
MONOCODER: Domain-Specific Code Language
Model for HPC Codes and Tasks

Tal Kadosh1, 2, Niranjan Hasabnis3, Vy A. Vo4, Nadav Schneider1, 2, Neva Krien, Mihai Capotă4,
Abdul Wasay4, Guy Tamir5, Ted Willke4, Nesreen Ahmed4, Yuval Pinter1, Timothy Mattson and Gal Oren6, 7

1Ben-Gurion University, 2IAEC, 3Code Metal, 4Intel Labs, 5Intel, 6Technion, 7Stanford University
talkad@post.bgu.ac.il, niranjan@codemetal.ai, vy.vo@intel.com,

nadavsch@post.bgu.ac.il, nevo.krien@gmail.com, mihai.capota@intel.com,

abdul.wasay@intel.com, guy.tamir@intel.com, ted.willke@intel.com,

nesreen.k.ahmed@intel.com, pintery@bgu.ac.il, tim@timmattson.com,

galoren@stanford.edu

Abstract—With easier access to powerful compute resources, there
is a growing trend in AI for software development to develop large
language models (LLMs) to address a variety of programming
tasks. Even LLMs applied to tasks from the high-performance
computing (HPC) domain are huge in size and demand expensive
compute resources for training. This is partly because LLMs for
HPC tasks are obtained by finetuning existing LLMs that support
several natural and/or programming languages. We found this
design choice confusing — why do we need LLMs trained on
natural languages and programming languages unrelated to HPC
for HPC-specific tasks?
In this line of work, we aim to question choices made by existing
LLMs by developing smaller language models (LMs) for specific
domains — we call them domain-specific LMs. Specifically, we start
with HPC as a domain and build an HPC-specific LM, named
MONOCODER, which is orders of magnitude smaller than existing
LMs but delivers better performance on non-HPC and HPC codes.
Specifically, we pre-trained MONOCODER on an HPC-specific
dataset (named HPCORPUS) of C and C++ programs mined
from GitHub. We evaluated the performance of MONOCODER
against state-of-the-art multi-lingual LLMs. Results demonstrate
that MONOCODER, although much smaller than existing LMs,
outperforms other LLMs on normalized-perplexity tests (in
relation to model size) while also delivering competing CodeBLEU
scores for high-performance and parallel code generations. In
other words, results suggest that MONOCODER understands HPC
code better than state-of-the-art LLMs.
MONOCODER source code is available at our GitHub repository.

I. INTRODUCTION

Recent breakthroughs in the field of AI have led significant
attention to language models (LMs) due to their advanced
capabilities in natural language processing (NLP) [1]. Large
language models (LLMs), particularly exemplified by models
such as GPT-3 [2] and its successors [3], deployed in the
conversational form of ChatGPT [4], have demonstrated the

This research was supported by the Israeli Council for Higher Education
(CHE) via the Data Science Research Center, Ben-Gurion University of the
Negev, Israel; Intel Corporation (oneAPI CoE program); Pazy Foundation; and
the Lynn and William Frankel Center for Computer Science. Computational
support was provided by HPE HPC & AI Cloud, Intel Developer Cloud,
and the NegevHPC project. Part of this work was completed when Niranjan
Hasabnis was at Intel Labs and Gal Oren with NRCN.

potential to grasp intricate linguistic structure and semantics,
sparking exploration of their applicability beyond NLP.
In parallel, the field of high-performance computing (HPC)
has been tackling increasingly complex and data-intensive
problems [5]. The field of HPC has experienced advancements
in hardware, software, and algorithms, resulting in improve-
ments in computational performance and efficiency [6], [7].
Combining the two trends, integrating LMs into HPC workflows
has emerged as a compelling avenue for innovation [8]. For
instance, several recent efforts have explored the application
of LLMs in assisting HPC programmers in automatically
inserting OpenMP pragmas or MPI functions in code [9]–[16],
overcoming the limitations of existing static tools [17]–[21].
Although existing LLMs have shown remarkable results on
programming tasks [22], such as code generation, or bug fixing,
we found several limitations. First, we found that they perform
surprisingly poorly on the HPC-related programming tasks,
such as code parallelization and vectorization [8], [11]–[13],
[23]. Our observations are corroborated by the latest work
by Nichols et al. [23] which specifically evaluates parallel
code generation performance of start-of-the-art LLMs, such as
GPT-4 by building a benchmark named ParEval (Parallel Code
Generation Evaluation). Nichols et al. find that “LLMs are
significantly worse at generating parallel code than they are
at generating serial code”. Moreover, they further comment
that “the poor performance of LLMs on ParEval benchmark
indicates that further efforts are necessary to improve the ability
of LLMs to model parallel code and/or create new LLMs that
are specialized for parallel code generation.”
This finding led us to ponder several research questions: (i) How
well do existing LLMs perform on domain-specific tasks such
as those for the HPC domain, (ii) Will more domain-specific
training data help in improving the performance?, (iii) When
applying LMs for a specific domain, do we finetune existing
LMs, or should we train them from scratch? This last question
is specifically important in the context of the enormous training
costs of LLMs, which is the second limitation of existing LLMs.
As an example, HPC-Coder [13], a recently-introduced LM for

https://github.com/Scientific-Computing-Lab/MonoCoder
https://console.breckenridge.cloud/
https://www.intel.com/content/www/us/en/developer/tools/devcloud/overview.html
https://platform.openai.com/tokenizer


HPC tasks, is obtained by finetuning PolyCoder [24] on an HPC
dataset; PolyCoder itself is a code LM (not specific to HPC)
that is trained on a corpus made up of 249 GB of programs
written in 12 programming languages. As another example,
HPC-GPT [25], LM4HPC [8], and AutoParLLM [26] rely on
LLaMA as their base model — with up to 34 billion parameters
— or even on GPT-4. Such setups looked counter-intuitive to us
— Is it not enough to train an LM on HPC-specific languages
only? In other words, why do we need an LM trained on Java
or Python — with tens or hundreds of billion parameters —
for HPC-specific tasks? More importantly, we believe that
such domain-specific LMs would be computationally as well
as financially efficient to train.
In this paper, we hypothesize that HPC-specific LMs (e.g.,
smaller LMs that are designed and trained specifically on HPC
datasets) would perform better than existing LMs for HPC tasks.
We perform two experiments to validate this hypothesis. The
purpose of the first experiment is to build a smaller LM that
performs similar, if not better, than existing LLMs in terms of
generic language understanding tasks (such as code completion).
Towards that end, in the first experiment, we build a smaller
LM, called MONOCODER, by reducing the number of layers of
PolyCoder by a factor of 4 and pretraining only on C and C++
codes. We then empirically validate that MONOCODER, despite
being a smaller model than PolyCoder, achieves a comparable
perplexity score to PolyCoder in generic code completion task.
The purpose of the second experiment is then to evaluate the
performance of MONOCODER on HPC-specific tasks. Towards
that end, we obtain the CodeBLEU scores of parallel code
generation models with increasing context.
We exploit one insight that we learned while building
MONOCODER. Specifically, we found that existing code LMs
capture “local” semantics of code structures that leads to their
degraded performance on the code completion task. An example
of “local” semantics could be a variable named i is an index
variable of a for loop (in most of the programs for that matter).
We address this limitation in MONOCODER by implementing a
code pre-processing scheme that eliminates any local semantics
that the LLM may capture. Our experimental evaluation
demonstrates that MONOCODER outperforms existing code
LMs in virtually all of the code completion settings and context
lengths, with and without applying local semantics elimination
(henceforth, LSE). Moreover, and in contrast to MONOCODER,
the performance of other LMs degraded considerably when
LSE was applied, suggesting their reliance on local semantics.
Contributions. This paper makes following contributions:

• By drawing insights from the limitations of existing
LLMs, we propose a domain-specific, small language
model, called MONOCODER, for tasks related to high-
performance computing.

• We design a pre-processing method, called Local Se-
mantics Elimination (LSE), that eliminates syntactical
constructs that could lead to local semantics.

• We compare MONOCODER against PolyCoder and GPT-

Repos Size (GB) Files (#) Functions (#)
C 144,522 46.23 4,552,736 87,817,591

C++ 150,481 26.16 4,735,196 68,233,984

TABLE I: Statistics on the subset of HPCORPUS dataset [27]
that we used in our study: ∼300k repos, ∼70 GB, ∼9M files,
and ∼155M functions across C and C++ code from GitHub.

3.5 for general-purpose programming tasks as well as
tasks related to HPC programming.

• Finally, we also measure the parallel code generation
performance of MONOCODER and other LLMs over a
dataset of 20k OpenMP codes by calculating the Code-
BLEU score. Our results demonstrate that MONOCODER,
although orders of magnitude smaller in size, performs
similar to these LLMs in language comprehension, while
outperforming them in HPC-specific tasks.

The remainder of the paper is organized as follows: In section II
we delve into the details of the HPC code dataset HPCOR-
PUS. Then section III provides an in-depth exploration of
MONOCODER, our language model pre-trained on HPCORPUS.
In section IV, we introduce LSE, our code preprocessing step
designed for HPC code. In section V, we perform evaluations
of MONOCODER and state-of-the-art models on non-HPC
and HPC tasks. Finally, we conclude the paper and outline
directions for the future research in section VII.

II. HPCORPUS: HPC CODE CORPUS

In order to build an HPC-specific model, we first decided to
gather a dataset of HPC specific programs. Towards that end,
we compiled HPCORPUS, a dataset of publicly-visible C and
C++, and Fortran programs from GitHub [27]. In this work
we decided to focus on C and C++ languages only, and hence
we used a subset of HPCorpus as shown in Table I.
In [27], we discovered that many of those repos employed one
(or more) parallel API. For instance, 45% employed shared
memory parallelism with OpenMP (primarily for threading, but
also for SIMD and GPU offloading), 27% employed distribution
with MPI, 21% employed direct GPU programming (half with
CUDA and half with OpenCL), and the rest mainly employed
other threading APIs (such as TBB and Cilk).
Training data preprocessing. While many code LMs include
natural language in their pre-training data, this will likely be
unhelpful for HPC programmers and downstream HPC tasks
of interest. On the other hand, it is much more critical that the
model understands the structure of the code. To this end, we
preprocess the code files in HPCORPUS such that no natural
language is included; only structured blocks from deduplicated
files are included; and code blocks are greater than 100 tokens
and less than 1MB (as done in PolyCoder). By that, we gathered
∼155M functions that are more suitable for pre-training a code
language model that emphasizes concise code structure.



1 // Source code:
2 int main() {
3 int r[2800 + 1];
4 }

1 // LSE:
2 int func_252() {
3 int arr_88[num_34 + num_842];
4 }

// Lexicalized tokens:
["int", "func", "_", "252",
"()", "{", "int", "arr", "_"
... (tokens continue)

Fig. 1: Local Semantics Elimination (LSE) pipeline overview: Given a source code, the code turns into a semantic-less version
using AST knowledge, and eventually, the lexicalized tokens are fed into MONOCODER.

III. MONOCODER: AN HPC-SPECIFIC CODE LM

To create a domain-specific model for HPC, we pre-trained
a decoder-only transformer model on the language modeling
objective (i.e., given past tokens as context, predict the next
token in the code) using only C and C++ code from HPCorpus.
We named this domain-specific model as MONOCODER, in
contrast to the multilingual Polycoder.
Model size. In the pursuit of deploying domain-specific
small language models on average computer systems, careful
consideration of model size becomes paramount. To ensure
compatibility with such resource constraints, we aimed to
design a model that strikes a balance between complexity
and memory efficiency. The choice of a model comprising
just under 1B parameters emerged as an optimal compromise.
The decision is underpinned by the following calculations:
Assuming each parameter is represented as a 32-bit floating-
point number requiring 4 bytes, the formula RAM size
(in bytes) = Number of Parameters × Size of
one parameter (in bytes). Consequently, for 0.9B
parameters, the resulting RAM size amounted to 3.6GB. This
selected model size not only accommodates a 4GB RAM
constraint – typically the maximum memory per core in HPC
systems [28] – but also leaves additional headroom for other
computational processes within the system to accommodate
model inference. Note that this worst-case analysis did not
consider inference-time optimizations such as quantization, or
pruning, which would reduce memory consumption further.
We constructed MONOCODER model of 0.9B parameters
by reusing the PolyCoder 2.7B model architecture [24], but
reducing the number of layers. This led to an 8-layer model with
a hidden dimension of 2560 and 32 attention heads per layer.
We used the same tokenizer vocabulary (50,257 tokens). This
resulted in an 889.3M parameter model (≈ 0.9B parameters).
Limitations. Our domain-specific model inherits the principles
of a left-to-right language model, which is especially amenable
to code generation tasks. By adhering to the left-to-right nature,
our model aligns with the established models such as CodeGPT
(124M) [29], GPT-Neo [30] and PolyCoder (2.7B) [24], GPT-
J (6B) [31], Codex (12B) [32], StarCoder (15.5B) [33], and
GPT-NeoX (20B) [34], which are known for their proficiency
in code completion.
However, we acknowledge the inherent challenge posed by
the left-to-right approach, which limits the model’s ability to
consider context beyond the immediate token sequence. As part
of our ongoing research, we are exploring strategies to address
this limitation and further refine MONOCODER’s capability to

leverage broader contextual information, thereby advancing its
effectiveness in the nuanced landscape of HPC code synthesis.
Pre-training details. We pre-trained the MONOCODER model
using the GPTNeoX framework [35] on 4 NVIDIA A40 48GB
GPUs with fp16 precision. For pre-training, we used the
Adam optimizer and followed a learning rate schedule with
a linear warmup for the first 1% of steps and a cosine decay
over the remaining steps. Gradients were clipped at 1.0. Each
training sample had a maximum length of 2048 tokens and was
trained in mini-batches of 16 samples (4 per GPU). The model
was trained for 160K steps at a learning rate of 0.00008. The
training and validation losses initially start high at around 3.0,
rapidly decrease over the first 25,000 steps, stabilize thereafter,
converge closely without overfitting, and finally settle below
0.5 by approximately 150,000 steps, indicating minimal loss.

IV. LOCAL SEMANTICS ELIMINATION (LSE)

An effective code LM for HPC tasks must understand both
the syntax and structure of the code, without memorizing
potentially misleading human semantics [36] (e.g., variable
names). We propose a preprocessing method based on an
abstract syntax tree (AST) to remove misleading semantic
information. A code LM that performs well on this anonymized
preprocessed code is clearly relying on its understanding of
code structure, rather than natural language-derived semantics.
We name this preprocessing method as LSE (for local semantics
elimination). LSE is inspired by input tokenization and more
importantly ensures functionally correct and compilable code.
Tokenizing code for LLMs necessitates specialized techniques
to accommodate programming language syntax.1 LLMs geared
towards code comprehension, such as GPT-3.5-Turbo for code,
likely combine several techniques, prioritizing syntax-aware
tokenization to effectively process and generate code snippets
in various programming languages and tasks.
In short, LSE preprocessing (Figure 1) replaces variable names,
numbers, and strings with random variable names and removes
superfluous input (e.g., comments, extra whitespace). The
detailed steps are as follows:

1These approaches include utilizing BPE and subword tokenization akin
to natural language [37], employing syntax-aware tokenization to identify
language-specific elements like keywords and identifiers [38], constructing
tokens based on the AST to capture structural information [39], implementing
language-specific lexers following grammar rules [40], preserving character
integrity with character-level tokenization [41], tailoring tokenization to unique
syntax rules, and leveraging dedicated code tokenization libraries.



M
O

N
O

C
O

D
ER

Po
ly

Co
de

r
G

PT
-N

eo
G

PT
-J

Co
de

x
St

ar
Co

de
r

G
PT

-N
eo

X

1

5

10

15

20

25

0
.9 2
.7

2
.7

6

1
2

1
5
.5

2
0

Si
ze

(B
pa

ra
m

et
er

s)

(a) Model Size

M
O

N
O

C
O

D
ER

Po
ly

Co
de

r
G

PT
-N

eo
G

PT
-J

Co
de

x
St

ar
Co

de
r

G
PT

-N
eo

X

10

20

30

40

50

3
.5
1

2
.3
3

3
.6
9

2
.8
2

2
.5
5

1
.7
1

2
.3
7

3
.1
6

6
.2
9

9
.9
6 1
6
.9
2

3
0
.6

2
6
.5
1

4
7
.4

Pe
rp

le
xi

ty
(b) Perplexity (in green) and Normalized
-to-size Perplexity (in orange) for C

M
O

N
O

C
O

D
ER

Po
ly

Co
de

r
G

PT
-N

eo
G

PT
-J

Co
de

x
St

ar
Co

de
r

G
PT

-N
eo

X

10

20

30

40

50

3
.6
9

2
.9
9

2
.8
7

2
.4
7

1
.9
5

2
.0
1

2
.3
2

3
.3
2 8
.0
7

7
.7
5 1
4
.8
2 2
3
.4

3
1
.1
6

4
6
.4

Pe
rp

le
xi

ty

(c) Perplexity (in green) and Normalized
-to-size Perplexity (in orange) for C++

Fig. 2: Comparison of code language models based on their model size, perplexities, and normalized-to-size perplexities for C
and C++. The results demonstrate that smaller models, such as MONOCODER, tend to have much better normalized perplexity
scores (lower is better), indicating better performance relative to their size. Data for PolyCoder, GPT-Neo, GPT-J, Codex,
StarCoder, and GPT-NeoX are taken from [24] and [33].

1) AST Generation: Parse the code using TreeSitter2 or any
suitable parser to generate an AST.
2) Generate Replaced Code: Create a version of the original
code with anonymized variable names, numbers, and strings.
The intuition behind this step is to eliminate misleading
semantics, such as variable i being an index variable of a
for loop in the C language.
3) AST to Code: Transform the updated AST back into code,
while eliminating any comments that may interfere with
anonymization.
4) Random Number Attachment: For recurrent tokens (e.g.,
var_1 or num_2), attach random integers from a predefined
range (e.g., 1 to 1000) during tokenization. The attached
numbers are randomly chosen without any relation to the
type or order of the replaced tokens or the file/function length.
This step also eliminates misleading semantics. For instance, if
variable i is consistently replaced with var_1, then the model
may learn that var_1 is an index variable of for loops.

V. MONOCODER EVALUATION

A. Language Modeling Evaluation

We start by measuring the perplexity of MONOCODER and
other LLMs on unseen test programs in C and C++.
Metric: Perplexity. Perplexity is a metric commonly employed
in natural language processing and language modeling to assess
the efficacy of a probabilistic model in predicting a given
sequence of tokens. It serves as a measure of the model’s
uncertainty or confusion when assigning probabilities to a
set of observed data. A lower perplexity value signifies the
better predictive performance of a model. In the context of

2https://github.com/tree-sitter/tree-sitter

our research, we measured perplexity to evaluate the predictive
capabilities of the pre-trained MONOCODER language model.
That is, this assessed how well the model assigned probabilities
to the token sequences in the C and C++ portions of the
HPCORPUS test set.
Setup. For this test, we use the training procedure outlined
earlier to pre-train MONOCODER on HPCORPUS. We then
measure perplexity on C and C++ code from the test set of
HPCORPUS. We then compared this perplexity to the perplexity
scores of various pre-trained LLMs based on the published
works [24], [33]. The StarCoder values are with a 2K context
window, similar to MONOCODER’s 2048 context window.
Results. The perplexity comparison can be seen in Figure 2. We
can see that despite the much smaller size of MONOCODER, it
suffers from minor performance degradation than much larger
models. For C language, it is performing better than the 3x-
larger GPT-Neo model.

B. Code Completion Evaluation

In this second evaluation, we assess the ability of MONOCODER
and other LLMs in completing a block of code when provided
with varying amounts of prior context. While perplexity
provides information about the uncertainty of the model, it
does not necessarily measure the quality of the generated code.
For this reason, we further evaluate code understanding with
the CodeBLEU [42] score.
Metric: CodeBLEU score. CodeBLEU [42] is the metric of
choice in the code completion tasks. CodeBLEU amalgamates
the robustness of BLEU score [43](from NLP), incorporating
n-gram matching, with an innovative integration of code
syntax and semantics through AST and data-flow structures.
This holistic approach provides a nuanced evaluation that

https://github.com/tree-sitter/tree-sitter


// INPUT to LLM:

1 int main (int argc,
char *argv[]) {

// LLM COMPLETION:

2 int i;
3 int n = argc - 1;
4 int m = argc - 2;
5 int k = argc - 3;
6 int l = argc - 4;
7 int r = argc - 5;
8 int c = argc - 6;
9 int d = argc - 7;

10 int e = argc - 8;
11 int f = argc - 9;
12 int g = argc - 10;
13 int h = argc - 11;
14 int i1 = argc - 12;
15 int i2 = argc - 13;

(a) Given function signature

// INPUT to LLM:

1 int main (int argc, char *argv[]) {
2 int i,j;
3 double x;
4 double pi, sum = 0.0;
5 double start, delta;
6 step = 1.0/(double) steps;
7 for (j=1; j<= MAX_THREADS; j++) {
8 printf("running on %d threads: ", j);
9 omp_set_num_threads(j);

// LLM COMPLETION:

10 start = omp_get_wtime();
11 for (i=0; i<steps; i++) {
12 x = (double) i;
13 pi = 3.141592653589793238
14 4626433832795028841971693
15 9937510582097494459230781
16 6406286208998628034825342...

(b) Given initialization

// INPUT to LLM:

1 int main (int argc, char *argv[]) {
2 int i,j;
3 double x;
4 double pi, sum = 0.0;
5 double start, delta;
6 step = 1.0/(double) steps;
7 for (j=1; j<= MAX_THREADS; j++) {
8 printf("running on %d threads: ", j);
9 omp_set_num_threads(j);

10 sum = 0.0;
11 double start = omp_get_wtime();
12 #pragma omp parallel for

reduction(+:sum) private(x)

// LLM COMPLETION:

13 for (i=0; i<steps; i++) {
14 x = (double) i;
15 sum += x;} ...

(c) Given context of parallel execution
Fig. 3: Evaluating code completion performance of HPC code by the foundation models (PolyCoder example): Evaluating
machine-generated code, given different contexts of the initial HPC codes and measuring the similarity to the true reference.

context-100 context-300 context-600
0

0.5

1

1.5

0
.6
2

0
.7
5

0
.8
5

0
.6
4

0
.7
2

0
.8
5

0
.4
5 0
.6
4

0
.7
8

0
.3
9 0
.6 0
.7
4

0
.4
4

0
.5
8

0
.5
9

0
.5
3

0
.5
8

0
.6

C
od

eB
L

E
U

MONOCODER MONOCODER + LSE
PolyCoder PolyCoder + LSE
GPT-3.5 GPT-3.5 + LSE

(a) Code completion performance on General dataset.

context-100 context-300 context-600
0

0.5

1

1.5

0
.6
4

0
.7
7

0
.8
4

0
.6
4

0
.7
7

0
.8
6

0
.6
1

0
.7
4

0
.8
4

0
.3
7 0
.5
9 0
.7
4

0
.4
3

0
.5
7

0
.5
6

0
.5
2

0
.5
7

0
.6

C
od

eB
L

E
U

MONOCODER MONOCODER + LSE
PolyCoder PolyCoder + LSE
GPT-3.5 GPT-3.5 + LSE

(b) Code completion performance on OpenMP dataset.
Fig. 4: Code Completion Performance on General and OpenMP Datasets — CodeBLEU scores (higher is better) for MONOCODER,
PolyCoder, and GPT-3.5 models, both with and without Local Semantic Elimination (LSE), across varying context lengths (100,
300, and 600 tokens). MONOCODER and MONOCODER + LSE consistently outperform other models, with the addition of LSE
generally enhancing performance across all models.

extends beyond token matching, considering the significance
of keywords, syntactic accuracy, and semantic correctness. In
the case of HPC code without natural language, CodeBLEU
is the appropriate metric to check similarity to generations.
Setup. For this evaluation, we first devise two sub-datasets:
(1) General dataset of about 20k examples of C and C++
programs from HPCORPUS with HPC-orientation3 and (2)
OpenMP dataset of about 20k examples of C and C++ pro-
grams containing OpenMP code (e.g., parallel for). The
method to test the model’s understanding is by incrementally
supplying it more parts of those programs (first 100, 300, and
600 tokens, out of an average of 1200 tokens per code) and

3Ones that contained OpenMP’s parallel for pragmas. However, those
pragmas were intentionally removed to keep clean C and C++ programs that
have HPC orientation

comparing the code generated by the model with the expected
ground-truth code using CodeBLEU. Demonstration of the idea
is presented in Figure 3.
Results. Figure 4a shows code completion performance of the
models on General dataset. For a context of the first 100
tokens, MONOCODER achieves a CodeBLEU score of 0.62,
while PolyCoder and GPT-3.5 attain scores of 0.45 and 0.44,
respectively. This discrepancy can be attributed to PolyCoder’s
diverse training across programming languages and GPT-3.5’s
general nature, resulting in versatile but less HPC-specific
answers. Expanding the context window to 600 tokens further
widens the CodeBLEU score gap between MONOCODER and
GPT-3.5, emphasizing lack of HPC knowledge in GPT. Overall,
the model’s reduced orientation towards HPC codes accentuates
the discernible gap in HPC code knowledge among the models.



Similar trends are evident on OpenMP dataset in Figure 4b,
depicting the CodeBLEU scores of models when completing
functions containing OpenMP pragmas. Generally, the results
are slightly lower than those on General dataset, underscoring
the models’ limited understanding of OpenMP.
It is noteworthy that, despite the LSE pre-processing having a
minor impact on the performance of MONOCODER and GPT-
3.5, this code representation significantly impairs the perfor-
mance of PolyCoder. This observation suggests that PolyCoder
heavily relies on local semantics for code completion.

VI. RELATED WORK

We present the related work along two directions: 1) code LMs
that are not specifically designed for HPC tasks but can solve
HPC tasks, 2) LLMs designed specifically for HPC tasks.
The code LM literature is somewhat divided into NLP-oriented
approaches and software engineering approaches. Popular
LLMs such as GPT-3.5, GPT-4, LLaMa, or even code specific
LLMs such as CodeT5 [44], etc., are trained on code datasets
that also contain natural language comments. As a result,
most of these models, if not all, can solve programming tasks
with or without natural language prompts. These NLP-oriented
approaches typically evaluate code LMs with perplexity and
datasets like HumanEval [32] or Mostly Basic Programming
Problems [45], which assess both natural language compre-
hension and general reasoning ability of a model along with
code comprehension. These models also solve coding-specific
tasks such as code search, code completion, etc. In addition to
natural language and programming-specific tasks, these models
can also solve HPC tasks to certain extent. Because the training
datasets of these models most likely contain HPC code also
(in APIs such as OpenMP, CUDA, etc.), these models possess
some understanding of HPC languages also. Our experiments
with GPT-3.5 revealed that it had a reasonable understanding
of code parallelization problem (e.g., analyzing if a loop can be
parallelized). However, our experiments also revealed that these
LLMs have limited understanding of HPC tasks — the same
observation also reported by Nichols et al. in their evaluation
of LLMs for HPC tasks [23]. Specifically, their experimental
results reveal several limitations of existing LLMs for HPC
tasks.
Given the limitations of popular LLMs on HPC tasks and
also their expensive training costs, several works have recently
explored HPC specific LMs. Specifically, several groups have
developed LMs for popular HPC problems such as OpenMP
pragma prediction and generation [8]–[13], [26], [46], MPI
code generation [14], [47], and race detection [25]. We found
that these works mostly finetune a pre-trained LM, which are
larger in size than required for their HPC tasks. We believe
that our work complements these papers by demonstrating a
smaller, domain-specific LM that can solve HPC tasks.

VII. CONCLUSION & FUTURE WORK

Existing LLMs, such as GPT-3.5, are multi-lingual and are
trained on languages unrelated to HPC. This phenomenon
leads to huge model sizes and demands expensive compute
resources to train. Thus, we decided to evaluate if we can
build a smaller, domain-specific model that can perform
similar, if not better, than existing LLMs on HPC-related
programming tasks. Towards that end, we built MONOCODER
using an existing code-oriented LLM but by carefully selecting
the model size such that the resulting model can fit on a
commodity hardware. Our experimental results demonstrate that
MONOCODER, although orders of magnitude smaller in size
than existing LLMs, performs similar to the existing LLMs in
terms of language comprehension task (perplexity score), while
outperforming them in code completion task (CodeBLEU score)
for general-purpose and HPC-specific C and C++ programs.
In the near future, we intend to integrate additional code
representations, such as the data-flow graph (DFG) and
the intermediate representation (IR) [48], to enhance model
understanding as shown in the closely related works [49],
[50]. Moreover, we believe that pre-training on a compilable
subset of HPCORPUS will enhance the performance of the
model for compilation-oriented tasks (as partially demonstrated
in [51]). Then, we intend to fine-tune those pre-trained models
for HPC-specific downstream tasks, such as OpenMP pragma
generation [12], [13], [46] and MPI domain decomposition
distribution [13], [14], [47]. In general, our research vision is
to systematically analyze each and every element of existing
LLMs (model architecture, dataset, etc.) and redesign them as
needed for HPC-specific tasks.

REFERENCES

[1] B. Min, H. Ross, E. Sulem, A. P. B. Veyseh, T. H. Nguyen, O. Sainz,
E. Agirre, I. Heintz, and D. Roth, “Recent advances in natural language
processing via large pre-trained language models: A survey,” ACM
Computing Surveys, 2021.

[2] L. Floridi and M. Chiriatti, “GPT-3: Its nature, scope, limits, and
consequences,” Minds and Machines, vol. 30, pp. 681–694, 2020.

[3] S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar,
P. Lee, Y. T. Lee, Y. Li, S. Lundberg et al., “Sparks of artificial
general intelligence: Early experiments with gpt-4,” arXiv preprint
arXiv:2303.12712, 2023.

[4] OpenAI, “OpenAI ChatGPT,” https://openai.com/blog/chatgpt, 2023,
[Online].

[5] D. Reed, D. Gannon, and J. Dongarra, “Reinventing high per-
formance computing: challenges and opportunities,” arXiv preprint
arXiv:2203.02544, 2022.

[6] J. Dongarra, “HPC: Where we are today and a look into the future,”
Parallel Processing and Applied Mathematics, PPAM: Gdansk, Poland,
2022.

[7] D. Reed, D. Gannon, and J. Dongarra, “HPC Forecast: Cloudy and
Uncertain,” Communications of the ACM, vol. 66, no. 2, pp. 82–90,
2023.

[8] L. Chen, P.-H. Lin, T. Vanderbruggen, C. Liao, M. Emani, and
B. de Supinski, “LM4HPC: Towards Effective Language Model Applica-
tion in High-Performance Computing,” arXiv preprint arXiv:2306.14979,
2023.

[9] L. Chen, Q. I. Mahmud, H. Phan, N. Ahmed, and A. Jannesari,
“Learning to Parallelize with OpenMP by Augmented Heterogeneous
AST Representation,” Proceedings of Machine Learning and Systems,
vol. 5, 2023.

https://openai.com/blog/chatgpt


[10] R. Harel, Y. Pinter, and G. Oren, “Learning to parallelize in a shared-
memory environment with transformers,” in Proceedings of the 28th ACM
SIGPLAN Annual Symposium on Principles and Practice of Parallel
Programming, 2023, pp. 450–452.

[11] T. Kadosh, N. Hasabnis, T. Mattson, Y. Pinter, G. Oren et al.,
“PragFormer: Data-driven Parallel Source Code Classification with
Transformers,” arXiv, 2023.

[12] T. Kadosh, N. Schneider, N. Hasabnis, T. Mattson, Y. Pinter, and
G. Oren, “Advising openmp parallelization via a graph-based approach
with transformers,” arXiv preprint arXiv:2305.11999, 2023.

[13] D. Nichols, A. Marathe, H. Menon, T. Gamblin, and A. Bhatele,
“Modeling Parallel Programs using Large Language Models,” arXiv
preprint arXiv:2306.17281, 2023.

[14] N. Schneider, T. Kadosh, N. Hasabnis, T. Mattson, Y. Pinter, and
G. Oren, “MPI-RICAL: Data-Driven MPI Distributed Parallelism
Assistance with Transformers,” in Proceedings of the SC ’23 Workshops
of The International Conference on High Performance Computing,
Network, Storage, and Analysis, ser. SC-W ’23. New York, NY,
USA: Association for Computing Machinery, 2023, p. 2–10. [Online].
Available: https://doi.org/10.1145/3624062.3624063

[15] Y. Shen, M. Peng, Q. Wu, and G. Xie, “Multigraph learning for paral-
lelism discovery in sequential programs,” Concurrency and Computation:
Practice and Experience, vol. 35, no. 9, p. e7648, 2023.

[16] L. Chen, N. K. Ahmed, A. Dutta, A. Bhattacharjee, S. Yu, Q. I. Mahmud,
W. Abebe, H. Phan, A. Sarkar, B. Butler et al., “Position Paper: The
Landscape and Challenges of HPC Research and LLMs,” arXiv preprint
arXiv:2402.02018, 2024.

[17] R. Harel, I. Mosseri, H. Levin, L.-o. Alon, M. Rusanovsky, and G. Oren,
“Source-to-source parallelization compilers for scientific shared-memory
multi-core and accelerated multiprocessing: analysis, pitfalls, enhance-
ment and potential,” International Journal of Parallel Programming,
vol. 48, pp. 1–31, 2020.

[18] R. Milewicz, P. Pirkelbauer, P. Soundararajan, H. Ahmed, and T. Skjellum,
“Negative Perceptions About the Applicability of Source-to-Source
Compilers in HPC: A Literature Review,” in International Conference
on High Performance Computing. Springer, 2021, pp. 233–246.

[19] I. Mosseri, L.-o. Alon, R. Harel, and G. Oren, “ComPar: optimized
multi-compiler for automatic OpenMP S2S parallelization,” in OpenMP:
Portable Multi-Level Parallelism on Modern Systems: 16th International
Workshop on OpenMP, IWOMP 2020, Austin, TX, USA, September 22–24,
2020, Proceedings 16. Springer, 2020, pp. 247–262.

[20] S. Prema, R. Jehadeesan, and B. Panigrahi, “Identifying pitfalls in
automatic parallelization of NAS parallel benchmarks,” in Parallel
Computing Technologies (PARCOMPTECH), 2017 National Conference
on. IEEE, 2017, pp. 1–6.

[21] S. Prema, R. Nasre, R. Jehadeesan, and B. Panigrahi, “A study on
popular auto-parallelization frameworks,” Concurrency and Computation:
Practice and Experience, vol. 31, no. 17, p. e5168, 2019.

[22] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang, “Large Language Models for Software Engineer-
ing: A Systematic Literature Review,” arXiv preprint arXiv:2308.10620,
2023.

[23] D. Nichols, J. H. Davis, Z. Xie, A. Rajaram, and A. Bhatele, “Can Large
Language Models Write Parallel Code?” Jan. 2024.

[24] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic
evaluation of large language models of code,” in Proceedings of the
6th ACM SIGPLAN International Symposium on Machine Programming,
2022, pp. 1–10.

[25] X. Ding, L. Chen, M. Emani, C. Liao, P.-H. Lin, T. Vanderbruggen, Z. Xie,
A. E. Cerpa, and W. Du, “HPC-GPT: Integrating Large Language Model
for High-Performance Computing,” arXiv preprint arXiv:2311.12833,
2023.

[26] Q. I. Mahmud, A. TehraniJamsaz, H. D. Phan, N. K. Ahmed, and A. Jan-
nesari, “AUTOPARLLM: GNN-Guided Automatic Code Parallelization
using Large Language Models,” arXiv preprint arXiv:2310.04047, 2023.

[27] T. Kadosh, N. Hasabnis, T. Mattson, Y. Pinter, and G. Oren, “Quantifying
openmp: Statistical insights into usage and adoption,” 2023.

[28] A. Khan, H. Sim, S. S. Vazhkudai, A. R. Butt, and Y. Kim, “An analysis of
system balance and architectural trends based on top500 supercomputers,”
in The International Conference on High Performance Computing in
Asia-Pacific Region, 2021, pp. 11–22.

[29] S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco, C. Clement,
D. Drain, D. Jiang, D. Tang et al., “Codexglue: A machine learning

benchmark dataset for code understanding and generation,” arXiv preprint
arXiv:2102.04664, 2021.

[30] S. Black, L. Gao, P. Wang, C. Leahy, and S. Biderman, “Gpt-neo: Large
scale autoregressive language modeling with mesh-tensorflow,” If you
use this software, please cite it using these metadata, vol. 58, 2021.

[31] B. Wang and A. Komatsuzaki, “Gpt-j-6b: A 6 billion parameter
autoregressive language model,” 2021.

[32] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[33] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim et al., “Starcoder: may the source
be with you!” arXiv preprint arXiv:2305.06161, 2023.

[34] S. Black, S. Biderman, E. Hallahan, Q. Anthony, L. Gao, L. Golding,
H. He, C. Leahy, K. McDonell, J. Phang et al., “Gpt-neox-20b: An open-
source autoregressive language model,” arXiv preprint arXiv:2204.06745,
2022.

[35] A. Andonian, Q. Anthony, S. Biderman, S. Black, P. Gali, L. Gao,
E. Hallahan, J. Levy-Kramer, C. Leahy, L. Nestler, K. Parker, M. Pieler,
J. Phang, S. Purohit, H. Schoelkopf, D. Stander, T. Songz, C. Tigges,
B. Thérien, P. Wang, and S. Weinbach, “GPT-NeoX: Large Scale
Autoregressive Language Modeling in PyTorch,” 9 2023. [Online].
Available: https://www.github.com/eleutherai/gpt-neox

[36] Z. Yang, Z. Zhao, C. Wang, J. Shi, D. Kim, D. Han, and D. Lo, “What
do code models memorize? an empirical study on large language models
of code,” arXiv preprint arXiv:2308.09932, 2023.

[37] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of
rare words with subword units,” arXiv preprint arXiv:1508.07909, 2015.

[38] W. Zheng, S. Sharan, A. K. JAISWAL, K. Wang, Y. Xi, and Z. Wang,
“Code means more than plain language: Bringing syntax structure
awareness to algorithmic problem solution generation,” arXiv, 2022.

[39] Y. Xu and Y. Zhu, “A survey on pretrained language models for neural
code intelligence,” arXiv preprint arXiv:2212.10079, 2022.

[40] N. D. Bui, H. Le, Y. Wang, J. Li, A. D. Gotmare, and S. C. Hoi, “Codetf:
One-stop transformer library for state-of-the-art code llm,” arXiv preprint
arXiv:2306.00029, 2023.

[41] D. KC and C. T. Morrison, “Neural machine translation for code
generation,” arXiv preprint arXiv:2305.13504, 2023.

[42] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan, M. Zhou,
A. Blanco, and S. Ma, “Codebleu: a method for automatic evaluation of
code synthesis,” arXiv preprint arXiv:2009.10297, 2020.

[43] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A Method for
Automatic Evaluation of Machine Translation,” in Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics,
P. Isabelle, E. Charniak, and D. Lin, Eds. Association for Computational
Linguistics, 2002, pp. 311–318.

[44] Y. Wang, W. Wang, S. Joty, and S. C. H. Hoi, “Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation,” 2021. [Online]. Available: https://arxiv.org/abs/2109.00859

[45] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski,
D. Dohan, E. Jiang, C. Cai, M. Terry, Q. Le, and C. Sutton.
Program Synthesis with Large Language Models. [Online]. Available:
http://arxiv.org/abs/2108.07732

[46] L. Chen, A. Bhattacharjee, N. Ahmed, N. Hasabnis, G. Oren, V. Vo, and
A. Jannesari, “OMPGPT: A generative pre-trained transformer model for
openmp,” arXiv preprint arXiv:2401.16445, 2024.

[47] N. Schneider, N. Hasabnis, V. A. Vo, T. Kadosh, N. Krien, M. Capotă,
A. Wasay, G. Tamir, T. Willke, N. Ahmed et al., “MPIrigen: MPI Code
Generation through Domain-Specific Language Models,” arXiv preprint
arXiv:2402.09126, 2024.

[48] A. Grossman, L. Paehler, K. Parasyris, T. Ben-Nun, J. Hegna, W. Moses,
J. M. M. Diaz, M. Trofin, and J. Doerfert, “ComPile: A Large IR Dataset
from Production Sources,” 2023.

[49] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training code
representations with data flow,” arXiv preprint arXiv:2009.08366, 2020.

[50] M. Szafraniec, B. Roziere, H. Leather, F. Charton, P. Labatut, and
G. Synnaeve, “Code translation with compiler representations,” arXiv
preprint arXiv:2207.03578, 2022.

[51] L. Chen, A. Bhattacharjee, N. K. Ahmed, N. Hasabnis, G. Oren, B. Lei,
and A. Jannesari, “Compcodevet: A compiler-guided validation and en-
hancement approach for code dataset,” arXiv preprint arXiv:2311.06505,
2023.

https://doi.org/10.1145/3624062.3624063
https://www.github.com/eleutherai/gpt-neox
https://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2108.07732

	Introduction
	HPCorpus: HPC Code Corpus
	MonoCoder: An HPC-specific code LM
	Local Semantics Elimination (LSE)
	MonoCoder Evaluation
	Language Modeling Evaluation
	Code Completion Evaluation

	Related Work
	Conclusion & Future Work
	References

