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Abstract—Most modern processors contain vector units that
simultaneously perform the same arithmetic operation over
multiple sets of operands. The ability of compilers to automat-
ically vectorize code is critical to effectively using these units.
Understanding this capability is important for anyone writing
compute-intensive, high-performance, and portable code. We
tested the ability of several compilers to vectorize code on x86 and
ARM. We used the TSVC2 suite, with modifications that made it
more representative of real-world code. On x86, GCC reported
54% of the loops in the suite as having been vectorized, ICX
reported 50%, and Clang, 46%. On ARM, GCC reported 56%
of the loops as having been vectorized, ACFL reported 54%, and
Clang, 47%. We found that the vectorized code did not always
outperform the unvectorized code. In some cases, given two very
similar vectorizable loops, a compiler would vectorize one but not
the other. We also report cases where a compiler vectorized a loop
on only one of the two platforms. Based on our experiments, we
cannot definitively say if any one compiler is significantly better
than the others at vectorizing code on any given platform.

I. INTRODUCTION

Early supercomputers, like the Cray machines, had vector
units to take advantage of the data parallelism common to
many computationally intensive scientific applications. Such
vector units exist on most processors.

Maximizing the utilization of these vector units requires the
appropriate use of vector instructions. However, programming
in a high-level language like C with platform-specific vector
intrinsics or writing assembly by hand is cumbersome, error-
prone, not portable, and unlikely to result in optimal perfor-
mance unless done by an expert.

High-quality vectorizing compilers are more likely to pro-
duce correct, high-performance code. Some also support gen-
erating code for different hardware platforms, allowing a pro-
grammer to obtain vectorized code for any platform supported
by the compiler from a single code base.

GCC [1] and Clang [2] are widely used open-source com-
pilers that can generate code for X86 and ARM (among other
platforms). The Intel oneAPI DPC++/C++ Compiler [3] and
ARM Compiler for Linux (ACFL) [4] are proprietary, vendor-
provided compilers for X86 and ARM, respectively. In this
paper, we compare the ability of these compilers to vectorize
on two widely used hardware platforms and compare the
performance of the resulting code. We also perform a detailed
analysis of the code generated by these compilers in cases

where one significantly outperforms the others. Prior stud-
ies [5], [6] have compared the size and relative performance
of the code generated by some of these compilers but not
their vectorization abilities. Others [7], [8], [9], [10], [11] have
studied the compiler’s ability to vectorize, but none evaluated
the same compiler on different hardware platforms. Pohl et
al. [12] have studied the accuracy of speedup prediction by
compilers on different platforms, but they did not compare
the compilers’ ability to vectorize.

II. EVALUATION

In this section, we discuss our choice of compilers and
hardware platforms.

A. Compilers

Table I lists the versions of the compilers used in our
experiments. For the vendor-provided compilers, we used the
latest versions that were available on our test system. Note
that the ACFL 22.2 is based on LLVM 13.0.1, which is older
than the Clang version that was used. We expected the two
vendor-provided compilers, ICX on x86 and ACFL on ARM,
to outperform the open-source compilers, GCC and Clang.

B. Benchmark

TSVC (Test Suite for Vectorizing Compilers) [13] is a well-
known benchmark suite that is used to assess a compiler’s
ability to vectorize. This suite consists of 151 loop nests con-
taining a variety of control-flow and memory-access patterns
such as conditional branches, non-unit strides, reverse array
accesses, indirect memory accesses, etc. A variant of TSVC
is TSVC2 [14] which utilizes modern C features and prevents
function inlining.

In TSVC2, each loop nest is contained within a function
with exactly one loop nest per function. Since every function
contains exactly one loop nest, we use the name of the
containing function to refer to a loop nest.

TABLE I
COMPILERS AND THEIR VERSIONS

Name Version
GCC 14.1.1
Clang 18.1.8
ICX 2024.0.2

ACFL 22.2
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TABLE II
HARDWARE SPECIFICATION

Name Architecture Model Vendor
Intel x86 64 Xeon(R) Gold 6152 Intel
ARM aarch64 A64FX Fujitsu

The loop nests generally perform 32-bit floating point
operations on one or more arrays. An outer loop wraps the
nest, resulting in redundant computations. This is done to
minimize the effect of noise and jitter on the timings and
accommodate systems that lack high-resolution timers.

In TSVC2, the arrays operated on by the loops are global
with sizes that are known at compile time. The trip counts
of the loop are also compile-time constants. This is not
representative of scientific applications where the arrays are
usually dynamically allocated and the trip counts are often
input-dependent. In order to obtain a more realistic assessment
of the compilers i.e. how they performed on real-world code,
the code in TSVC2 was modified so the array sizes and the
loop trip counts would not be compile-time constants [15].
This was achieved by bundling them together in a struct

which was then passed to the functions. This ensured that the
compiler would have to perform more sophisticated analyses
to ensure the safety and accurately estimate the profitability of
optimizations such as vectorization and loop unrolling. Siso et
al. [16] demonstrated the effect of withdrawing some compile-
time information such as globally known array bounds. Here,
we withdraw all global information.

C. Hardware

Details about the hardware platforms on which we carried
out the experiments are provided in Table II.

III. RESULTS AND ANALYSIS

A. X86

GCC and Clang were passed -O3 -march=skylake-avx512

-mprefer-vector-width=512 when compiling the test-suite.
The last option was replaced with -qopt-zmm-usage=high

on ICX. The vectorization reports were generated with
-fopt-info-all on GCC, -Rpass=loop-vectorize

-Rpass-missed=loop-vectorize on Clang, and
-qopt-report on ICX.

Figure 1 shows the number of loops vectorized by GCC,
Clang, and ICX. Out of the 151 loops, GCC did not vectorize
46%, Clang did not vectorize 54% and ICX did not vectorize
50%. Figure 2 shows the geometric mean of the execution time
of code vectorized by all three compilers. The code generated
by ICX was fastest for 40% of the loops, GCC was fastest
for 39% and Clang was fastest for 21%. Next, we discuss the
relative performance of the compilers in greater detail.

a) GCC: Figure 3 shows the relative execution time
of loops reported as having been vectorized by GCC but
not Clang or ICX. Out of those 8 loops, GCC was slower
than Clang and ICX in 2 cases. One of these loops had a
loop carried read-after-write (RAW) dependence which GCC
partially vectorized. This optimization did not prove to be
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Fig. 1. Loops vectorized by GCC, ICX, and Clang on x86
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beneficial. Some characteristics seen in the 6 loops where the
vectorized code generated by GCC was better include:

• Conditional branching
• Non-unit but constant stride memory access
• Reverse array access
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1 for (int i = 0; i < lEN_1D; i++)
2 x = a[lEN_1D-i-1] + b[i] * c[i];
3 a[i] = x-(real_t)1.0;
4 b[i] = x;

Fig. 4. Loop s281
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Fig. 5. Execution time of loops not vectorized by GCC only

One such loop is s281 as shown in Figure 4. GCC used
neg instruction to ensure reverse order access of a[] on line 2.
Figure 5 shows the relative execution time of loops reported as
having been vectorized by both Clang and ICX, but not GCC.
Loop s2102 creates an identity matrix by setting the diagonal
elements to one and everything else to zero. Both Clang and
ICX used vector scatter instructions which did not provide any
performance improvement over non-vectorized stores.

b) Clang: Figure 6 shows two loops that were vectorized
by Clang only.

Figure 7 shows the C code for loop s1232. The stride
for all 2D arrays are constant (the size of row). Figure 8 is
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Fig. 6. Execution time of loops vectorized by Clang only

1 for (int j = 0; j < lEN_2D; j++)
2 for (int i = j; i < lEN_2D; i++)
3 (*aa)[i][j] = (*bb)[i][j] + (*cc)[i][j];

Fig. 7. Loop s1232

1 vpmullq %zmm8,%zmm0,%zmm1
2 kxnorw %k0,%k0,%k1
3 vxorps %xmm2,%xmm2,%xmm2
4 kxnorw %k0,%k0,%k2
5 vgatherqps (%r10,%zmm1,4),%ymm2{%k1}
6 vxorps %xmm3,%xmm3,%xmm3
7 vgatherqps (%r11,%zmm1,4),%ymm3{%k2}
8 vaddps %ymm3,%ymm2,%ymm2
9 kxnorw %k0,%k0,%k1

10 vscatterqps %ymm2,(%rbx,%zmm1,4){%k1}
11 vpaddq %zmm10,%zmm0,%zmm0
12 add $0x8,%r9
13 jne 30000 <s1232+0x4e0>

Fig. 8. Assembly from Clang for loop s1232
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Fig. 9. Execution time of loops not vectorized by Clang only

the assembly produced by Clang. The loads and stores are
performed using masked gather and scatter instructions, which
did not yield any improvement over the unvectorized code
produced by GCC and ICX. Figure 9 shows the normalized
execution time of loops not vectorized by Clang but vectorized
by both GCC and ICX. 7 of these loops perform reductions.
The vectorized code generated by GCC was not noticeably
faster than the unvectorized code generated by clang. We
examined the vectorized code generated by ICX and GCC
for one such loop, s3111.

Figure 10 is the C code for loop s3111. GCC partially
vectorized this using vector load instruction. ICX, on the other
hand, used vector loads, compares and adds. The temporary
store also used vector instructions.

c) ICX: Figure 11 shows the loops vectorized by ICX,
but not the other compilers. Some common features shared by
these loops are:

• Indirect addressing
• Reductions
• Non-unit stride access

1 for (int i = 0; i < lEN_1D; i++)
2 if (a[i] > (real_t)0.)
3 sum += a[i]

Fig. 10. Loop s3111
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Fig. 11. Execution time of loops vectorized by ICX only

1 q = (real_t)1.
2 for (int i = 0; i < lEN_1D/2; i++)
3 q *= (real_t).99

Fig. 12. Loop s317

Figure 12 is the C code for loop s317. The statement in
line 3 can be re-written in closed form as q = 0.99n where n
is the loop trip count. Figure 13 shows part of the assembly
generated by ICX. Lines 1 to 4 perform the multiplication in
line 3 of Figure 12. The initial value of %zmm0 is set to 1 (not
shown in the listing). Using vector multiplication, the number
of iterations is reduced from len2D/2 to (len2D/2)/16. The
individual values in %zmm0 are multiplied Lines in 5 to 12
which results in the closed form solution.

Figure 14 shows the normalized execution time of loops
not vectorized by ICX only. Nearly 50% of these loops have
array subscripts that are linear functions of the loop iterator
and some induction variable other than the loop iterator.

B. ARM

We used the following flags when compiling the test-suite
on ARM: -O3 -mcpu=a64fx+sve -msve-vector-bits=512.
The vectorization reports were generated using the same op-
tions as x86. Figure 15 shows the number of loops vectorized
by GCC, Clang, and ACFL. Out of the 151 loops, GCC did
not vectorize 44%, Clang did not vectorize 53% and ACFL did
not vectorize 46%. These results are similar to those reported
by Bine et al. [7].

1 vmulps %zmm1,%zmm0,%zmm0 //%zmm0=q, %zmm1=0.99
2 add $0x10,%eax
3 cmp %r12d,%eax
4 jl 4468a0 <s317+0x1a0>
5 vextractf64x4 $0x1,%zmm0,%ymm1
6 vmulps %zmm1,%zmm0,%zmm0
7 vextractf128 $0x1,%ymm0,%xmm1
8 vmulps %xmm1,%xmm0,%xmm0
9 vshufpd $0x1,%xmm0,%xmm0,%xmm1

10 vmulps %xmm1,%xmm0,%xmm0
11 vmovshdup %xmm0,%xmm1
12 vmulss %xmm1,%xmm0,%xmm0

Fig. 13. Assembly from ICX for loop s317
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Fig. 15. Loops vectorized by GCC, ACFL, and Clang on ARM

Figure 16 shows the geometric mean of the execution time
of code vectorized by all three compilers. Of these, the code
generated by Clang was fastest for 65% of the loops, GCC
was fastest for 22% and ACFL was fastest for 13%.

a) GCC: Figure 17 shows the normalized execution time
of loops that were vectorized by GCC but not by either Clang
or ACFL. s2710 is the only loop that was vectorized by both

3.9056 3.8939

4.517

1

2

3

4

5

GCC Clang ACFL

Ti
m

e 
(S

ec
o

n
d

s)

Compilers

Geometric Mean of Execution Time

Fig. 16. Geometric Mean of Execution Time

4



0

0.2

0.4

0.6

0.8

1

1.2

1.4

s1161 s122 s161 s172 s222 s331 s351 s352

Ti
m

e 
(N

o
rm

al
iz

ed
)

Functions

Only GCC Vectorized 

GCC/Clang GCC/ACFL

Only GCC Vectorized

>1: GCC is slower

Fig. 17. Execution time of loops vectorized vectorized by GCC only

1 for (int i = 1; i < lEN_1D; i++)
2 a[i] += b[i] * c[i]
3 e[i] = e[i - 1] * e[i - 1]
4 a[i] -= b[i] * c[i]

Fig. 18. Loop s222

ACFL and Clang, but not GCC. Most of these loops are the
same as those in Figure 3.

Despite being vectorized, the performance of loops s222

and s352 did not improve. Figure 18 is the C code for loop
s222. GCC vectorized only the statements in line 2 and 4. The
statement in line 3 has a read-after-write (RAW) dependency
which cannot be vectorized.

Figure 19 is the C code for loop s352. Even though Clang
and ACFL did not vectorize it, both unrolled it by factors of 20
and 24 respectively, which might have resulted in the speedup.

b) Clang: Figure 20 shows the normalized execution
time of loops that were not vectorized by Clang, but were
vectorized by the other compilers. Every loop vectorized by
Clang was vectorized by either ACFL or GCC. Some of the
features of the 4 loops where Clang was not slower despite
not vectorizing are:

• Write-after-read dependence (WAR) for a single iteration
• Reverse data access
• Indirect memory lookup

Figure 21 is the C code for loop s4115. Figure 22 is
the assembly generated by ACFL. GCC produced similar
assembly. The result of the load instruction in line 1 is stored
in z1 which is used in the offset calculation for the gather
instruction on line 4.

1 for (int i = 0; i < lEN_1D; i += 5)
2 dot = dot + a[i] * b[i] +
3 a[i + 1] * b[i + 1] +
4 a[i + 2]* b[i + 2] +
5 a[i + 3] * b[i + 3] +
6 a[i + 4] * b[i + 4]

Fig. 19. Loop s352
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Fig. 20. Execution time of loops not vectorized by Clang only

1 for (int i = 0; i < lEN_1D; i++)
2 sum += a[i] * b[ip[i]]

Fig. 21. Loop s4115

Clang, on the other hand, did not vectorize the loop, but
unrolled it by a factor of 8 instead. Also, the ldpsw instruction
was used which loads a pair of words. The first set of unrolled
instructions is presented in Figure 23. It is not clear why the
vector gather instructions were not profitable.

c) ACFL: Figure 24 shows 4 loops that were vectorized
by ACFL, but not by any of the other compilers. Figure 25
shows 2 loops that were vectorized by both GCC and Clang,
but not ACFL.

Only two vectorized loops were faster. Figure 26 is the C
code for loop s453. The computations in line 2 and 3 can be
re-written as a[i]=(2*i+2)*b[i], which is what ACFL did as
shown in Figure 27. Another loop that was vectorized only
by ACFL and showed better performance is loop s442, which
contains a switch statement. ACFL was able to vectorize it
using cmpeq and sel instructions and predicate registers which

1 ld1w {z1.s}, p0/z, [x19, x8, lsl #2]
2 ld1w {z0.s}, p0/z, [x20, x8, lsl #2]
3 add x8, x8, x24
4 ld1w {z1.s}, p0/z, [x21, z1.s, sxtw #2]
5 fmul z0.s, z0.s, z1.s
6 fadda s2, p0, s2, z0.s
7 whilelo p0.s, x8, x22
8 b.mi 43466c <s4115+0xa4>

Fig. 22. Assembly from ACFL for loop s4115

1 mov x8, xzr
2 ldpsw x11, x12, [x10, #-16]
3 ldp s1, s2, [x9, #-16]
4 sub x8, x8, #0x8
5 ldr s0, [x21, x11, lsl #2]
6 fmadd s0, s1, s0, s8

Fig. 23. Assembly from Clang for loop s4115
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Fig. 25. Execution time of loops not vectorized by ACFL only

can perform loads and other operations conditionally.

C. X86 and ARM

This section summarizes the difference in behavior of GCC
and Clang across the two platforms. Almost all loops that were
vectorized by GCC or Clang on one platform were vectorized
on the other. We found 3 loops that were not vectorized by
GCC on X86 which were vectorized on ARM. 2 of them used
vector gather instructions. We also found 3 loops vectorized

1 for (int i = 0; i < lEN_1D; i++)
2 s += (real_t)2.;
3 a[i] = s * b[i];

Fig. 26. Loop s453

1 scvtf s0, x8
2 ld1w {z1.s}, p0/z, [x21, x8, lsl #2]
3 fadd s0, s0, s0
4 mov z0.s, s0
5 fadd z0.s, z0.s, z2.s
6 fadd z0.s, z0.s, z3.s
7 fmul z0.s, z0.s, z1.s
8 st1w {z0.s}, p0, [x20, x8, lsl #2]
9 add x8, x8, x24

10 whilelo p0.s, x8, x28

Fig. 27. Assembly from ACFL for loop s453

1 for (int i = 0; i < lEN_1D; i++)
2 a[i] += b[ip[i]] * s;

Fig. 28. Loop s4112

by Clang on x86 but not on ARM. 2 of these had non-unit
but constant stride memory accesses. 4 loops were reported
vectorized by Clang on ARM but not on x86, all of which
performed reductions.

Out of 65 loops that were vectorized by both GCC and
Clang on x86, GCC outperformed Clang in 34 (52%) of the
cases. For ARM, out of 70 loops vectorized by both, Clang
outperformed GCC in 51 (73%) of the cases. Of the loops
that were vectorized by both GCC and Clang on both x86 and
ARM, the code produced by GCC outperformed that produced
by Clang in 14 cases, while Clang outperformed GCC in 26
cases.

D. Indirect Memory Access

There are 8 loops in TSVC2 with indirect memory accesses.
Both x86 and ARM provide vector gather/scatter instructions.
Neither GCC nor Clang were able to utilize them to vectorize
these 8 loops on x86. However, ICX was able to vectorize
2 loops. On ARM, GCC and ACFL were able to vectorize
the same 2 loops but Clang was not able to vectorize any.
We discussed s4115 in Figure 21, which was vectorized on
ARM by GCC and ACFL but not Clang. GCC was not able
to vectorize it on x86. Figure 28 is the C code for loop s4112.
Despite being similar to loop s4115, no compiler, on either
platform, vectorized it.

IV. CONCLUSION AND FUTURE WORK

We have investigated the ability of several compilers to vec-
torize on two different hardware platforms. 35% of the loops
in the TSVC2 suite were vectorized by all three compilers
on x86 and 36% were not vectorized by any of them. For
ARM, these numbers are 45% and 40% respectively. GCC
reported more loops being vectorized than Clang on both X86
and ARM. However, of the loops vectorized by both GCC
and Clang, the code generated by GCC performed better on
x86 whereas code generated by Clang performed better on
ARM. There were cases where the compilers would vectorize
a loop on X86 but not on ARM (and vice versa). There were
no immediately obvious, consistent strengths or weaknesses
in any one compiler’s ability to vectorize. It was also unclear
when the code generated by any given compiler would out-
perform the others. We have reported the few patterns that
were apparent to us. In future work, we intend to focus on
loops from specific domains, which could help determine if
any compiler is particularly suitable for a given domain.
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