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Abstract— Alzheimer’s disease (AD) is the most prevalent 

neurodegenerative disorder, primarily affecting the elderly 

population and leading to significant cognitive decline. This 

decline manifests in various mental faculties such as attention, 

memory, and higher-order cognitive functions, severely 

impacting an individual’s ability to comprehend information, 

acquire new knowledge, and communicate effectively. One of 

the tasks influenced by cognitive impairments is handwriting. 

By analyzing specific features of handwriting, including 

pressure, velocity, and spatial organization, researchers can 

detect subtle changes that may indicate early-stage cognitive 

impairments, particularly AD. Recent developments in classical 

artificial intelligence (AI) methods have shown promise in 

detecting AD through handwriting analysis. However, as the 

dataset size increases, these AI approaches demand greater 

computational resources, and diagnoses are often affected by 

limited classical vector spaces and feature correlations. Recent 

studies have shown that quantum computing technologies, 

developed by harnessing the unique properties of quantum 

particles such as superposition and entanglement, can not only 

address the aforementioned problems but also accelerate 

complex data analysis and enable more efficient processing of 

large datasets. In this study, we propose a variational quantum 

classifier with fewer circuit elements to facilitate early AD 

diagnosis based on handwriting data. Our model has 

demonstrated comparable classification performance to 

classical methods and underscores the potential of quantum 

computing models in addressing cognitive problems, paving the 

way for future research in this domain. 

Keywords—Cognitive impairments, Alzheimer's disease, 

quantum machine learning, variational quantum classifier, 

handwriting analysis.  

I. INTRODUCTION 

Cognitive impairments encompass a diverse range of 

neurological conditions characterized by varied clinical and 

pathological manifestations, targeting distinct subsets of 

neurons within specific functional anatomical networks [1]. 

Cognitive impairment can range from loss of function in 

multiple mental abilities: concentration, memory, attention, 

language, problem-solving, decision-making, and other 

higher-order thinking abilities. These impairments can affect 

a person's ability to understand information, learn new things, 

communicate effectively, and perform routine tasks. Although 

their symptoms can remain unchanged or even vanish, for the 

majority of patients, the condition evolves into dementia 

diseases. Therefore, early diagnosis can assist both the patient 

and caregivers in better managing the coping process with the 

disease and contribute to the patient's ability to maintain their 

daily life activities more effectively [2].  Furthermore, being  

aware of the severity and progression risks enables patients to 

take precautions before irreversible brain damage occurs. One 

of the most common conditions associated with cognitive 

impairment is Alzheimer’s disease (AD) [3, 4]. AD is a 

neurodegenerative, progressive brain disorder that typically 

manifests in old age and is one of the leading causes of 

dementia in today's world. According to the World 

Alzheimer's Report (2018) [5], approximately 50 million 

people were affected by this disease in 2018, and it is expected 

to triple by the year 2050. AD usually begins with mild 

symptoms and may eventually lead to a severe stage where the 

patient has difficulty in physical abilities and loses awareness 

[6]. 

Criteria for clinical diagnosis of AD were proposed in 1984 

[7] by the National Institute of Neurological and 

Communicative Disorders and Stroke (NINCDS) and by the 

Alzheimer’s Disease and Related Disorders Association 

(ADRDA). According to these criteria, the diagnosis of AD 

needs histopathologic confirmation in autopsy or biopsy. To 

date, in addition to these, clinical diagnosis of such diseases 

was supported by tools such as imaging, cognitive tests, 

blood tests…etc. Nonetheless, an early and accurate 

diagnosis would greatly improve the effectiveness of 

available treatments, but it is still a challenging task. 

In recent studies, it has been demonstrated that individuals 

with AD diseases demonstrate changes in spatial organization 

and impaired motor control [8]. Therefore, some diagnostic 

signs of AD should be detectable through motor tasks. It has 

been demonstrated that handwriting analysis can provide 

valuable insights into the cognitive decline impairment with 

AD [9]. Handwriting is the result of a complex network of 

cognitive, kinesthetic, and perceptual-motor skills. AD can 

disrupt the coordination and control of these skills, leading to 

significant changes in handwriting. By analyzing various 

aspects of handwriting, such as pressure, velocity, and spatial 

organization, researchers can identify subtle changes that 

may indicate cognitive impairments in its early stages [10]. 

However, in this field, many published studies have been 

conducted in the areas of medicine and psychology, where 

typically the relationships between disease and handwriting 

variables have been determined using classical statistical 

tools (including ANOVA and MANOVA analysis) [11]. 

Studies in literature utilize machine learning and deep 

learning-based classification methods to detect people 

affected by AD using handwriting information [12,13]. 

However, advanced classical artificial intelligence (AI) 

methods require higher computational power as the size of 

the handwriting data increases. Additionally, the diagnoses 

are influenced by factors such as the noise level of the data, 

low resolution, limited relevant classical vector space, and 

correlations between features [14]. 

Recent studies have shown that the use of quantum 

computing technologies in the healthcare field can not only 

solve these problems but also accelerate complex data 



analysis and process large datasets more efficiently [15]. 

Despite the limitations of NISQ (Noisy Intermediate-Scale 

Quantum) computers, numerous studies have demonstrated 

the potential for quantum computers to outperform classical 

computers in certain AI applications.  

To the best of our knowledge, this is the first study in the 

cognitive field to utilize quantum computing methods. In this 

study, we introduce a novel variational quantum classifier 

that achieves higher classification accuracy with fewer circuit 

elements, making it fully compatible with NISQ (Noisy 

Intermediate-Scale Quantum) computers. Our goal with this 

model is to detect AD using handwriting data. 

 

II. MATERIALS AND METHODS 

There are three main stages in the proposed study: data 

collection and pre-processing, classification using the 

proposed variational quantum classifier, and post-processing.  

A. Dataset and Pre-Processing 

The effectiveness of the proposed variational quantum 
classifier is evaluated on real AD patient dataset which are 
taken from UCI [16, 17]. In this dataset, tests were conducted 
on 174 patients with AD according to specific protocols. In 
these tests, the cognitive abilities of the examined subject were 
assessed by using questionnaires including questions and 
problems in many areas, which range from orientation to time 
and place, to registration recall. According to the protocol, 
nine tasks were introduced to the patients, and the handwriting 
dynamics of the patients were recorded. Following the 
determination of the categorical values in the data set, these 
values were converted to numerical values using one-hot 
encoding method. 

After obtaining the dataset, the following preprocessing steps 
were performed: 

a) Principal Component Analysis (PCA): Due to the 

limited number of qubits in real quantum computers, 

dimensionality reduction is required before mapping features 

to the quantum space. In PCA, the goal is to find the principal 

components, which are new orthogonal axes that represent 

the directions of maximum variance in the data [18]. Keeping 

the data variance ensures that the quintessential patterns in 

the data are preserved even though the dimensionality is 

(dramatically) reduced. PCA uses methods like singular 

value decomposition to find a linear transformation to a new 

set of coordinate axes (a new basis of the vector space), such 

that the variance along each of the new axes is maximized. In 

this study, obtained principal components of the dataset must 

match the number of qubits our circuit has. 
 

b) Normalization: Data normalization, especially in 

quantum machine learning, enables data to be consistently 

transformed into quantum states, thereby improving the 

efficiency of quantum algorithms. In this study, the Min-Max 

normalization method is aimed to be used. Min-Max 

normalization is a data normalization technique that scales 

data features to a specific range while preserving their 

original distributions. This method brings data features to a 

certain minimum and maximum range. Min-Max 

normalization is usually applied using the following formula: 

           

 
𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 = 

(𝑥 − min (𝑥))

max(𝑥) − min (𝑥)
 

(1)   

 

In here, 𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 , represents the normalized value, 𝑥 , 

represents the original value, 𝑚𝑖𝑛 (𝑥), is the minimum value 

and 𝑚𝑎𝑥(𝑥), is the maximum value of the data feature. 

B. Variational Quantum Classifier 

Variational quantum classifier (VQC) is a supervised quantum 
machine learning algorithm that enables experimental results 
to be obtained on NISQ quantum computers without the need 
for error correction techniques. The algorithm uses a hybrid 
approach where the parameters are optimized and updated on 
a classical computer, allowing the optimization process to be 
carried out without increasing the required coherence times 
[19].  

VQC involves three main steps:  

• initial state preparation with feature mapping 
methods, 

• building a parametrized quantum circuit or 
variational ansatz for the classification task, 

• the measurement stage to assess class probabilities.  

The optimization process is performed on a classical computer 
to update the parameters of the variational ansatz [20]. Thus, 
this process is not a part of quantum variational circuit.  The 
general quantum circuit structure of the VQC model used in 
our study is shown in Figure 1. The circuit includes the feature 
map, parameterized quantum circuit, and measurement stages, 
presented in sequence. 

a) Feature Map: Quantum computers only interact 

with data expressed as quantum states. Therefore, classical 

data must be transformed into quantum states to be processed 

by quantum algorithms. Feature mapping methods used to 

embed classical data from classical vector space to potentially 

vastly higher-dimensional feature space, quantum Hilbert 

space (in lower dimension, quantum state space) with non-

linearly. In addition, mapping two data inputs into a feature 

space and taking their inner product leads to a kernel function 

that measures the distance between the data points.  

Feature maps are utilized to enhance the learning algorithm's 

performance and achieve more accurate predictions. 

Mathematically, the quantum feature mapping function maps 

classical data points, �⃗� input, non-linearly to a quantum state, 

realizes the map: 

 
 𝜙: �⃗⃗� ↦ |𝜙(�⃗�) >< 𝜙(�⃗�)| 

 

(2)   

 

𝜙(�⃗�) represents the quantum feature map. In this study, we 

used ZZFeatureMap which is second order expansion of Pauli 

feature map ((𝑈𝜑(𝑥)) [21, 22]: 

 
 𝑈𝜑(�⃗�) = 𝑒𝑥𝑝(𝑖 ∑ 𝜑𝑆(�⃗⃗�)∏ 𝑃𝑖𝑖∈𝑆𝑆⊆[𝑛] ). 

 

(3)   

 

 

 

 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where 𝑃𝑖 denote the Pauli matrices, 𝑃𝑖 ∈ {𝐼, 𝑋, 𝑌, 𝑍}  and 𝑆 

define the connectivity between different qubits. If we 

customize the Pauli gates as 𝑃0 = 𝑋, 𝑃1 = 𝑌, 𝑃2 = 𝑍𝑍, the 

ZZFeatureMap is obtained as follows: 

 
 𝑈𝜑(𝑥𝑖⃗⃗ ⃗)    

=

(

 
 
 
 
𝑒𝑥𝑝(𝑖∑ 𝜑

({𝑗,𝑘}
(�⃗⃗�)

𝑗𝑘

𝑍𝑗 ⊗ 𝑍𝑘)

𝑒𝑥𝑝(𝑖∑ 𝜑{𝑗}(�⃗⃗�)
𝑗

𝑌𝑗)

𝑒𝑥𝑝(𝑖∑ 𝜑{𝑗}(�⃗⃗�)
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(4)   

 

 
 

The ZZFeatureMap has a structure that is difficult to simulate 

classically due to its entangling blocks. This characteristic is 

crucial for gaining a computational advantage over classical 

approaches.  

        

b) Parametrized Quantum Circuit or Variational 

Ansatz: The variational ansatz, also known as the 

parameterized quantum circuit (PQC), is a unitary 

transformation composed of a set of one- or two-qubit 

quantum gates with tunable parameters (θ). It performs 

operations on quantum states [23]. Essentially, quantum 

devices with these tunable parameters allow for adjustments 

in the computational specifications. The key insight is that the 

circuit parameters can be optimized until the PQC produces 

the desired output. The parameters of the quantum gates, 

including single-qubit gates, are adjusted using classical 

iterative optimization processes [24]. This component forms 

the basis for the training and testing processes in our study.  

 

The quantum circuit model 𝑈(𝜃)|𝜙(𝑥) > transforms a 

quantum state 𝜓(𝑥, 𝜃) >  by applying a set of operations. 

Here, 𝑈(𝜃),  consists of a set of one- and two-qubit unitary  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

gates. In other words, transformations that map quantum 

states to other quantum states, known as quantum gates, must 

be unitary. Instead of 𝑈(𝜃), the expression Rot (𝜃1, 𝜃2, 𝜃3)  
can also be used, where 𝜃1, 𝜃2, 𝜃3  are parameters that can be 

optimized during the optimization process [25]. 

 
 |𝜓(𝑥, 𝜃) > = Rot(𝜃1 , 𝜃2, 𝜃3) |𝜙(𝑥) > =  
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(5)   

The PQC employs 𝑅𝑌  and 𝑅𝑍  gates for parameterization, 

which are interlinked through a set of parameters. The circuit 

also incorporates entanglement using 𝐶𝑌  and 𝐶𝑍 gates to 

create the necessary quantum correlations. 

 

 
 

𝑅𝑌(𝜃) = [
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) −sin (
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𝜃
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(6)   

 

 

𝐶𝑌 = [

1 0 0 0
0 1 0 0
0 0 0 −𝑖
0 0 𝑖 0

], 

 

𝐶𝑍 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

]. 

 

 

 

 

 

(7)   

 

c) Measurement: After performing training and testing 

processes with the variational ansatz circuit, a measurement 

function is applied to learn the predicted class labels and 

Figure 1: This figure shows the overall quantum circuit structure of the VQC 

model used in our study. The circuit was drawn after applying only one 

repetition of the model. 

 

 

 

 

 

 



obtain class probabilities. To stabilize the stochastic effects 

of the measurements, the quantum circuit will be measured a 

number of times to estimate the probability of its outcomes. 

In fact, we run our proposed circuit 1024 shots. In our study, 

for AD binary classification task, the results are measured in 

Paulie Z basis. The binary measurement is obtained from the 

parity function 𝑓 = 𝑍1𝑍2.  

The results, which are bit strings z ∈ {0,1}2  assigned to a 

label based on a predetermined boolean function f ∶  {0, 1} →
{−1, 1}. 
By computing the parity of the bit string, 

 

• if the measurement consists of an even number of 

'1's, it will be mapped to the AD class, 

• if the measurement outcome consists of an odd 

number of '1's, it is mapped to the non-AD class. 

 

This means that the class label is determined based on 

whether the number of '1's in the measurement outcome is 

even or odd. 

 

d) Optimization: To improve prediction results, the 

parameters of the single-qubit quantum gates in the PQC need 

to be updated iteratively to find their optimal values. In the 

variational quantum circuit, the optimization process is 

illustrated in Figure 2. 

 The study employed the SPSA (Simultaneous Perturbation 

Stochastic Approximation) optimization technique. SPSA 

utilizes simultaneous perturbations to estimate the gradient of 

the loss function and then updates the parameters in the 

direction that improves the loss function [26]. SPSA features 

various methods designed to find the global minimum 

 

 

Figure 2. Optimization process in variational quantum 

circuits. 

 

C. Evaluation 

To evaluate the performance of the proposed variational 

quantum classifier, the area under receiver operating 

characteristic curve (AUROC) analysis was utilized along 

with accuracy, sensitivity, specificity, and F1-score metrics 

obtained from the confusion matrix. The AUROC curve helps 

in assessing the trade-off between true positive rate 

(sensitivity) and false positive rate. The confusion matrix 

provides more detailed information on how well the prediction 

model is performing, including true positives (TP), true 

negatives (TN), false positives (FP), and false negatives (FN). 

These elements help to determine which classes are correctly 

classified and which ones are misclassified. 

In addition to these metrics, kernel matrices for both the 

training and testing datasets obtained using ZZFeatureMap. 

Feature maps provide insights into which features contribute 

to misclassifications, allowing for a more detailed analysis of 

the classifier's performance. Overall, these evaluation metrics 

and feature map will help understand the classifier's strengths 

and weaknesses and provide valuable insights for further 

improvements. 

 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  

𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁)
 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃)
 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∗ 𝑇𝑃

(2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
 

 

 

 

 

 

 

 

(8)   

III. RESULTS 

The performance of our proposed variational quantum 

classifier on the Alzheimer's patients' handwriting dataset is 

depicted in Table 1. The values of TP, TN, FP, and FN for 

the variational quantum classifier are presented in Figure 3. 

Each of these values is available in the confusion matrix for 

both AD and Non-AD cohorts. 
 

As evident from Table 1, for the AD cohort, the performance 

metrics include an accuracy of 0.75, specificity of 0.69, 

sensitivity of 0.88, F1-score of 0.77, and an AUROC value of 

0.68. The corresponding values for the non-AD cohort are 

0.75 for accuracy, 0.75 for specificity, 0.50 for sensitivity, 

0.59 for F1-score, and 0.68 for AUROC. 
 

In comparison, the performance of various machine learning 

algorithms on the same dataset is summarized as follows: the 

K-Nearest Neighbors (KNN) model achieved an accuracy of 

0.74, the Support Vector Machine (SVM) algorithm 

performed the best with an accuracy of 0.79, and the Decision 

Tree (DT) model attained an accuracy of 0.75. 

 

 

Table 1. The table presents a comprehensive set of evaluation 
metrics, including accuracy, specificity, sensitivity, F1-score 
and AUROC to assess the proposed variational quantum 
classifier efficacy and performance. 

Due to the availability of cloud-based backends in IBMQ, the 
implementation of the proposed variational quantum classifier 
was carried out using IBM's Qiskit version 0.36.1 framework. 
Data classification was performed using the related simulator 
Aer version 0.12.2. We used ibmq qasm simulator, which is a 
32 qubit simulator.  



In this study, the SPSA optimizer was utilized with a 

maximum of 500 iterations. In Figure 4, the loss function 

shows a consistent downward trend. Although the graph 

exhibits some spikes, it is understandable since we are 

utilizing stochastic gradient-descent, and there is a possibility 

of randomness present. 

 

 

Figure 3. Confusion matrix of proposed variational 
quantum classifier. 

 

 

Figure 4. The objective function value of the proposed 
model against the selected number of iterations. 

 

Figure 5 illustrates the construction of a kernel matrix that 

contains the inner product of all data points used for training 

and testing. This enables us to invoke the classical kernel 

function from the training and testing data in the feature map. 

 

   

 

Figure 5. Kernel matrices for both training and testing 
phases were generated by the ZZFeatureMap. 

IV. CONCLUSION 

Although current NISQ quantum computers have a limited 
number of qubits, it is anticipated that future quantum 
computers will have a substantial impact across various data 
processing domains, particularly in big data, where datasets 
are pushing the limits of classical computational resources. 
Medical image analysis, along with obtaining actionable 
insights from such data, has also gained significant importance 
in recent years. In this context, a wide range of quantum 
applications is being explored in the medical field. 

In this study, we employed the proposed variational quantum 
classifier to aid in the early diagnosis of AD through 
handwriting analysis. Our results demonstrated that the 
proposed classifier achieved a classification accuracy of 0.75 
in distinguishing the AD cohort from the non-AD cohort. 
Furthermore, when compared to the performance of several 
widely-used machine learning algorithms, we have shown that 
proposed model can offer comparable accuracy to classical 
methods in early diagnosing of AD based on cognitive 
changes. 

In future studies, we aim to further refine the proposed 
variational quantum classifier and achieve higher diagnostic 
accuracy for AD, focusing on the integration of more complex 
cognitive indicators and enhanced quantum algorithm. 
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