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Abstract—Modern Deep Learning training is extremely carbon
and energy intensive. Existing tools to evaluate carbon and
energy consumption are either too coarse-grained, making them
inaccurate or too sophisticated, making them inaccessible. This
work presents a framework that enables users to capture accurate
carbon and energy consumption of their deep learning training
runs.
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I. INTRODUCTION

As machine learning models are becoming more widely
integrated in society, it is important to be aware of their grow-
ing costs. For example, GPT-3, a language model, released a
predicted 502 tonnes of carbon emissions during its training.
[1] The developers of more expensive models such as Gemini
Ultra and GPT-4 have not released carbon emissions data,
but of the data reported in 2023, the most carbon-intensive
machine learning model released almost 300 tonnes of CO2,
and consumed 400 MWh. [1]

Tools such as CodeCarbon [2] and the Machine Learning
Emissions Calculator [3] exist to better understand and reduce
the environmental impact of high-performance computing.
However, they are either not well integrated with existing
training pipelines [2], requiring time consuming manual in-
tegration, or they require users to input metadata such as
computing hours and device information [3], leading to coarse-
grained inaccurate predictions. A framework to automatically
collect and report energy usage and carbon emissions during
the training process can significantly improve the availability
of environmental impact data.

Thus, we propose a framework for seamlessly enabling
users to measure the carbon impact of their machine learning
models. Our tool allows a user to select a model and dataset,
automatically preprocess their data, fine-tune for multiple
tasks, and output energy and carbon usage information with
their trained model. It can be launched within an HPC environ-
ment or a local platform and has an an easy to use web-based
framework. Our hope is that our tool makes machine-learning
models easy to train while also making users more aware of
the environmental impact associated with computing time.

II. BACKGROUND

A. CodeCarbon

CodeCarbon is a tool for tracking carbon emissions while
running code. Designed to be as light as possible, it measures
the power consumption of the system’s GPU, CPU, and RAM
every 15 seconds, to track electricity used by computer hard-
ware. Afterward, it multiplies this total electricity consumed

Our framework is available at: https://github.com/KLab-AI3/ai-carbon

by the “carbon intensity” of the region - the average amount
of CO2 produced per kilowatt-hour. [2]

With CodeCarbon installed, a decorator can be applied to
a python function to track the emissions generated while it
executes. An emission-tracking object can also be put into a
function, started and stopped manually, and CodeCarbon can
be started from the command line to track carbon emissions
system-wide.

B. Relevant Related Works

The Machine Learning Emissions Calculator is a tool for
estimating the raw carbon emissions produced while training a
machine learning model. In order to get this estimation, it takes
as input the hardware type, hours used, cloud provider, and
the region where the computation is being performed. While
useful, this tool is only capable of estimating carbon emissions
and carbon offset, as opposed to measuring the data as the
training is being done. [3]

Microsoft Azure cloud tools have been used to track the
carbon emissions of various machine learning models for nat-
ural language processing and image analysis, and while these
measurements were not done with the same technologies that
our framework uses, they provide valuable insight into cloud-
based machine learning energy usage and carbon output. [4]
It’s also important to be aware that carbon emissions can vary
greatly from region to region. For example, a model trained in
the United States has considerably more environmental impact
than a model trained in France, due to the areas’ differing
carbon intensity. [4]

III. FRAMEWORK

Our framework allows a user to load machine learning
models and datasets directly from Hugging Face and train
for multiple language processing tasks, including text clas-
sification, language modeling (casual and masked), token
classification, extractive QA, translation, and summarization.
The program can be launched either on an HPC environment
or a local platform - the setup process (utilizing TensorFlow
and Pytorch) is able to analyze its environment and adjust the
functionality accordingly.

The model and dataset are specified by the user (via a link
to the Hugging Face website) and downloaded automatically
using the transformers library. The user is also required to
select the kind of training they want to perform, and they
may be required to input more information about the dataset.
For example, if the data is split into multiple subsets, they
may have to select which subset of the data they want to
train with. Certain tasks require other input, such as block
size for language modeling or source and target languages for



Fig. 1: User Interface

translation. Finally, the user can adjust different parameters,
including the number of epochs, the learning rate, the training
batch size, evaluation batch size, and PEFT type.

Dataset preprocessing is performed automatically based on
the task. For example, during text classification, the dataset’s
features, labels, and keys are all detected by their contents
position within the dataset if the user declines to specify them.
Afterwards, they are put into the proper format for the model
selected. This might require conversion between data types
(such as boolean values into int values), renaming columns,
or combining labels into matrices. During language modeling,
texts are grouped and split according to the maximum length
that the model can effectively train with before being encoded.
Each task preprocesses data differently - our goal was to make
the framework easy to use as possible for a wide variety of
datasets and models.

For measuring the carbon impact of these machine learning
models, our implementation uses a callback function and the
CodeCarbon library to track energy. CodeCarbon allows us
to compute the carbon emissions based on carbon intensity
and geolocation data. Our framework then displays the carbon
emission data in a downloadable CSV format within our
frontend application.

IV. EXPERIMENTAL EVALUATIONS

To test our framework, we fine-tuned several different ma-
chine learning models for multiple natural language processing
tasks. These tests were done with smaller datasets of only 2000
entries each. Our local platform utilizes an NVIDIA GeForce
GTX 1660 GPU and an Intel Core i7-9750H processor, and
all of these tests were performed in the Central United States
within the SPNO eGRID subregion, which has an above-
average emission rate for CO2 compared to the national
average. While the emissions presented in this section are
dependent on the carbon intensity of the region, it is possible
calculate the carbon emissions of other regions as well from
the raw power usage data dependent on our hardware. The
models were selected for each task based on their popularity
on Hugging Face. Table I demonstrates the results.

V. CONCLUSION

We have developed an easy to implement framework for
training and fine-tuning machine learning models for a variety

Model Task Duration
(minutes)

Energy
Usage
(kWh)

Carbon
Emissions

(g)
t5-small Summariza-

tion
49.02 0.0229 12.43

distilbert-
base-

uncased

Text Clas-
sification

7.78 0.0036 1.98

opus-mt Translation 17.17 0.008 4.36
distilbert-

base-
uncased

Extractive
QA

54.73 0.0256 13.87

distilbert-
base-

uncased

Token Cla-
ssification

6.3 0.0029 1.6

distilled-
gpt2

Language
Modeling

15.1 0.007 3.8

TABLE I: Carbon Emissions for Fine-Tuning

of different natural language processing tasks. We hope that
our framework can allow AI developers to experiment with
different models and parameters to better understand and
minimize the carbon impact of their work. The manufacture,
transportation, and end-of-life phases for the computer hard-
ware can also impact a model’s carbon footprint [5], but these
areas are outside the scope of our framework.

While our tests serve to demonstrate the implementation,
our framework could be used to conduct a more comprehen-
sive evaluation by comparing deep learning models’ energy
usage with larger datasets, different computational resources,
and different PEFT parameters run over a longer period of
time. We plan to support deep learning models other than
natural language processing in the future iterations.
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