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Abstract—In sensor array applications, it can be advantageous
to project data onto a given signal subspace, for example, to
improve the SNR or as part of direction finding algorithms.
In the broadband case, a projection operator can be derived
via polynomial matrices and, more specifically, from a space-
time covariance matrix. Traditional methods perform a complete
polynomial eigenvalue decomposition (PEVD) to achieve this,
which can be computationally intensive. We propose a novel
method to compute these subspace matrices directly, without the
need for a full PEVD. Our approach is evaluated against existing
methods using an ensemble of randomized para-Hermitian ma-
trices, demonstrating significant improvements in both accuracy
and computation time.

I. INTRODUCTION

Over the past two decades, the extension of ordinary matrix
algebra to polynomial matrices has found successful appli-
cations in broadband beamforming [1, 2], speech enhance-
ment [3], broadband MIMO design [4–6], subband coding [7],
broadband angle of arrival estimation [8], and broadband
blind source separation [9, 10], voice activity detection [11],
and transient signal detection [12, 13] to name but a few.
The majority of these applications require the estimation
of a space-time covariance matrix to capture the second-
order statistics between sensor signals. To decorrelate these
signals or extract dominant signal components, a polynomial
eigenvalue decomposition (PEVD) is typically computed. The
estimated eigenvectors are then used to compute subspace
projection matrices.

Generally speaking, the ‘diagonalization’ PEVD algorithms,
like sequential second order best rotation (SBR2) [7, 14],
sequential matrix diagonalization (SMD) [15], and their vari-
ants [16, 17] are often employed due to their comparatively
lower computational cost compared to the analytic, or compact
polynomial order, PEVD algorithms [18–20]. However, these
iterative approaches only provide approximate diagonalization
while also spectrally majorizing the eigenvalues [14], leading
to leakage between subspaces [11]. Although this leakage
can be mitigated by using analytic EVD algorithms, such
algorithms are currently very computationally expensive even
when resorting to optimised implementations [21–23].

In this document, we highlight the need to compute analytic
subspace projection matrices without explicitly performing the
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analytic EVD. We propose a Fourier domain method that
computes the ordinary EVD of each of the discrete Fourier
transform (DFT) samples of the space-time covariance matrix.
The eigenvalues and eigenvectors in each DFT bin are then
permuted to create a smooth association across the bins.
These eigenvectors are used to estimate the DFT samples of
the analytic subspace projection matrices. The DFT size is
iteratively increased until the time-domain aliasing incurred
in reverting these subspace projection matrices to the time
domain becomes negligible.

II. EXISTENCE OF ANALYTIC EVD & SUBSPACE
PROJECTION MATRICES

A. Existence

A cross-spectral density matrix R(z) is the z−transform
of a space-time covariance matrix R[τ ], τ ∈ Z, such that
R(z) =

∑
τ R[τ ]z−τ . It is para-Hermitian symmetric i.e. it

is equal to its para-Hermitian conjugate RP(z) = RH(1/z∗)
i.e. Hermitian conjugation plus time reversal [24]. Any such
para-Hermitian matrix R(z) : C→ CM×M , which is analytic
in nature and does not come from a system with multiplexing,
admits an analytic EVD [25, 26] as

R(z) = Q(z)Λ(z)QP(z) . (1)

The analytic eigenvectors are contained within the columns of
Q(z) = [q1(z), . . . , qM (z)], which is a paraunitary matrix,
i.e., Q(z)QP(z) = I, and Λ(z) = diag{λ1(z), . . . , λM (z)}
is a para-Hermitian diagonal matrix of analytic eigenvalues
λm(z), m = 1, . . . ,M . We here assume that the analytic
eigenvalues are distinct, such that on the unit circle σm(ejΩ) =
σµ(e

jΩ), ∀Ω, is only possible in the case m = µ.
The analytic eigenvectors qm(z), m = 1, . . . ,M , are

ambiguous up to arbitrary all-pass functions, i.e., if ϕm(z)
is an all-pass function, then qm(z)ϕm(z) is also a valid mth
eigenvector. The polynomial orders of qm(z) and qm(z)ϕm(z)
can be radically different. This phenomenon complicates al-
gorithms that seek analytic eigenvectors if they are required to
be low-order polynomials as the all-pass function ϕm(z) that
minimises the order of the eigenvectors must be found [20].
In earlier PEVD algorithms [14, 15], this order issue has been
coarsely addressed by identifying simple allpass functions in
the form of delays [27], and by order truncation [28]; this
however affects the precision of the PEVD factorisation.



B. Subspace Projection

The analytic subspace projection matrix corresponding to
the mth eigenvector qm(z) is given by

Pm(z) = qm(z)qP
m(z) . (2)

This Laurent polynomial subspace projection matrix Pm(z)
is para-Hermitian symmetric. As such, the all-pass ambiguity
of the eigenvectors cancels, i.e.,

qm(z)ϕm(z) (qm(z)ϕm(z))
P
= qm(z)qP

m(z) . (3)

The calculation of a suitable allpass function ϕm(z) for each
analytic eigenvector in [20] is generally an NP-hard problem.
Hence if it was possibe to calculate Pm(z) directly, bypassing
the explicit computation of a ϕm(z) that minimises the support
of the eigenvectors qm(z), then the polynomial subspace
projection matrices could be calculated at a much lower cost.

III. PROPOSED APPROACH

A. Bin-Wise EVD R[τ ]

The proposed approach first computes the DFT sample point
Rk = R(ejΩk) = R(z)

∣∣
z=ejΩk

where Ωk = 2πk/K for k =
0, . . . , (K − 1), i.e. the result of a K-point DFT applied to
R[τ ]. Note that Rk is Hermitian symmetric and so admits an
ordinary EVD producing

R(ejΩk) = Rk = QkΛkQ
H
k for k = 0, . . . , (K − 1) ,

(4)

where Λk = diag{d1,k, . . . , dM,k} , dm,k ≥ dm+1,k, m =
1, . . . , (M − 1) is a real diagonal matrix of eigenvalues, and
Qk represents the eigenvector matrix at the kth sample point.
As (4) is computed independently in different DFT bins, we
will refer to it as the bin-wise EVD throughout this document.

With the bin-wise EVD computed, the EVD factors in
different bins can be related to the respective analytic functions
in (1) sampled at z = ejΩk akin to [19, 20] as

Λ(ejΩk) = PkΛkP
H
k (5)

Q(ejΩk) = QkAkPkΦk (6)

where Pk is a permutation matrix and Φk is a diagonal matrix
containing phases for establishing phase coherence between
adjacent DFT bins. If the k-th bin has non-trivial algebraic
multiplicities, the unitary matrix Ak aligns the 1-d subspaces
in which the eigenvectors reside. If there are no non-trivial
algebraic multiplicities, Ak is an identity matrix.

B. Determining Permutation Matrices

To avoid having to calculate Ak when there are non-trivial
algebraic multiplicities, we adopt the approach from [23].
Assume that R(ejΩk) where Ωk = 2πk/K has some non-
trivial algebraic multiplicities. We replace this sample point
with Ωk = 2π(k + qk)/K where 0 < qk ≪ 1 is such that
R(ejΩk) now has no non-trivial algebraic multiplicities. This
is possible due the analytic nature of the eigenvalues [23].
This results in a set of bin-wise EVDs that relate to the
analytic EVD functions as in (5) and (6) but with Ak = I ∀k.

The determination of the permutation matrices Pk are then
determined by assessing the orthogonality of the bin-wise
eigenvectors between adjacent DFT bins [23]. The penalty
for this simplification is that our sample grid is non-uniform
which slightly complicates performing an IFFT [29, 30] – see
Sec. III-D.

The procedure for determining the permutation Pk is as
follows: with P0 = I and Q̄0 = Q0Pk = [q̄1,0, . . . q̄M,0], for
m = 1, . . . ,M , we determine

nm,k = argmax
n

|q̄H
m,k−1qn,k|, n = 1, . . . ,M , (7)

starting with k = 1. Once for a certain 0 < k ≤ (K − 1),
we have determined the quantity nm,k,m = 1, . . . ,M , the
corresponding permutation matrix in the kth bin is equal to

Pk = [in1,k
, . . . , inM,k

] , (8)

where im is the mth column of an M ×M identity matrix.
Before proceeding to the next bin, we update Q̄k = QkPk =
[q̄1,k, . . . q̄M,k], where q̄m,k is now the permutation-corrected
mth eigenvaue on the kth bin. This process is repeated for
subsequent bins k = 1, . . . , (K − 1).

C. Bin-Wise Subspace Projection Matrices

With Pk, k = 0, . . . , (K − 1) determined and Ak = I ∀k
due to frequency shifts, (6) can be reformulated as

Q(ejΩk) = Q̄kΦk . (9)

The sample points of the analytic subspace projection matrix
in (2) can be related to the factors in (9) as

Pm(ejΩk) = qm(ejΩk)qH
m(ejΩk) = q̄m,kq̄

H
m,k , (10)

where the phase ambiguity, Φk, cancels out similar to the
allpass ambiguity cancellation in (3). Thus samples of the
analytic subspace projection matrix can be obtained directly
from the bin-wise permuted eigenvector matrix without the
need to address the phase ambiguities.

D. Sufficient DFT Size Determination

In general, Q(z) is a matrix valued transcendental func-
tion [25] and, therefore, has an infinite Laurent series repre-
sentation. The same is true for the corresponding subspace
projection matrix constructed with Q(z). However, due to
analyticity, even the infinite Laurent series must converge
absolutely. As a result, these analytic subspace projection
matrices can be approximated in the least square sense by
para-Hermitian polynomial matrices of finite order through
truncation and masking, similar to the Laurent polynomial
approximation of analytic eigenvectors [20].

To achieve an acceptable finite order approximation for
the analytic subspace projection matrices in the least squares
sense, we rely on the time-domain aliasing incurred in the
inverse DFT (IDFT) of the sample points Pm(ejΩk). To
capture the time-domain aliasing, we compare the time-domain
sequences obtained from two different DFT sizes, K and K/2,



i.e. Pm(ejΩk)|k=0,...,(K−1) and Pm(ejΩ2k)|k=0,...,K/2−1. The
metric used is

γm =

∑
τ∥P̂

(K)
m [τ ]− P̂(K/2)

m [τ ]∥2F∑
τ∥P̂

(K)
m [τ ]∥2F

, (11)

where P̂(K)
m [τ ] is the time-domain sequence obtained from K-

point IDFT, and ∥·∥F denotes the Frobenius norm. The DFT
size is iteratively increased until γm falls below a sufficiently
small non-zero preset threshold ϵ.

Note however that if it was necessary to adjust the posi-
tions of the frequency domain sample points to avoid non-
trivial algebraic multiplicities as in section III-B the frequency
domain samples of the analytic subspace projection matrix
Pm(ejΩk)|k=0,...,(K−1) are on a non-uniform grid. Hence the
inverse DFT could, in principal, require inverting a K × K
matrix or simply apply a non-uniform inverse fast Fourier
transform in [29, 30]. However, there is a more economical
approach for computing the inverse of the non-uniform DFT
for the case where only some k′ ≪ K DFT bins are shifted.
Such a low-cost approach can be applied similarly to [23].

E. Overall Procedure
The procedure begins by setting the initial DFT size equal

to the next power of 2 higher than the polynomial order
of R(z), denoted as O{R(z)}. Then EVDs are computed
within the DFT bins, with shifts applied to those DFT bins
where the minimum eigenvalue distance |dm,k − dm+1,k| in
any bin is less than ε. Instead of setting ε to 0, we set it
to a non-zero small value of the order 10−6 to avoid tightly
clustered eigenvalues, which may also lead to discontinuities
in the alignment of 1-d subspaces [25, 31]. The permutation
matrices Pk are determined through (7) and (8) bin-by-bin.
In each iteration, we updates Q̄k = Q̄Pk, since Q̄k−1 of the
previously sorted bin is required to determine the permutation
for the new bin. Subsequently, the samples of the analytic
subspace projection matrix are computed through (10). Finally,
the algorithm computes γ via (11), and if γ is smaller than ϵ,
the algorithm terminates; otherwise, the DFT size is doubled.
The latter allows to rely on efficient FFT calculations, and
to reuse the EVDs in half of those bins where they have
been already evaluated previously. This entire procedure is
outlined in Algorithm 1, yielding an approximation P̂m(z) of
the projection matrix in (2).

IV. SIMULATIONS AND RESULTS

A. Performance Metrics
The proposed approach is compared against the SBR2 [14]

and SMD [15] methods via following performance metrics:
• polynomial order O{P̂m(z)} of P̂m(z);
• the accuracy of the estimated analytic subspace projection

matrix is which measured w.r.t. its difference with the
ground truth projection matrices as

ξ =

M∑
m=1

∑
τ∥Pm[τ ]− P̂m[τ ]∥2F∑

τ∥Pm[τ ]∥2F
; (12)

• algorithm execution time.

Algorithm 1: Subspace Projection Matrix Algorithm

Input: R(z), ϵ, ελ;
Output: P̂m(z);
initialise K = 2ceil[log2(O{R(z)})], γ = 1 + ϵ, P0 = I;
while γ > ϵ do

determine EVDs in K DFT bins with shifting bin
frequency if min |dm,k − dm+1,k| < ελ;
Q̄0 = Q0P0;
for k = 1 : (K − 1) do

determine nm,k via (7) for m = 1, . . . ,M ;
determine Pk via nm,k from (8);
Q̄k = QkPk;

end
Pm(ejΩk) = q̄m,kq̄

H
m,k for k = 0, . . . , (K − 1);

determine γm via (11);
K ← 2K;
What about the IDFT?

end
P̂m(z) =

∑
τ P̂

(K/2)
m [τ ]z−τ

B. Ensemble Tests

The proposed approach and benchmark algorithms are com-
pared over an ensemble of both spectrally majorised and
unmajorised para-Hermitian matrices constructed through the
source model in [7, 15, 19]. This source model is based on
generating R(z) from a sequence of elementary paraunitary
matrices [24] and innovation filters [32] that shape λm(z),
such that the ground truth factors of (1) are known. We com-
pare the statistics for the above performance metrics over an
ensemble of 200 instantiations of R(z) with a spatial dimen-
sion of M = 3 for each value of Λ(z) = {4, 8, 12, . . . , 40}
and O{Q(z)} = {2, 4, . . . , 20}. Since the performance com-
parison can vary significantly depending on the nature of the
power spectral densities of the broadband sources, we provide
results for both overlapping and non-overlapping cases of the
sources’ power spectral densities.

The SMD and SBR2 algorithms are executed for a max-
imum of 300 iterations unless the off-diagonal energy falls
below 10−5. Intermediate paraunitary and partially diagonal-
ized matrices are truncated via a threshold of 10−5 [28].
For lower-order paraunitary matrices, the row-shift corrected
truncation approach is used from [27] The proposed approach
is executed with ϵ = ελ = 10−6. The following simulation
results were obtained on an 11th Gen Intel(R) Core(TM) i7-
11800H processor running at 2.30GHz with 16 CPUs.

The ensemble test results for spectrally majorised instan-
tiations are illustrated in Fig. 1, where the execution time
of the proposed approach in Fig. 1(a) is considerably less
than that of the benchmark algorithms. Notably, the proposed
approach’s execution time for an ensemble consisting of
instantiations with a spatial dimension of M = 9 is also less
than the benchmark algorithms’ time for M = 3. Similarly,
the accuracy of the subspace projection matrices produced by
the proposed approach is orders of magnitude higher than the



Fig. 1. Ensemble test performed over 200 instantiations of majorised R(z)
with (a) showing the execution time, (b) normalized error, and (c) polynomial
order of the produced subspace projection matrices.

results produced by SBR2 and SMD, as shown in Fig. 1(b).
This is due to the fact that both SMD and SBR2 are only
able to approximate (1) [25]. Lastly, the polynomial order of
the subspace matrices is lower for all values O{Q}(z) for
the proposed method, as shown in Fig. 1(c). This reduction in
polynomial order results in lower-cost implementation, min-
imizing resource usage when these filter banks are deployed
on DSPs or FPGAs.

For unmajorised instantiations, the benchmark algorithms
show increased execution time, error, and polynomial order
due to their tendency to converge to a spectrally majorised
solution (see Fig. 2). Specifically, the ξ metric is signif-
icantly higher for SBR2/SMD, exceeding 1, reflecting the
unsuitability of these methods for spectrally unmajorised para-
Hermitian matrices. Since SBR2 and SMD encourage or can
even be shown to converge towards [33] a spectrally majorised
solution, their approximation of (1) becomes even coarser [25].
In contrast, the proposed approach demonstrates orders of
magnitude better performance across all three metrics. The
scalability of the proposed approach is shown through sim-
ulations with a spatial dimension of M = 9, where it still
considerably outperforms the benchmark algorithms’ results

Fig. 2. Ensemble test performed over 200 instantiations of unmajorised R(z)
with (a) showing the execution time, (b) normalized error, and (c) polynomial
order of the produced subspace projection matrices.

for M = 3.

V. CONCLUSION

A novel method for estimating analytic subspace projection
matrices has been introduced, which bypasses the need for
computing a full analytic eigenvalue decomposition (EVD).
This approach involves performing an ordinary EVD within
the DFT bins of a para-Hermitian polynomial matrix. It then
ensures smooth association across the DFT bins by evaluating
the orthogonality of eigenvectors in adjacent bins. Compared
to existing algorithms, the proposed method demonstrates
superior performance in execution time, accuracy and poly-
nomial order of the subspace projection matrix.
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