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Abstract—Many parallel applications rely on iterative stencil
operations, whose performance are dominated by communication
costs at large scales. Several MPI optimizations, such as persistent
and partitioned communication, reduce overheads and improve
communication efficiency through amortized setup costs and re-
duced synchronization of threaded sends. This paper presents the
performance of stencil communication in the Comb benchmark-
ing suite when using non-blocking, persistent, and partitioned
communication routines. The impact of each optimization is
analyzed at various scales. Further, the paper presents an analysis
of the impact of process count, thread count, and message size
on partitioned communication routines. Measured timings show
that persistent MPI communication can provide a speedup of up
to 37% over the baseline MPI communication, and partitioned
MPI communication can provide a speedup of up to 68%.

Index Terms—MPI, stencil exchanges, communication, persis-
tent communication, partitioned communication

I. INTRODUCTION

Stencil computations dominate a wide range of parallel
applications, including scientific simulations based on solving
partial differential equations [1] and numerical solvers such as
geometric multigrid [17]. They are established as one of the
most prevalent patterns in high performance computing [2].
Stencil operations consist of solving a linear method across a
structured mesh. At each iteration, all mesh cells are updated,
with the new value at each cell dependent on that of all
neighboring cells. In parallel, the mesh is decomposed into
subdomains for each participating process, with each process
holding boundary cell data from processes with neighboring
mesh regions (ghost cells) in order to compute its own
boundary cell updates. A parallel stencil operation consists
of updating values locally before exchanging updated ghost
regions during each iteration. As process counts increase, these
boundary exchanges dominate performance costs. As a result,
efficient boundary exchanges are crucial for performant and
scalable stencil codes.

There are several common implementations for boundary
exchanges, including hand-rolled point-to-point communica-

tion and neighborhood collectives with Cartesian process
grids. Regardless of approach, potential optimizations for
boundary exchanges have been introduced with each ma-
jor release of the MPI standard. For example, persistent
communication introduced in MPI 3 has shown to improve
communication costs [12], [7], [14] by incurring setup and
overhead costs once while allowing cheaper iterations of
communication afterward. Furthermore, MPI may choose to
optimize persistent exchanges through additional overheads
in the initialization, such as tag matching. MPI 4 provides
an additional optimization opportunity through partitioned
communication, allowing threads to concurrently work on
a persistent message. This paper presents a novel study of
the trade-offs between standard non-blocking, persistent, and
partitioned communication throughout iterative boundary ex-
changes.

Comb, a stencil benchmarking tool from Lawrence Liver-
more National Laboratory (LLNL) analyzes the performance
trade-offs between various stenciled boundary exchanges. This
work adds both persistent and partitioned MPI optimizations
into this widely-used benchmark to analyze their impact.
The optimizations are made publicly available within Comb
for application developers to use when analyzing comparable
communication strategies.

The contributions of this paper include the following.
1) Optimize stencil exchanges with persistent communica-

tion
2) Further optimize stencil exchanges with partitioned com-

munication
3) Demonstrate up to 68% speedup over existing MPI

methods in Comb when scaled across thousands of
processes.

4) A performance study of persistent and partitioned com-
munication for stencil exchanges across varying process,
CPU core and thread counts.

5) Expand the stencil communication benchmark Comb
to allow application programmers to test persistent and



partitioned communication strategies.
The following sections are organized as follows. Section II

provides background on stencil codes and the persistent and
partitioned communication optimizations. Related works are
discussed in Section III. In Section IV, the implementation
of the two communication optimizations are detailed. Results
of performance analysis of persistent and partitioned MPI
in the stencil communication benchmark Comb are provided
in Section V. Finally, conclusions and future directions are
presented in Section VI.

II. BACKGROUND

Stencil codes split a structured mesh across a Cartesian
process grid, requiring processes to iteratively perform local
computation followed by boundary exchanges. Each process
uses initial boundary data for each neighboring process to
update all local mesh cells. After local updates are complete,
local boundary cell values are packed into a contiguous buffer
and communicated to neighboring processes. Boundary cell
values from neighboring process are also received and un-
packed from a contiguous buffer into the local mesh. After all
updates of ghost cells are complete, successive iterations can
occur. This exchange of data, also known as a halo exchange,
is further detailed in Section II-A.

A. Halo Exchanges

The pattern of boundary data to be exchanged at each
iteration is dependent on the structure of the problem at hand.
For example, a 2D stencil requires exchanging edges and
corners with up to 8 neighbors, as exemplified in Figure 1.
In 3D, this is often extended to a 27-point stencil, in which
faces, edges, and corners are communicated to 26 neighboring
processes.

While some data is contiguous, such as boundaries on the
top and bottom of each process in a row-wise data layout,
other exchanges require communication of non-contiguous
data, such as the left and right edges. Multiple methods for
exchanging non-contiguous data have been explored, includ-
ing using MPI Datatypes [10], [19]. However, on CPU-only
supercomputers, packing costs are typically outweighed by
communication at scale. As a result, this work is focused
on optimizing the exchange of data, and simply packs each
message into a contiguous buffer outside MPI before com-
munication. OpenMP threads are used to perform packing,
allowing the benefit of utilizing all CPU cores.

A standard boundary exchange is detailed in Algorithm 1.
All messages are first packed into a contiguous buffer using
OpenMP threads, before being exchanged with neighboring
processes. Finally, data is unpacked into the local domain, to
be used during successive steps of computation.

B. Persistent MPI and Partitioned MPI

Persistent communication allows communication patterns to
be defined and initialized once and repeatedly executed to
avoid repeated overhead costs. This optimization is well suited

Processor 0 Processor 1

Processor 2 Processor 3

Fig. 1: Shown are example exchanges for a single process in
a 2D regular halo exchange. Process 0 sends values for every
cell along its right edge (red and purple) to Process 1 to fill its
left edge of ghost cells (red). All cells along the bottom edge
(blue and purple) are sent to Process 2 to fill its top edge of
ghost cells (blue). Finally, the purple corner is sent to Process
3 to fill its top left ghost cell. In return, Processes 1, 2 and 3
send their boundary cell values (white) to Process 0 to update
its ghost cells.

Algorithm 1: Exchange
Input: msgs_info, requests

{message information (process pairs, data sources), requests storage array}

parallel region {OpenMP Region}
// Copy data from mesh to contiguous message buffer

pack(msgs_info)

// Begin communication

for i← 0 to nsend do
MPI Isend(msgs info[i], requests[i])

for i← 0 to nrecv do
MPI Irecv(msgs info[i+ nsend],

requests[i+ nsend])

// Wait on messages

MPI_Waitall(requests)

parallel region
// Copy values from message buffer into mesh

unpack(msgs_info, msgs_info)



for applications like stencil codes with iterative communica-
tion. A persistent communication pattern consists of calling a
method such as MPI_Send_init once to initialize commu-
nication, providing all arguments that are typically provided to
MPI_Isend. However, rather than beginning communication,
MPI_Send_init returns a handle for a persistent request.
Each iteration of communication is then performed by passing
the persistent request to persistent exchange routines, such as
MPI_Start and MPI_Wait. As a result, initialization costs
are only incurred once and then amortized over all subsequent
exchanges.

Partitioned communication builds upon persistent communi-
cation, partitioning each message across multiple threads and
allowing for portions of a message to be independently sent
and received without synchronizing on the entirety of the mes-
sage. This optimization allows threads to work concurrently
and for communication of parts of a large message to begin as
soon as they are ready, without waiting for the entire message
data to be ready. This early communication can reduce network
contention by utilizing the network early rather than sending
all data at once. Further, partitioned communication allows for
early work, in which successive computation (or unpacking)
can begin as soon as any portion of a message arrives.

Partitioned communication can work well for large
messages, but does incur some overheads. The flag
MPI_THREAD_MULTIPLE is required as multiple threads all
perform communication at the same time, which can cause
slowdowns that vary greatly among versions of MPI [23].
Additionally, for a given message, all partitions must be equal
in size and there must be an equal number of partitions on the
sending and receiving sides. While padding can be added to
the last message for those with sizes that do not evenly divide
partition count, this padding can be complex.

Similar to persistent communication, partitioned sends first
require an initialization call, MPI_Psend_init, requiring
standard communication arguments along with the number
and size of partitions for subsequent iterations. Each iteration,
data is exchanged through a single instance of MPI_Pstart
per message, followed by invoking MPI_Pready for each
partition to mark the portion of data is ready to be sent. Finally,
MPI_Wait is called to await the arrival of all partitions. If
attempting to perform early work, MPI_Parrived can be
used to test the arrival of an individual partition, which, if
arrived, is ready for use in computation.

III. RELATED WORKS

Persistent MPI communication was introduced in the MPI
1.1 standard. Since then, work has been done to implement
and optimize persistent communication [12], [14]. As an older
optimization, adoption is not uncommon in practice, although
far from ubiquitous. Persistent communication has also been
used within the context of neighborhood collectives. [16]

Several works have tackled the design of partitioned com-
munication within MPI [9], [5], [3], [22], [15]. Additional

works have explored methods to accurately model and bench-
mark partitioned communication, and analyzed the potential
benefits of this optimization [5], [11], [21], [8]. Partitioned
MPI communication has also been evaluated in comparison to
other approaches to MPI+Threads [23]. The combination of
partitioned and collective communication is another direction
that has previously been explored [13].

Separately, prior work looked into the optimization of sten-
cil code communication without the use of persistent or parti-
tioned MPI [18], [20]. Specifically, optimization techniques
such as node-awareness have been successfully applied to
stencil communication [18]. MPI Datatypes have also seen use
in stencil computations [10], [19]. The stencil communication
benchmark Comb can also test on heterogeneous architectures
and prior work has explored optimizations in this case [6],
although the work in this paper focuses on CPU only systems.

IV. IMPLEMENTATIONS

Standard stencil codes use non-blocking sends and receives
at each iteration. Both persistent and partitioned communica-
tion optimizations are suitable for this structured, iterative ex-
change. Because the stencil computation and communication is
iterative, the use of persistent communication provides a natu-
ral optimization to incur an overhead cost once at initialization
and utilize it in every following iteration of communication.
In the case where multiple threads are used to efficiently pack
data into contiguous buffers, partitioned communication is a
natural fit, as these same threads can be used to parallelize
communication with partitions. Furthermore, exchanges of
entire faces of a 3D domain often result in very large messages,
which can be optimized when split across many available CPU
cores and communicated asynchronously.

A. Persistent MPI

Algorithm 2: Persistent Init

Input: msgs_info, requests
{message information (process pairs, data sources), requests storage array}

// Initialize messages

for i← 0 to nsend do
MPI_Send_init(msgs_info[i],
requests[i])

for i← 0 to nrecv do
MPI_Recv_init(msgs_info[i+ nsend],
requests[i+ nsend])

Persistent stencil communication is split into three separate
methods: initialization, iterative exchange, and destruction.
First, each process initializes the persistent exchange, as
described in Algorithm 2. This consists of initializing each
persistent send and receive. Then, during each iteration of
the persistent boundary exchange described in Algorithm 3,
all processes pack data in an equivalent fashion to the stan-
dard approach in Algorithm 1. However, all non-blocking



Algorithm 3: Persistent Exchange

Input: msgs_info, requests
{message information (process pairs, data sources), requests storage array}

parallel region {OpenMP Region}
// Copy data from mesh to contiguous message buffer

pack(msgs_info)

// Begin communication

MPI_Startall(requests)

// Wait on messages

MPI_Waitall(requests)

parallel region
// Copy values from message buffer into mesh

unpack(msgs_info)

Algorithm 4: Persistent Destroy

Input: requests {requests storage array}

for i← 0 to nrecv + nsend do
MPI_Request_free(requests[i])

communication is now replaced with MPI_Startall and
MPI_Waitall. Finally, when all iterations are complete, the
persistent request handles must be destroyed, as shown in
Algorithm 4.

B. Partitioned MPI

Algorithm 5: Partitioned Init

Input: n_parts, msgs_info, requests
{number of partitions, message information (process pairs, data sources),

requests storage array}

// Initialize messages

for i← 0 to nsend do
MPI_Psend_init(n_parts,
msgs_info[i], requests[i])

for i← 0 to nrecv do
MPI_Precv_init(n_parts,
msgs_info[i+ nsend],
requests[i+ nsend])

Partitioned communication further optimizes stencil opera-
tions beyond the persistent optimizations, allowing for threads
to each communicate a portion of the data. This optimiza-
tion consists of first initializing the partitioned exchange,
as described in Algorithm 5, during which partitioned MPI
initialization calls are instantiated for each message. The
arguments provided are the same in Algorithm 2, except
an additional argument for the number of partitions of the
message. Then, every iteration of the partitioned stencil code
performs a boundary exchange among all threads, as shown
in Algorithm 6. In this method, the packing thread calls

Algorithm 6: Partitioned Exchange

Input: msgs_info, requests
{message information (process pairs, data sources), requests storage array}

// Begin communication

MPI_Startall(requests)

parallel region {OpenMP Region}
// Copy data from mesh to contiguous message buffer

pack(msgs_info)
// Mark partition of current thread as ready

MPI_Pready(partition)

// Wait on messages

MPI_Waitall(requests)

parallel region
// Copy values from message buffer into mesh

unpack(msgs_info)

Algorithm 7: Partitioned Destroy

Input: requests {requests storage array}

for i← 0 to nrecv + nsend do
MPI_Prequest_free(requests[i])

MPI_Pready immediately after packing its portion of the
data, marking the specified message partition as ready to
send. For simplicity, all process then wait for all messages to
complete before unpacking. However, this approach could be
further optimized through early work, in which each thread
could unpack partitions of a message on arrival. After all
iterations of halo exchanges have completed, the partitioned
request handle is destroyed, as shown in Algorithm 7.

V. RESULTS

All optimizations described in Section IV have been
added throughout the Comb halo exchange benchmarking
suite from LLNL. The partitioned communication imple-
mentation we used was the MPIX Partitioned Communi-
cation Library (MPIPCL)1 and included it directly within
Comb. The presented timings are acquired from Comb sim-
ulations with three mesh variables, a single cell wide ex-
change boundary and a periodic problem mesh in all di-
rections so that no special case edge regions occur in
the decomposition. Additionally, the following Comb op-
tions were disabled: per_message_pack_fusing and
message_group_pack_fusing. All presented timings
account for asynchrony of processes and timer inaccuracies
through multiple methods. Before any timing is initialized,
a barrier occurs to synchronize all processes. Further, timer
precision is accounted for, and all measurements are timed
over 1000 exchanges, with the average per-exchange cost
extracted. Finally, the impact of nearby jobs is lessened as

1https://github.com/mpi-advance/MPIPCL



each test is performed three separate times on the system and
the average time of the three runs is used.

Standard, persistent, and partitioned exchanges are analyzed
on the Quartz supercomputer, an Intel SMP architecture at
LLNL, using the default system MPI Mvapich2 version 2.3.7.
While Quartz nodes each contain 36 cores, all performance
measurements in this section use 32 processes per node to
keep all process counts powers of 2. Further, all tested thread
counts are also powers of 2, and all stencil sizes were chosen
such that halo exchange sizes are also powers of 2. As a
result, partitioned communication is performed in all cases
without the need for padding, but it should be noted that
to use partitioned communication as currently defined by the
MPI standard, padding would need to be added to account
for uneven partition sizes. Finally, our tests used 2 OpenMP
threads per core to take advantage of hyperthreading.
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Fig. 2: Weak scaling of the tested communication strategies
for message sizes of 524, 288 doubles.

In Figure 2, we present a weak scaling study from 64
to 4096 processes, with messages sizes of 524, 288 double-
precision floats (doubles) at each scale. All cases in this
study are run with 32 ranks per node, 32 active cores
per node, and 2 threads per core. At the largest scale of
4096 processes, persistent communication obtains a 12.5%
speedup over Comb’s baseline MPI implementation, while
partitioned communication further improves performance by
another 14.5% to a total of 27% over the baseline. Note,
performances for all three methods trend upwards at higher
scales and appear to slightly approach each other, suggesting
additional communication or contention costs occur at larger
scales.

In Figure 3, we present a strong scaling study of the
communication costs of the different policies from 128 to
4096 processes, using equivalent per-node process, core, and
thread counts to the weak scaling study. This test simulates a
20483 cell problem, which results in message sizes of 262, 144
doubles at the smallest scale, decreasing as the number of
processes grows. Persistent communication achieves speedup
of 37% over the baseline at 2048 processes, but performs
equivalently to standard approaches at both the smallest and
largest process counts. Partitioned communication outperforms
the other methods, achieving speedups over the baseline of
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Fig. 3: Strong scaling study of the communication strategies
for a 20483 cell mesh. Message sizes start at 262, 144 doubles.

12%, 68%, and 4.4% at 128, 1024, and 4096 processes
respectively. Note, partitioned communication provides less of
an advantage for smaller message sizes. This is a contributing
factor to the diminishing speedup from the use of partitioned
communication at higher process scales for the same problem
size.
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Fig. 4: A comparison of the communication strategies on 4096
processes as message size is increased from 768 to 196608
doubles.

Figure 4 displays the cost of halo exchanges with each
of the three policies on 4096 processes, with varying halo
exchange sizes. The range of message sizes varies from 256 to
65536 mesh cells consisting of 3 doubles each. At the smallest
message scale tested, persistent communication performed
similarly to the baseline, while partitioned communication
performs significantly worse, with the baseline performing
73% faster. As message sizes increase, however, persistent and
partitioned communication performance eventually overtake
for a speedup over the baseline of 21% for persistent and
37% for partitioned at the largest tested message size.

Figure 5 shows the cost of halo exchanges across 64 nodes,
with varying numbers of MPI processes per node. All cases
consist of 32 active cores per node and 64 OpenMP threads
per node. As the number of MPI ranks per node increases,
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Fig. 5: A study of the effect of the number of MPI ranks used
per node on the performance of the communication strategies
for a 2048× 4096× 4096 mesh.

OpenMP threads per rank decrease accordingly. As a result,
when using fewer MPI processes per node, thread launch
overheads increase. Furthermore, in the standard and persistent
cases, fewer cores are utilized during MPI communication. All
test contain a constant problem size of 2048 × 4096 × 4096
cells.

This study shows that persistent communication outper-
forms the baseline for every tested number of ranks per node,
with a speedup of around 20% in each case. Additionally,
at one rank per node, partitioned communication performs
significantly worse than other methods, including the baseline.
At 2 ranks per node, however, partitioned communication
performance slightly overtakes the baseline and at 8 ranks per
node, it overtakes persistent communication performance as
well. As the ranks per node increase, the threads per rank
decrease. Therefore, partitioned communication only achieves
speedups when each rank has a limited number of threads,
indicating that there is a limit to the number of partitions into
which a message should be split. Note for the single rank
per node case, the threads were likely split across sockets,
potentially amplifying overheads.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper demonstrated how persistent and partitioned MPI
communication optimizations can be used to improve halo ex-
changes. Persistent communication optimizes iterative stencil
exchanges, providing significant speedups over standard non-
blocking communication. Partitioned communication provides
additional speedups when fewer threads are used per process,
as long as data exchanges are large.

Additional partitioned communication optimizations can be
further explored in the future, namely performing early work,
unpacking data immediately upon arrival through the use of the
MPI_Parrived routine. Furthermore, the use of partitioned
communication can be explored on heterogeneous architec-
tures. Depending on future availability of stream and kernel
triggered MPI routines, it is possible partitioned communica-
tion could be used to optimize GPUDirect communication.

Partitioned communication could also be explored in the
context of copy-to-CPU communication routines on heteroge-
neous architectures, as modeling results have shown use cases
GPUDirect is outperformed when copying to the CPU and
using all available CPU cores [4]. Partitioned communication
has the potential to further improve copy-to-CPU methods by
partitioning large messages across all available CPU cores.

This paper presents an initial analysis of the impact of
partitioned communication on stencil exchanges, with results
guiding use cases for the optimization. However, each appli-
cation programmer is currently required to implement these
optimizations by hand to achieve the performance benefits
shown in this paper. The work presented throughout this paper
could, in the future, be made accessible through the use of
persistent neighborhood collectives, allowing the underlying
system MPI to choose the optimal approach for a given
iterative halo exchange.
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