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Abstract—With ever-increasing use of digital data, many ap-
plications rely on data compression for their needs related to
processing, storage and communication over the network of large
volumes of data. While compression saves the memory/disk space
and decreases the communication time, there is a considerable
runtime spent in this process. Parallel compression algorithms
and solutions that are developed to speed up the operations do
not scale well on the multi-core CPUs. The data parallel schemes
implemented by the prior arts are inefficient in partitioning the
data and scaling the performance on the multi-core processors.
Another major drawback of the existing multi-threaded com-
pression solutions is the non-compliance to the single-threaded
compression format. In this paper, we propose a set of novel
and high-performance parallel compression and decompression
schemes. We introduce novel designs for dynamic threading based
parallel compression and random access point based parallel
decompression. With our solution, we mitigate both the scaling
issues on multi-core x86 CPUs and format compliance issues
encountered in multi-threading the compression operations. Our
test results demonstrate massive speedups by manyfolds and
performance scaling never seen before on x86 CPUs especially
AMD’s ”Zen”-based recent processors that come with very high
core counts.

Index Terms—AOCL, AOCL-Compression, CPU, EPYC, HPC,
LLM, LZ4, openMP, Parallel Computing, PIGZ, PZSTD, Snappy,
Zen, ZLIB, ZSTD

I. INTRODUCTION

Applications are increasingly relying on lossless data com-
pression methods to reduce their working memory space,
disk utilization and network communication. Database [1], [2]
systems both SQL and NoSQL heavily use data compression
in their operations to achieve reduced disk/memory footprint
and a higher query execution throughput. Data compression
is also extensively used by File systems like HDF5 [3] and
data streaming applications [4]. Data compression also plays
an important role in compressing the time series data like
seismic measurements [5] and vast amounts of data in the High
Performance Computing (HPC) [6] applications. Very recently
lossless data compression has been studied and applied on the
Large Language Models (LLM) [7], [8] models for reducing
the data movement and uplifting the inference throughput.
The commonly used data compression methods are: lz4 [9],
snappy [10], zlib [11], zstd [12], bzip2 [13], lzma [14],
lz4hc [9]. Depending upon the use case, the applications can
tradeoff between compression speed and ratio. Table I lists

the major application domains/areas along with a few example
applications, the compression methods used and the scope of
multi-threaded compression in these application areas.

TABLE I: Application usecases for parallel compression.

Recent CPUs come with a large number of core count
that can be used to parallelize and speed up the compression
tasks. AMD’s 4th generation ”Zen”-based CPUs offer 192
cores in a 2P (dual socket) configuration. Applications can
make use of such advanced multi-core CPU systems to scale
their performance. However, the availability of higher number
of cores does not necessarily translate into performance and
scalability for each and every computational job. Many a times,
an efficient and scalable multi-threaded algorithm design is
required to extract the benefits of the underlying hardware’s
multi-core parallelism.

II. RELATED WORK

To reduce the compression runtime in the applications,
multi-threading of the data compression is important to take
advantage of the high core counts of the recent CPUs. How-
ever, it is not straightforward to parallelize data compression
algorithms. Many steps are serial or lack significant overlap in
the operations. Existing multi-threaded compression solutions
partition the data without taking into account the underlying
algorithmic steps. So, the thread utilization, and performance
scaling are very poor on the multi-core processors. Existing
implementations produce the multi-threaded compressed data
in a form that does not comply with the single-threaded
compression format and so can not be decompressed by a
legacy single-threaded decompressor.

The prior arts and the existing implementations offering
multi-threaded compression suffer from poor performance
scalability on the multi-core CPUs. FST [15] package for R
and lz4mt [16] project implement multi-threaded based on
a fixed partitioning scheme that do not scale well. Parallel
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scale well on the many cores of the latest CPUs. The pigz
library also does not support parallel decompression. Multi-
threaded ZSTD implementations pzstd [18] and zstdmt [19]
use fixed partitioning schemes and do not scale well. Snappy
and other lossless data compression methods do not have
any well-known scalable parallel implementations. Another
work on a parallel compression method called ndzip [20]
for compressing the scientific data improves upon the single-
threaded throughput of the standard compression methods but
does not scale well beyond a few number of threads.

Table II presents some of the known parallel compression
implementations along with their limitations. One of the com-
mon limitations is the fixed data partitioning scheme used for
multithreading the compression or decompression operations.
The fixed partitioning of data does not consider the processing
window of the underlying algorithm and fixes the number of
threads without considering the optimal workload per thread.
The other important limitation is related to the decompression
operation where either the parallel version is not supported, or
multi-threaded decompressor is not format compliant to single-
threaded compression. The parallel compressed output from
these implementations uses additional metadata that deviates
from the single-threaded compressed output and so can not be
decompressed by the legacy single-threaded decompressors.

TABLE II: Drawbacks of known solutions.

Fig. 1 presents the multi-threaded performance of the known
parallel compression libraries pigz and pzstd benchmarked
on AMD’s Zen4 2P CPU system with 192 cores. Both pigz
and pzstd output the execution times which are converted
to speed (MB/s). Auto mode means the libraries are left to
choose the number of threads. These multi-threaded com-
pression libraries show very poor performance scaling. The
primary reason for the poor performance scaling of these
multi-threaded compression libraries is the inefficient data
partitioning between the threads. So these implementations
are not able to optimally exploit the multi-core and cache
architectures. Another limitation with pigz is that it does not
support parallel decompression operation.

III. PROPOSED DESIGN AND FORMAT FOR PARALLEL
COMPRESSION

In this paper, we propose a novel and efficient openMP
based multi-threaded compression and decompression design
and specification for achieving optimal performance scaling on
multi-core processors. The proposed solution not only delivers
a highly parallel and adaptive multi-threading solution but

Fig. 1: Poor performance scaling of PIGZ and PZSTD.

is also compatible with the legacy single-threaded decom-
pressors. Our work introduces (a) Dynamic threading and
adaptive partitioning (DTRAP) based parallel compression,
and (b) Random access point (RAP) specification based par-
allel decompression. DTRAP design helps in achieving higher
performance and scaling. RAP helps in complying with the
single-threaded compressed data format.

A. DTRAP based parallel compression

Our proposed design for parallel compression considers a
number of factors for computing the adaptive partition size and
for choosing the optimal number of threads dynamically. These
factors include: (a) compression algorithm’s dictionary search
window size, (b) a newly introduced window scale factor, (c)
total number of available threads, (d) input data size, (e) cache
sizes on the CPU system. The window scale factor is crucial
for computing the optimal partition size and can be derived
(as per equations 1.1, 1.2, 1.3 and 1.4 as shown in Fig. 2)
such that its product with the search window size is less than
the respective cache size of the machine. Based on the search
window size, the appropriate cache level (L1, L2, or L3) is
used to calculate the window scale factor. The window scale
factor can also be empirically selected such that the chunk
size does not cross the highest cache size. Chunk size is the
processing block size of each individual thread.

Fig. 2: Window scale factor derivation.

The overall algorithm to compute the adaptive DRAP par-
titions and dynamic DRAP thread count is provided as a
flow-diagram in Fig. 3 Once number of DTRAP partitions



is derived, the number of DTRAP threads are dynamically
computed as a lower bound: MIN(total available threads,
DRAP partitions). When input data size is large enough, then
all cores can be used. But for smaller input sizes, using all
cores does not result in an efficient performance – DTRAP
solves this situation effectively by adaptively partitioning
and dynamically setting the optimal number of threads for
processing.

Fig. 3: DTRAP partitions and threads.

B. RAP specification based parallel decompression

Random access point (RAP) specification is a novel meta-
data specification proposed to implement parallel decompres-
sion without deviating from the single-threaded compressed
data format. A random access point (RAP) metadata frame
is added by the parallel compressor at the start of the multi-
threaded compressed output data. The parallel decompressor
can read this RAP metadata frame and know exactly the
number of independent chunks and their locations in the
stream/file. A single-threaded legacy decompressor can just
skip the RAP metadata frame at the start of the stream/file
and decompress it successfully sequentially. This allows the
parallel decompressor to be compatible with legacy single-
threaded compressor even for the block format. Fig. 4 presents
the proposed RAP specification.

Fig. 4: RAP specification.

The proposed solution including the DTRAP design and
RAP specification has been implemented and integrated
into AOCL-Compression (AMD Optimizing CPU Libraries
for Compression) [21]. AOCL-Compression [22] is a high-
performance CPU library for lossless data compression that
packs together various advanced optimizations related to the
compression algorithm, data structures, and vectorization.
AOCL-Compression debuted this proposed multi-threaded
compression design and format in its latest release with version
4.2. Our proposed solution is implemented as a threading layer
in the library which is called upon by the different compression
methods. Applications (like Database, HPC, Data streaming,
and File system) just need to link to the multi-threaded library
and call the same single-threaded native APIs. The implemen-
tations of the native APIs are modified to integrate and invoke
the functions of the threading layer for performing multi-
threaded execution. The applications can also alternatively call
the Unified API of the library and expect the threading layer
to be invoked internally. Fig. 5 presents a high-level block-
diagram of the AOCL-Compression library integrated with our
proposed multi-threaded compression solution.

Fig. 5: Proposed parallel solution in AOCL-Compression.

IV. RESULTS AND PERFORMANCE DISCUSSION

A. Computational environments

The computational environment for all our experimental
evaluations and benchmarking tests including the hardware
and software platform, and the build configurations for the
compression libraries are presented in Table III.

We performed multi-threaded performance benchmarking
using FreeBSD [23] and Seismic [24] datasets comparing
the performance uplifts and scalability of our solution with
the reference PIGZ and PZSTD solutions. We measured the
performance by setting the OMP NUM THREADS [25] to



TABLE III: Computational platform and configurations.

different values (1, 8, 16, 32, 64, 96, 128, 192) as well as in
auto-mode (where library can dynamically decide how many
threads to use) without explicitly setting any thread count.

B. Results

Our test results for FreeBSD image file as presented in
Fig. 6 and Fig. 7 show strong performance uplift and scaling
for both compression and decompression operations. The
performance graphs are based on the geomean of performance
of different levels of the compression methods. The proposed
solution beats open-source parallel implementations for PIGZ
and PZSTD by more than 13x in compression speed and more
than 8x in decompression speed. At higher thread counts, the
simpler compression methods like lz4 and snappy becomes
memory bandwidth constrained. The results also show that
the dynamic threading and adaptive partitioning performs the
best as indicated by the auto-mode.

Fig. 6: AOCL versus Reference compression speedup.

Fig. 8 and Fig. 9 show the multi-threaded benchmark results
for time series data of a Seismic (Oil & Gas) application. The
test results are prepared for specific levels of the compression
methods. We observe very good scaling up to 128 threads for
parallel compression and 96 threads for parallel decompres-
sion, beyond which it gets limited by the memory bandwidth.
The auto-mode gets us the optimal performance

C. Performance discussion

The dynamic threading and adaptive partitioning scheme
based on the search window size and window scale factor are
able to slice the input data into optimal chunk size thereby

Fig. 7: AOCL versus Reference decompression speedup.

Fig. 8: AOCL compression speedup (levels).

offering such a high performance throughput and scaling. Due
to the highly efficient and scalable multi-threaded data com-
pression design, our solution is atleast 8x ahead of the other
parallel open-source implementations in overall speedup. The
degradation in compression ratio due to parallel processing
is within 2%. This work offers a huge potential to uplift the
performance of many applications related to Database, HPC,
Data streaming, File system, and others. Our solution not only
benefits the performance and scaling of applications on AMD’s
HW+SW stack but can also be applied to any x86 CPUs in
general. The proposed RAP metadata format has the potential
to be adopted as an industry-wide specification for parallel
data compression.

Fig. 9: AOCL decompression speedup (levels).



V. CONCLUSION

In this paper, we have proposed a novel and high-
performance multi-threaded data compression solution. We
have discussed the proposed parallel compression design that
is based on a dynamic threading and adaptive partitioning
(DTRAP) based approach. We have introduced a random
access point (RAP) specification based highly parallel de-
compression approach. Our solution is highly scalable on
multi-core processors as well as format compliant with single-
threaded decompressors. Our benchmark tests demonstrated
massive performance speedups and achieved very high scal-
ability with the proposed solution on the latest AMD’s Zen4
based processors. The performance benchmark results showed
the proposed solution beating the open-source parallel im-
plementations by more than 13X in compression speed and
more than 8X in decompression speed. The proposed solution
is already implemented for lz4, snappy, zlib and zstd in the
AOCL-Compression library. In the future, we want to extend
this implementation support to other compression methods like
bzip2, lzma and lz4hc.
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