luszczek, and Jack Dongarra.
Porting the PLASMA Numerical Library to the OpenMP Standard.
International Journal of Parallel Programming, 45:612–633, 2017.

https://github.com/JuliaParallel/Dagger.jl
https://github.com/JuliaParallel/Dagger.jl

	Introduction
	Related Work
	Task-based Programming Model
	Tiled Dense Linear Algebra Computation

	Overview of Julia in HPC
	Julia Task based Scheduler
	DArray
	Dagger

	Numerical Linear Algebra in Dagger
	Performance Results
	Apparatus
	Julia Parallel Paradigms
	Performance Compared to Vendor Implementation
	Strong Thread Scalability Results

	Conclusion
	References

