A Neural Network Based GCC Cost Model for
Faster Compiler Tuning

Hafsah Shahzad”, Ahmed Sanaullah*, Sanjay Arora*, Ulrich Drepper*, and Martin Herbordt"

"CAAD Lab, ECE Department, Boston University
*Red Hat Inc.

Abstract—Machine learning models have been found
to be effective in predicting compiler heuristics, but are
limited by their very long training times. This is because
computing the impact of transformations on a code, e.g.,
through the performance values, involves invoking the
downstream compiler. One way to circumvent the cost-
computation bottleneck is to devise accurate cost models
that can be trained to predict the target metric. In this
paper, we develop a neural net based cost function that
can accurately predict binary code size for GCC-based
compilation. The input to the model is a comprehensive
list of features that have been extracted offline from
GCC’s intermediate tree representation and the compiler
flags that need to be evaluated by a compiler tuning
workload. To extract the code features, we have built a
GIMPLE analysis framework that can generate feature
sets from intermediate representations at different stages
of the compilation process. Our results show that the cost
model has a mean absolute percentage error of just 8%,
and a Spearman correlation of 0.98 between predicted
and measured binary size of the test applications. We
also demonstrate that compiler pass selection for feature
extraction has a significant benefit on the accuracy of the
model. Finally, we show that the cost model can reduce
metric evaluation time by multiple orders of magnitude.

I. INTRODUCTION

Even after decades of efforts on improving the code
optimization process, there are continually new improve-
ments [1]-[10]. For example, in the last few years, ma-
chine learning (ML) has been employed to build models
used within the compiler to help make optimization
decisions for any given program. Building an efficient
ML model requires two things. First, efficient feature
engineering is required to derive quantifiable properties
to characterise a given code and then iteratively refine
them to improve the accuracy of the model. Second, a
training data set must be built and fed into a learning
algorithm. Here, a training data set comprises a tuple of
code features, performance values, and transformations
that allow the ML algorithm to build its correlations and
enable it to make predictions for an unseen code.

The problem addressed here is that computing the im-

a) Compiler Flags
_______________ (device_to_host)

CPU

1
1
Typical :
Model / DSE compiler ! .

. ! Compiler
algorithm 1
flow .
1

I
I
1
|
' tuning
I
I
I

_______________ (host_to_device) 1o o oo ___~

Reward
Model / DSE Cost Model
algorithm

Fig. 1: Circumventing the training time conundrum of
compiler tuning models and Design Space Exploration
(DSE) algorithms by replacing downstream compiler
with neural net based cost model

Compiler Flags

Fast feedback
loop for
compiler

tuning

Reward

pact of transformations on a code, i.e., the performance
values, is an expensive process. It involves invoking the
downstream compiler and may take a significant amount
of time. And often performance characteristics of the
target hardware is altogether unavailable. Due to this
cost bottleneck, models that can predict optimization
decisions across a wide range of codes require days to
train [11]-[13].

In particular, while cost functions can be designed to
quickly predict performance values, thereby substantially
reducing the training times, simultaneously achieving
accuracy from them is challenging. In the past several
groups have tackled this limitation of compiler optimiza-
tion by designing manual cost functions [14], [15]. How-
ever, this requires expert knowledge about the specific
target architecture and can take months to tune [16].
With the proliferation in deep learning, some groups have
proposed neural network based cost functions. The cost
model implementations in Halide [17] predict runtimes
for image processing and deep learning programs, but
is limited in scope to Halide programs. The cost model
implementation for the Tiramisu compiler [18] predicts
speedup in runtime, but focuses on loop transformations.

In this work, we propose a neural network based cost
function that addresses the limitations of previous work.
We demonstrate accuracy in terms of mean absolute
percentage error that is roughly 2x better than previous
efforts. Moreover, to the best of our knowledge, our
work is also the first employing a neural network based
cost model for a production compiler such as GCC.
While LLVM is a popular choice in academia, GCC
is default choice for a large majority of significant
software projects. We are also one of the first efforts
in predicting code size as a performance metric, rather
than standard schedules and runtime. Code size has
been used as the optimization criteria in a number of
recent works for compiler optimization [8], [11], [19]-
[24]. This is partly because code size reduction, firstly,
leads to cost reductions in terms of storage, bandwidth
and memory, all critical for today’s resource constrained
applications [25]; and secondly is platform-independent,
deterministic, and relatively noise-free, and hence an
ideal target for compiler optimizations [13], [26], [27].

A major challenge has been creating the training set
for a cost function since this requires code features
for labeling each transformation set and its code size
reduction. Feature extraction for GCC is not straight-
forward: the last major work to extract static features
from GCC codes was Milepost [7] and their framework
does not work beyond GCC 6+ [28]. We tested other
alternatives such as a Python plugin by GCC developers
[29]. However the limitation of most prior works is that
they are not updated to recent GCC versions and hence
are not upgraded for vectorization, inter-procedural opti-
mizations, or new architectures. For LLVM, there are
many efforts that allow feature extraction [12], [26],
including a custom pass within LLVM [30]. There is
a need to develop similar feature extractors at different
abstraction levels for GCC’s latest versions (11-13).

We have therefore developed a GIMPLE (Intermediate
Representation for GCC) parser that allows users to
extract more than a 100 function-level static features.
In addition, users can choose among types of feature
extractions: (i) After which GCC pass the features should
be extracted? and (ii) Which subset of features are im-
portant? We also compare the subset of features extracted
with state-of-art work (Autophase [12]) and demonstrate
that our framework allows feature selection according to
(1) and (ii) that train neural net with better accuracy in
predicting code size. To the best of our knowledge, this is
the first work to explore static feature extraction in such
depth and with such success in predicting accuracy.

The specific contributions of this paper are:

e An automated framework for extracting over 100

function-level static features from GCC’s interme-

diate representation, GIMPLE, that allows users to
configure their optimization level and optimization
flags, select the subset of features and the level of
feature extraction (i.e., to analyze tree dumps after
a selected compiler pass during the optimization
pipeline).

o A neural network based cost-model that takes these
code features and GCC flag transformations, and
outputs the binary size prediction for GCC.

e An implementation and evaluation of the proposed
cost model and mean average error comparison with
the state of art.

e A demonstration that models trained using features
extracted after individual passes in the optimization
pipeline have different accuracy. Also, that by using
the comprehensive list of features from our frame-
work, better prediction accuracy is achieved than
with features used in prior efforts.

II. RELATED WORK

One of the earliest works in ML-based compiler cost
models for GCC was MILEPOST [7]. It trained a k-
nearest neighbor model using engineered static features
and predicted the best combination of GCC flags for
unseen applications. Our work trains a deep neural net
to predict code size given a much larger pool of code
features and set of GCC flags compatible with latest
versions of GCC. Ithemal [31], Granite [32], Facile [33]
and DiffTune [34] are basic block throughput estimators.
Their limitation is that they do not support loop level
transformations and memory accesses.

Static code analyzers like LLVM-MCA [35], OSAKA
[36], and IACA [37] are not always accurate and some-
times give large errors [38]—[40]. Similarly early efforts
by [41] developed a multilayer perceptron trained on
SMG2000. Our approach allows various algorithms.

An artificial neural net to predict tile size performance
was developed by [42]. Our work encompasses broader
performance characteristics and not a specific trait of the
program. Similarly, the static features-based performance
model such as [43], and performance counter based
feature vectors by Park et al. [44], [45] predict runtime
speedup over a limited set of applications. Our work
predicts code size with reasonable accuracy. To the
best of our knowledge, only [46] have looked at neural
nets for code size. However, the scope of their work
encompasses only the code duplication and only for
GraalVM compiler. We look at a much broader action
space of GCC flags.

Static code features for compiler optimization were
developed mainly by Milepost [7] and Autophase [12].
Most other groups define their subset depending upon

a)

Py I
Code code.c Compiler
Database "l (fdump=tree)

b)

.021t.ssa o
o code.c.022t.wallocal o
© code.c.025t.waccess1 O
O code.c.027t.nothrow O
O code.c.029t.fixup_cfg2 O
o o

O o
© code.c.123t.mergephi3 o
O °

ocode.c.215tmodref2 o
© code.c.216t.uncpropl

O

O code.c.250t isel
©O code.c.253t.waccess3 O
O code.c.254t.optimized O

Code Filename and Directory @
GCC Compiler Version
) Optimization Level (e.g. -Oz) & Initial Opt Flags Vector of
Target Architecture selected
GCC pass after which to analyse features
Target Features to select
T
o code.ssajson o Tt .. o
& code.wallocal json o ‘g
O code.waccess1.json O
© code.nothrow.json O
© code.fixup_cfg2.json O
O - o
i 0. o
Gimple 2 tode.mergephia.json o Feature_ Feature
Analyzer o o Computation Selector
& code.modref2.json o
o © code.uncpropl.json o
o O e o
o O code.isel.json [e3
© code.waccess3.json O
O code.optimized.json O
Milepost Autophase & Milepost

Autophase

Number of assignment instructions

Number of BitCast Instr

Number of unary operations

Number of volatile in function arguments

Number of EqualToExpr

Number of Switchinstr

Number of Add insts

Number of BB with instructions less than 15

Number of constant in function arguments

Number of useVars

Number of BB with instructions greater than 500

Number of Multiply insts

Number of BB with instructions between [15,500]

Number of pointers in local declarations

Number of NotEqualToExpr

Number of BB's with >2 successors

Number of Subtract insts

Number of occurrences of 32-it integer in local declarations

Number of booleans in local declarations

Number of FloatExpr

Average number of instructions in basic blocks

Number of Trunc insts

Number of occurrences of 64-bit integer in local declarations

Number of read-only variables

Number of Labellnstr

Number of local declarations

Number of LShr insts

Number of BB's with 1 successor

Number of Pointer Add insts

Number of defVars

Number of BB's with 2 predecessor and 2 successors

Total arguments to PHI nodes

Number of BB's with 2 predecessors

Number of Pointer Subtract insts

Number of operands

Number of BB's with more than (2 predecessors and 2 successors)

Number of calls that return an int

Number of BB's with 2 predecessors and 1 successor

Number of NOP operations

Number of forward edges

Number of BE's with 2 predecessors and successors

Number of PHI nodes

Number of BB's with 2 successors

Number of for-loops

Number of backward edges

Number of Zero Extension Instr

Number of Return Statements

Number of BB's with >2 predecessors

Maximum loop depth

Number of SSA_NAME insts

Number of unconditional branches

Number of Gotolnstr / Number of Br

Number of Binary operations with a constant operand

Count of loop nesting levels=1

Number of GreaterThanExpr

Number of Conditional Statements

Number of Shiftinstr

Number of insts that do pointer arithmetic in the method

Count of loop nesting levels=2

Number of LessThanEqualToExpr

Number of MEMREFS

Number of Sign Extension instr

Number of BB where total args for phi nodes is [1,5]

Count of loop nesting levels>=3

Number of unique operands

Number of Alloca insts

Number of occurrences of constant 0

Number of BB's with Phi node # in range (0,3]

Number of total operators

Halstead_ProgramLength

Number of Call Statements

Number of occurrences of constant 1

Number of BB's with more than 3 Phi nodes

Number of total unique operators

Halstead_Programvocabulary

Number of loads

Number of total instructions

Number of BB's with 1 predecessor

Number of Bit insts

Halstead_Volume

Number of stores

Number of conditional branches

Number of BB's with 1 predecessor and 1 successor

Number of DivExpr

Halstead_Difficulty

Number of ICmp insts

Number of basic blocks

Number of BB's with 1 predecessor and 2 successors

Number of CST inst

Halstead_Effort

Number of AND instr

Total number of edges

Number of BB where total args for phi nodes >5

Number of NegateExpr

Number of GreaterThanEqualToExpr

Number of OR instr

Number of critical edges

Number of function arguments

Number of LessThanExpr

Number of array accesses

Number of XOR instr

Number of BB with no phi nodes

Number of pointers in function arguments

Fig. 2: (a) Feature Engineering Workflow (b) Function level features that can be extracted. The color codes show
features that have also been used in two prior state-of-the-art works [7], [12]

the use case, e.g., loop tiling [18] or inlining [13]. We
have curated a large list of static features that uniquely
characterise different aspects of a code and can also
be extracted at intermediate compilation steps of the
compiler’s optimization pipeline.

III. FEATURE ENGINEERING

Figure 2(a) shows the framework for static feature ex-
traction. The output is a vector of those feature val-
ues that the user specified for the target code. Figure
2(b) lists all of the function-level features that can be
extracted from the framework. Features extracted by
prior state of art work are shown in color. Green color
code specifies features that have been considered by
Autophase [12] and later used in many recent compiler
optimization works [11], [26]. Purple shows features that
Milepost [7] used and Cyan color code shows features
that both Milepost and Autophase included in their
subset to describe the code. Note some features have
been omitted either because they are not relevant for
GCC, or for latest versions, or are not appropriate for
describing function-level attributes. Below we describe
the important blocks.

A. User Configurations

Four sets of parameters are specified by the user: (i) code
name, code directory, and build directory; (ii) details

about the compiler such as the GCC version (tested for
versions 11-13) such as, optimization level (e.g., -O3,
-Oz), other flags or command options as specified in
[47], the name of the GCC pass applied in the middle-
end optimization pipeline for GCC, and the pass after
which to analyse the tree dump for features; (iii) target
architecture as specified in [48]; and (iv) target features,
which should be a subset of features of 2(b).

B. GIMPLE Analyzer

In the first step, the GCC tree representation of func-
tions is extracted. The advantage of using GIMPLE
is that it is language-independent and its context is
simple for optimization passes to operate on [49]. It is
also relatively stable with the changes across compiler
versions being minimal. GCC can dump out GIMPLE
representation after every optimization pass it applies.
Some of the passes vary with the compiler flags and
command options. However, for a fixed optimization
level -O0(0,g,1,s,2,3,z,fast), the changes are minimal and
the framework emits all options available to the user for
feature analysis. GIMPLE tree dumps for the relevant
compile options of the specific C code (i.e., optimization
level and GCC flags) are dumped into the build directory.
These dump files are named according to the pass
after which these dumps are generated. For example,
code.c.130t.dom?2 is the tree dump after applying the

dominator tree optimizations to the code. 130 is the static
pass number for the dom2 pass and can vary across
compiler versions. code.c.115t.vrpl is after value range
propagation is applied to the code. All tree dumps are
then parsed by the GIMPLE Analyzer. The GIMPLE
Analyzer stores all extracted information from the tree
dump into a dictionary. We have tested it across a large
range of codes (including elfutils and linux kernels) to
ensure the GIMPLE Analyzer has the ability to handle
corner cases. This information contains details about
the functions within the C code, their arguments and
types, local declarations with the functions and their
values and types, basic blocks in the control flow and
all the instructions, phi nodes, and edge source and
destination within the basic block. It also decodes all
the operands, expressions and variables used within
every instruction in a basic block. This information is
decoded for tree dumps after every pass and stored in a
code.pass_name.json file.

C. Feature Computation

The Feature Computation block contains one function for
every feature from 2(b). These use the information from
the output of the GIMPLE Analyzer and compute the
relevant feature. For example, to compute the number of
back-edges in the control flow graph after a vectorization
pass is applied, the file code.c.veclower21.json is read
and, from the information on edge source and destination
for each basic block, an adjacency matrix is computed.
This is then used to calculate the back-edges.

D. Feature Selector

The Feature Selector uses the target features selected by
the user in the configuration file and outputs a vector of
those feature values from a list of all available features.
The Feature Selector has three parts. First, it allows the
user to select features using Principal Component Anal-
ysis (PCA). PCA is a linear dimensionality reduction
technique that transforms the p features into a smaller
k (k«p) by taking advantage of the correlations between
the input variables in the dataset. Second, it uses features
selected in prior works [7], [12]. And third, it shortlists
important features using lasso regression analysis. Lasso
or L1 is a powerful regularization technique in statistics
that shrinks the coefficients of less important features
to O thus reducing variance in ML models and enabling
better learning. A detailed analysis of results from these
techniques is presented in Section VI

IV. DATASET GENERATION

Since deep neural nets(DNNs) require a large amount
of training data, we create a large dataset that is then

fassociative-math -fno-trapping-math -fo-signed-zeros, -feonserve-stack, finite-loops, -fgcse-after-reload, -fgcse-las, -fgese-sm,
“fgraphite, -fgraphite-identity, -fipa-cp-clone, -fipa-pta, ~fira-loop-pr . fisolat paths-attribute, -fleep-go-roots-live,

J) ge, P 3 P P , -floop-parallel I, -floop- 1l Jam,
fmodulo-sched-allow-reg| . i foptimize-strlen, -fpeel-loops, -fpredictive-commoning,
ddddddd fsched. fsched-specload, -fsched-spec.load.

gisters, ps, pe)
hed-stalled-inshs, fsched: fschedul fsel-sched-pipelining,

l-sched- lined, -fselect fselecti

ignaling- 3
. -ftree-Irs,
itch-l

fsel-sched-pipeli ter- ts
fsplit-loops, -fsplit-paths, -fsplit-wide-types-early, -ftracer, -ftr lim, ~ftree-loop-distribution, -ftree-loop-vector
ftree-partial- firee-slp-vect i tori i | f

P] p . -fweb, P
tables, -fno-auto-nede. | fo-bittests, -fno-branh count P

de-hoisti

g

p-registers, jumps, -fno-dce,
-no-dse, -fo-early-inlining, -fno-exp
fno-fo-int-built t -fo- “ogese, -fog

fno-indirect-ini

M
-fno-defer-pop, -
fno-forward.

5 g P! Y,
-fno-inline, -fno-inline-atomics,
II-functi bi fno-ipa-icf,

fno-ipa-p . -fno-ipa-ra, -fo-ips
tal i p

fe fo-i f tack-ali t -fr
P pa-sra, p: g 3 P

ipa-vrp, hoist-pr 3
. -fo-ivopts, -fno-jump-tables,
inter, -fno-opti ibling-call

g P 3 P g
lue, -fno-ree, -fi truct-return, -fr der-block
ot -

, P ts,
-fno-partial-inlining, -f hole2, -fno-plt, -fro-print-ret
i der-block funct

d-partition,
heuristi

it hed.
P s -group

P
hort.

p-sep:

f
ging,

fno-split ” b -
p pt, g-opt,

-fno-thread-jumps, -f Il-dce, -fo-tree-ccp, -fno-t

fno-t fno-tree-d: T

tree-f fnodreefi

y-prop,) pts,) prop, .

Joop-distribute-patterns, -fno-tree-loop-im, -fo-tree-loop- , -fno-tree-loop-optimize, -fo-tree-phiprop, -fo-tree-pre,
fo-t fno-t fo-t k. -fno-tree-sl . -fno-t tch

P

Fig. 3: Flags used in this work for binary size cost model

used to train the DNN. A similar dataset is created for
the test set. As a first step, selected features are extracted
for the target configurations across 81 C functions. These
functions are from a curated list of applications including
linear algebra, image and signal processing, and sort-
ing. They also include applications from the Polybench
benchmarks suite [50], which has been widely used in
prior compiler optimization work [18], [51]. The dataset
used in this paper will be open sourced for the com-
munity. We split the functions into a randomly selected
training set (74 functions) and test set (7 functions).
For each C function, we create 10,000 different ran-
dom sequences of code transformations through GCC
flags given in Fig3. Each random sequence of code
transformation corresponds to on or off (0 or 1) for the
corresponding flag. Then each of the C functions is com-
piled using each GCC flag sequence and the resulting
binary size is measured from the compiled object file.
Each vector in the dataset is then a tuple of the form
[code features, sequence of code transformations/flags,
binary size] with features and flags being model inputs
and binary size being the expected output. Overall, we
generated 740,000 training and 70,000 test vectors.

V. MODEL TRAINING

We model the binary size estimation as a regression
problem implemented using a neural net in PyTorch.
The network architecture is fairly simple, with two dense
hidden layers of size 512 each. The model uses the
rectified linear unit (ReLu) activation function. We used
the Adam optimizer with a learning rate of 10e-3 and
Mean Absolute Percentage Error (MAPE) as the loss
function. This is suitable for binary code size prediction
since the target value is positive by design [18]. The
other optimizer parameters are set with default values.
On average across multiple tests, we find that the best
accuracy is achieved at around 800 epochs of training.
The input features are normalized to the instruction count

of the function. We tried min-max scaling and also
standardizing features by removing the mean and scaling
to unit variance. We noticed, however, that the learning
of the model was better when normalized with respect
to the instruction count. In addition to normalizing the
input training data to the network, we also normalize
the inputs to the layers within the network using the
mean and variance of the values in the current batch,
a technique called batch normalization [52]. This can
improve the efficiency of the neural net and also improve
the training speed. In our model batch normalization is
applied to the output of both hidden layers. We calculate
the MAPE on both the test and training sets and validate
that the values are close. This ensures that the model
is not over-fit or under-fit and can generalize well on
unseen data.

VI. EVALUATION

A. Methods

The model evaluation and data collection are performed
on a single multi-core CPU + GPU node. The CPU is a
16-core AMD Ryzen Threadripper PRO 5955WX, with
196GB of RAM. The GPU is a NVIDIA GeForce RTX
4070, with 5,888 CUDA cores and 12GB RAM. GCC
compiler version 13.2.1 is used to generate the training
and test sets. For every compilation run, the -Oz flag
is always applied; only the sequences of flags given in
Fig. 3 are varied. The test applications used for our ex-
periments were: 2mm (polybench), doitgen(polybench),
heat3d (polybench), shellSort, boxBlur, dotProduct and
JjacobiEigenvals.

Evaluating Model Accuracy: Model accuracy
was evaluated using Mean Average Percentage Error
(MAPE). This is given by:

(actual_byte_size—predicted_byte_size)
| actual_byte_size | X 100%

1<n
i=1

We have also used the Spearman rank-order correla-
tion coefficient to measure the monotonicity between the
measured and predicted test datasets. A high value shows
that the two datasets are highly correlated.

Levels of Feature Extraction: A major advantage of
our framework is that we can compute a large list of
function-level features and also at intermediate points
during the optimization pipeline of the compiler. As
discussed in Section III-B, this means that we compile
once using the -Oz flag and omit all tree dumps that GCC
generates as it optimizes the code for -Oz. These tree
dumps are labeled with the optimizing passes that the
compiler applies during that compile. For each tree dump
of the optimizing pass, we then compute the feature

vectors as discussed in Section IIl. As a next step, for
features corresponding to every pass, we generate the
training and test dataset as discussed in Section IV. The
training dataset at pass xyz is used to train the cost model,
and its prediction accuracy is recorded on the test dataset.
In this way, we shortlist which features extracted after
which pass within the optimization pipeline would result
in the best cost function.

Selecting a Subset of Features: Our framework has
the capability to extract over 100 features (describing
the function) as given in Figure 2(b). To demonstrate the
value of having such a comprehensive set of code fea-
tures, referred to as All Features, we evaluate prediction
accuracy with two methods of feature space pruning. The
first method is to statically prune the feature space. This
is done by using the feature set given in [12], which is the
state-of-the-art work in compiler optimization. We refer
to this feature space as Autophase. The second method
is to prune the feature space at runtime. This is done
using L1 or Lasso Regularization. Lasso regularization is
applied to the weights of both the layers in the neural net
and added to the overall loss computed for the training
loop. We refer to this feature space as Lasso. We also
tried other feature selection techniques such as PCA and
Random Forests. However, these last techiques did not
give any significant improvement in prediction accuracy
of the cost model and hence have been omitted.

B. Finding the Best Level of Feature Extraction

Figure 4 shows the results. A lower MAPE means higher
accuracy. The results are shown for different types of
feature selections used to train individual cost functions
for different passes: All Features from Figure 2(b), prior
state-of-art, Autophase [12], and using Lasso Regression.
We see that the best accuracy for All Features and
Autophase Features occurs at the ccp2 and ccp3 passes,
respectively. This is the conditional constant propagation
optimization that aims to simplify instructions and local
scalar variables [53]. The numbers “2" and “3" mean
that the respective pass is being applied for the 2nd or
3rd time during the optimization pipeline. For Lasso,
features extracted for tree dumps after the waccess3 pass
and then used to train the cost model give the best cost
model accuracy. We find that waccess3 is one of the
last GIMPLE passes to be applied in the optimization
pipeline and that, for majority applications, it indeed
gives improved feature values (such as lower Halstead
difficulty, fewer local variables, and a smaller average
number of instructions per basic block).

Mean Absolute Percent Error (MAPE) of different cost models trained with features extracted after each optimization pass (compiled with -Oz) - Lower is better

A/\J\/W\M

0%

= All features = Autophase based features

\/fv ‘/\/\/\/___/—\ \/ _/\//\/\/\/\/\\ /\ \//\\/

D S e V2 i S

~—— ————

Mean Absolute Percent Error

SISy
FEP :‘;.\fjf‘}ﬁfyf g T
/ y o

Passes

Lasso based features

P A \9«‘.§(\,‘J-‘~1¢_‘y420- S

Fig. 4: MAPE values after each optimization pass for three different types of feature selection: All Feature
(Comprehensive), Autophase (Prior State-of-art Subset) and Lasso (Runtime Statistical Pruning in Neural Net).

Autophase based features after the
ccp? pass

All features after the ccp2 pass
40000 40000
30000 30000

20000 20000

of test vectors
of test vectors

10000 10000

100%
90%
-B0%
T0%
60%
50%
=40%
30%
-20%
10%
0%
10%
20%
30%
40%
50%
60%
T0%
80%
0%
100%

Relative Error Relative Error

40000

30000

20000

of test vectors

10000

Lasso based features after the
waccessi pass

Fig. 5: Percent error distribution for passes that give the best cost model accuracy.

TABLE I : Summary of results

D. Accuracy of individual test applications

All Features | Autophase Lasso
Best test MAPE 8.00% 10.14% 9.79%
Compiler pass ccp2 ccp3 waccess3
Accuracy 92.0% 89.9% 90.2%
Spearman coefficient 0.98 0.97 0.97

C. Computing the Best Subset of Features

We ask: Which subset of the selected features’ set is
better at training the binary size cost model for GCC?
From training individual cost models using features
extracted after passes, we find that the least MAPE error
occurs using the proposed comprehensive list of All
Features. The MAPE of this cost model is 8%. If we train
the cost model using features proposed by Autophase
then the MAPE is 10%, and for features selected by
Lasso it is 9.79%. These results are summarized in Table
I. The Spearman rank coefficient of the cost model
is 0.98 when using All Features. This shows that the
predicted and measured binary sizes on the test set are
highly correlated. Figure 5 shows the accuracy of the cost
model visualized as bar plot when used to evaluate the
test dataset. The x-axis gives the relative error between
predicted and measured sizes, aggregated into buckets
of size 10%. The y-axis lists the number of predictions
made on the test set that lie in that range of relative
error. We note that for “All Features/ccp2” the majority
of the test cases have error less than 5%. In contrast, the
relative error of “Autophase/ccp3” has higher variance.

Table II shows the prediction accuracy for individual
applications in the test set, evaluated using the All
Features/ccp2 model. The majority achieved >95% ac-
curacy, while the lowest accuracy was 80%.

E. Model Accuracy Comparison with Prior Work

We compare the performance of other cost models
trained for compilers such as Tiramisu and GraalVM. In
[18], the authors have 16% MAPE in predicting speedups
on full programs for the Tiramisu compiler. We achieve
MAPE of 8%. In [46] the authors designed a cost model
for the Graal VM compiler and quote accuracy in terms of
70% applications lying within 10% of the correct target
value. In our case over 86% applications lie within 10%
of the corrected predicted binary size.

E. Performance Improvements With Our Cost Model

We ask: How much speedup is possible by substituting
GCC'’s binary size computation with the proposed neural
net cost model? How much advantage can be extracted
by using a GPU for the inference from the trained cost
model? And, How many test cases (batch size) would be
needed for the GPU inference to outperform the CPU?

To answer these questions, we measured the time to
evaluate the binary size for a given tuple of C function

TABLE II : Average accuracy for test applications

2mm
96%

heat3d
88%

boxBlur
95%

jacobi
96%

shellSort
80%

dotproduct
94%

doitgen
95%

and target compiler flags. Measurements were done for
the following combinations: running the actual GCC
compiler (CPU + GCC), running inference for the cost
model on the CPU (CPU + Cost Model), and running
inference on the GPU (GPU + Cost Model). For GPU
inference, we varied the batch size from 2 to 1024.
From Table III, see that speedup of multiple orders of
magnitude is achieved by using the cost model. Even if a
compiler tuning workload is fully deployed on the CPU,
it is still over 700x faster to use the cost model than the
actual compiler. Moreover, in scenarios where multiple
test vectors need to be evaluated in a batch, the GPU
based inference will significantly outperform CPU.

TABLE III : Performance improvement from cost model

Method Speedup over CPU + GCC
CPU + GCC 1

CPU + Cost Model 705

GPU + Cost Model (Batch size=2) 134

GPU + Cost Model (Batch size=16) 1675

GPU + Cost Model (Batch size=1K) 134000

VII. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we present a GCC feature extraction
framework that is able to generate a comprehensive set of
code features. The intermediate representation used for
it can be selected after multiple points in the compilation
process. We also present cost model architecture for
faster compiler tuning that achieves a high accuracy of
92%, and can deliver orders of magnitude speedup versus
running the compiler.

Though we are able to achieve good numbers on
MAPE and Spearman’s correlation, we still believe we
can improve our cost model by incorporating further rep-
resentation learning to better generate embeddings from
the feature vectors. We can also improve the structure
of the neural net to enble better learning. Moreover, we
can increase the number of applications both for train and
test. We can also create a better pool of applications, with
varied binary sizes and codes. We can identify which
type of applications the model is not able to predict so
well and then employ advanced techniques such as code
similarity analysis or fine tuning over specific application
sets to increase their prediction accuracies.

ACKNOWLEDGEMENTS

This work was supported, in part, by grant 2024-01-
RHO1 from Red Hat. The authors also want to thank
Professor Manuel Egele of Boston University for his
valuable guidance and mentorship.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(91

(10]

(11]

[12]

[13]

(14]

REFERENCES

S. Kulkarni and J. Cavazos, “Mitigating the compiler opti-
mization phase-ordering problem using machine learning,” in
Proceedings of the ACM international conference on Object
oriented programming systems languages and applications,
2012, pp. 147-162.

A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and
C. Silvano, “A survey on compiler autotuning using machine
learning,” ACM Computing Surveys (CSUR), vol. 51, no. 5, pp.
1-42, 2018.

R. Mammadli, A. Jannesari, and F. Wolf, “Static Neural Com-
piler Optimization via Deep Reinforcement Learning,” in 2020
IEEE/ACM 6th Workshop on the LLVM Compiler Infrastructure
in HPC (LLVM-HPC) and Workshop on Hierarchical Paral-
lelism for Exascale Computing (HiPar). 1EEE, 2020, pp. 1-11.
Z. Gong, Z. Chen, J. Szaday, D. Wong, Z. Sura, N. Watkinson,
S. Maleki, D. Padua, A. Veidenbaum, A. Nicolau et al., “An
empirical study of the effect of source-level loop transfor-
mations on compiler stability,” Proceedings of the ACM on
Programming Languages, vol. 2, no. OOPSLA, pp. 1-29, 2018.
T. Theodoridis, M. Rigger, and Z. Su, “Finding missed op-
timizations through the lens of dead code elimination,” in
Proceedings of the 27th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems, 2022, pp. 697-709.

T. Jayatilaka, H. Ueno, G. Georgakoudis, E. Park, and J. Do-
erfert, “Towards compile-time-reducing compiler optimization
selection via machine learning,” in 50th International Confer-
ence on Parallel Processing Workshop, 2021, pp. 1-6.

G. Fursin, Y. Kashnikov, A. W. Memon, Z. Chamski, O. Temam,
M. Namolaru, E. Yom-Tov, B. Mendelson, A. Zaks, E. Cour-
tois et al., “Milepost GCC: Machine Learning Enabled Self-
tuning Compiler,” International journal of parallel program-
ming, vol. 39, no. 3, pp. 296-327, 2011.

A. F. d. Silva, B. N. De Lima, and F. M. Q. Pereira, “Exploring
the space of optimization sequences for code-size reduction:
Insights and tools,” in Proceedings of the 30th ACM SIGPLAN
International Conference on Compiler Construction, 2021, pp.
47-58.

H. Shahzad, A. Sanaullah, S. Arora, U. Drepper, and M. Her-
bordt, “Autoannotate: Reinforcement learning based code an-
notation for high level synthesis,” in 2024 25th International
Symposium on Quality Electronic Design (ISQED). IEEE,
2024, pp. 1-9.

H. Shahzad, A. Sanaullah, S. Arora, R. Munafo, X. Yao,
U. Drepper, and M. Herbordt, “Reinforcement learning strate-
gies for compiler optimization in high level synthesis,” in
2022 IEEE/ACM Eighth Workshop on the LLVM Compiler
Infrastructure in HPC (LLVM-HPC). 1EEE, 2022, pp. 13-22.
Y. Liang, K. Stone, A. Shameli, C. Cummins, M. Elhoushi,
J. Guo, B. Steiner, X. Yang, P. Xie, H. J. Leather et al.,
“Learning compiler pass orders using coreset and normalized
value prediction,” in International Conference on Machine
Learning. PMLR, 2023, pp. 20746-20762.

A. Haj-Ali, Q. J. Huang, J. Xiang, W. Moses, K. Asanovic,
J. Wawrzynek, and 1. Stoica, “Autophase: Juggling hls phase
orderings in random forests with deep reinforcement learning,”
Proceedings of Machine Learning and Systems, vol. 2, pp. 70—
81, 2020.

M. Trofin, Y. Qian, E. Brevdo, Z. Lin, K. Choromanski,
and D. Li, “MLGO: a Machine Learning Guided Compiler
Optimizations Framework,” arXiv preprint arXiv:2101.04808,
2021.

T. A. Wagner, V. Maverick, S. L. Graham, and M. A. Har-
rison, “Accurate static estimators for program optimization,”

(15]

(16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

in Proceedings of the ACM SIGPLAN 1994 conference on
Programming language design and implementation, 1994, pp.
85-96.

S. Kulkarni, J. Cavazos, C. Wimmer, and D. Simon, “Automatic
construction of inlining heuristics using machine learning,” in
Proceedings of the 2013 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO). 1EEE, 2013,
pp. 1-12.

Z. Wang and M. O’Boyle, “Machine Learning in Compiler
Optimization,” Proceedings of the IEEE, vol. 106, no. 11, pp.
1879-1901, 2018.

A. Adams, K. Ma, L. Anderson, R. Baghdadi, T.-M. Li,
M. Gharbi, B. Steiner, S. Johnson, K. Fatahalian, F. Durand
et al., “Learning to optimize halide with tree search and random
programs,” ACM Transactions on Graphics (TOG), vol. 38,
no. 4, pp. 1-12, 2019.

R. Baghdadi, M. Merouani, M.-H. Leghettas, K. Abdous, T. Ar-
baoui, K. Benatchba ez al., “A deep learning based cost model
for automatic code optimization,” Proceedings of Machine
Learning and Systems, vol. 3, pp. 181-193, 2021.

M. Poorhosseini, W. Nebel, and K. Griittner, “A compiler
comparison in the risc-v ecosystem,” in 2020 International
Conference on Omni-layer Intelligent Systems (COINS). 1EEE,
2020, pp. 1-6.

V. Seeker, C. Cummins, M. Cole, B. Franke, K. Hazelwood, and
H. Leather, “Revealing compiler heuristics through automated
discovery and optimization,” in 2024 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO).
IEEE, 2024, pp. 55-66.

A. F. Da Silva, B. C. Kind, J. W. de Souza Magalhies, J. N.
Rocha, B. C. F. Guimaraes, and F. M. Q. Pereira, “Anghabench:
A suite with one million compilable ¢ benchmarks for code-
size reduction,” in 2021 IEEE/ACM International Symposium
on Code Generation and Optimization (CGO). 1EEE, 2021,
pp. 378-390.

R. C. Rocha, P. Petoumenos, Z. Wang, M. Cole, K. Hazel-
wood, and H. Leather, “Hyfm: Function merging for free,” in
Proceedings of the 22nd ACM SIGPLAN/SIGBED International
Conference on Languages, Compilers, and Tools for Embedded
Systems, 2021, pp. 110-121.

H. Massalin, “Superoptimizer: a look at the smallest program,”
ACM SIGARCH Computer Architecture News, vol. 15, no. 5,
pp. 122-126, 1987.

H. Wang, Z. Tang, C. Zhang, J. Zhao, C. Cummins, H. Leather,
and Z. Wang, “Automating Reinforcement Learning Architec-
ture Design for Code Optimization,” in Proceedings of the
31st ACM SIGPLAN International Conference on Compiler
Construction, 2022, pp. 129-143.

R. C. Rocha, P. Petoumenos, Z. Wang, M. Cole, and H. Leather,
“Effective function merging in the ssa form,” in Proceedings of
the 41st ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2020, pp. 854—868.

C. Cummins, B. Wasti, J. Guo, B. Cui, J. Ansel, S. Gomez,
S. Jain, J. Liu, O. Teytaud, B. Steiner et al., “CompilerGym:
Robust, Performant Compiler Optimization Environments for
Al Research,” in 2022 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO). IEEE, 2022, pp.
92-105.

T. Theodoridis and Z. Su, “Refined input, degraded output: The
counterintuitive world of compiler behavior,” Proceedings of the
ACM on Programming Languages, vol. 8, no. PLDI, pp. 671—
691, 2024.

CTuning, “Reproducing =~ MILEPOST Project using
CK Framework (Machine Learning based Self-tuning
Compiler),” https://github.com/ctuning/reproduce-milepost-
project?tab=readme-ov-file [Last accessed: July 1, 2024].

(29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

(42]

[43]

[44]

DavidMalcolm, “GCC Plugin that Embeds CPython inside the
Compiler,” https://github.com/davidmalcolm/gcc-python-plugin
[Last accessed: July 4, 2024].
LLVM, “LLVM opt -stats,”
mirror/llvm/blob/master/lib/Analysis/InstCount.cpp
accessed: July 9, 2024].

C. Mendis, A. Renda, S. Amarasinghe, and M. Carbin, “Ithe-
mal: Accurate, portable and fast basic block throughput estima-
tion using deep neural networks,” in International Conference
on machine learning. PMLR, 2019, pp. 4505-4515.

0. Sykora, P. M. Phothilimthana, C. Mendis, and A. Yazdan-
bakhsh, “Granite: A graph neural network model for basic block
throughput estimation,” in 2022 IEEE International Symposium
on Workload Characterization (IISWC). 1EEE, 2022, pp. 14—
26.

A. Abel, S. Sharma, and J. Reineke, “Facile: Fast, accurate,
and interpretable basic-block throughput prediction,” in 2023
IEEE International Symposium on Workload Characterization
(IISWC). IEEE, 2023, pp. 87-99.

A. Renda, Y. Chen, C. Mendis, and M. Carbin, “Difftune:
Optimizing cpu simulator parameters with learned differentiable
surrogates,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1EEE, 2020, pp.
442-455.

LLVM, “llvm-mca - LLVM Machine Code Analyzer,” https:
/Mlvm.org/docs/CommandGuide/llvm-mca.html [Last accessed:
July 2, 2024].

J. Laukemann, J. Hammer, J. Hofmann, G. Hager, and
G. Wellein, “Automated instruction stream throughput predic-
tion for intel and amd microarchitectures,” in 2018 IEEE/ACM
performance modeling, benchmarking and simulation of high
performance computer systems (PMBS). 1EEE, 2018, pp. 121-
131.

Intel, “Intel® Architecture Code Analyzer,” https://www.intel.
com/content/www/us/en/developer/articles/tool/architecture-
code-analyzer.html [Last accessed: July 2, 2024].

Z. Lin, Performance Modeling and Optimization for Machine
Learning Workloads. University of California, Davis, 2023.
A. Abel and J. Reineke, “vica: Accurate throughput predic-
tion of basic blocks on recent intel microarchitectures,” in
Proceedings of the 36th ACM International Conference on
Supercomputing, 2022, pp. 1-14.

Y. Chen, A. Brahmakshatriya, C. Mendis, A. Renda, E. Atkin-
son, O. Sykora, S. Amarasinghe, and M. Carbin, “Bhive: A
benchmark suite and measurement framework for validating
x86-64 basic block performance models,” in 2019 IEEE In-
ternational Symposium on Workload Characterization (IISWC).
IEEE, 2019, pp. 167-177.

E. Ipek, B. R. De Supinski, M. Schulz, and S. A. McKee, “An
approach to performance prediction for parallel applications,”
in Euro-Par 2005 Parallel Processing: 11th International Euro-
Par Conference, Lisbon, Portugal, August 30-September 2,
2005. Proceedings 11. Springer, 2005, pp. 196-205.

M. Rahman, L.-N. Pouchet, and P. Sadayappan, “Neural net-
work assisted tile size selection,” in International Workshop on
Automatic Performance Tuning (IWAPT’2010). Berkeley, CA:
Springer Verlag, 2010.

C. Dubach, J. Cavazos, B. Franke, G. Fursin, M. F. O’Boyle,
and O. Temam, “Fast compiler optimisation evaluation using
code-feature based performance prediction,” in Proceedings of
the 4th international conference on Computing frontiers, 2007,
pp. 131-142.

E. J. Park, Automatic Selection of Compiler Optimizations using
Program Characterization and Machine Learning. University
of Delaware, 2015.

https://github.com/llvm-
[Last

[45]

[46]

[47]

(48]

[49]

(50]

(51]

(52]

(53]

E. Park, J. Cavazos, L.-N. Pouchet, C. Bastoul, A. Cohen,
and P. Sadayappan, “Predictive modeling in a polyhedral opti-
mization space,” International journal of parallel programming,
vol. 41, no. 5, pp. 704-750, 2013.

R. Mosaner, D. Leopoldseder, L. Stadler, and H. M&ssenbock,
“Using machine learning to predict the code size impact of
duplication heuristics in a dynamic compiler,” in Proceedings of
the 18th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes, 2021, pp. 127-135.
GNU, “GCC Command Options,” https://gcc.gnu.org/
onlinedocs/gcc/Option-Summary.html [Last accessed: July
7, 2024].

GCC, “x86 Options,” https://gcc.gnu.org/onlinedocs/gcc/x86-
Options.html [Last accessed: July 7, 2024].

J. Merrill, “Generic and gimple: A new tree representation for
entire functions,” in Proceedings of the 2003 GCC Summit,
2003, pp. 171-180.

L.-N. Pouchet et al, “Polybench: The Polyhedral
Benchmark Suite,” URL: http://www. cs. ucla.
edu/pouchet/software/polybench, vol. 437, pp. 1-1, 2012.

N. B. Agostini, S. Curzel, V. Amatya, C. Tan, M. Minutoli, V. G.
Castellana, J. Manzano, D. Kaeli, and A. Tumeo, “An MLIR-
based compiler flow for system-level design and hardware
acceleration,” in International Conference on Computer-Aided
Design, 2022, pp. 1-9.

S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” in
International Conference on Machine Learning. PMLR, 2015,
pp. 448-456.

GCC, “Sparse Conditional Constat Propagation,” http://gnu.ist.
utl.pt/software/gcc/news/ssa-ccp.html [Last accessed: July 13,
2024].

