
Authentication in High Noise Environments using
PUF-Based Parallel Probabilistic Searches

Brian Donnelly
School of Informatics, Computing and Cyber Systems

Northern Arizona University
Flagstaff, Arizona

brian.donnelly@nau.edu

Michael Gowanlock
School of Informatics, Computing and Cyber Systems

Northern Arizona University
Flagstaff, Arizona

michael.gowanlock@nau.edu

Abstract—Enabling secure communication in noisy environ-
ments is a major challenge. In these environments, the outputs of
cryptography algorithms undergo error where several bits change
states and since these algorithms cannot tolerate any error,
authenticating and securing communication between parties is
disrupted. We propose a noise-resistant public key infrastructure
protocol that employs physical unclonable functions (PUFs).
PUFs act as a unique fingerprint for each device in a network;
however, their state may drift over time due to fluctuations in
temperature and other factors. Using a PUF requires a search to
identify flipped bits which is conducted on a secure server that
has the benefit of removing error correction on low-powered
client devices. We exploit the probabilistic nature of PUF bit
error rates (BERs) and use this information to aid in the search
process that resolves the noise imparted by the environment. We
show that using a 256-bit PUF-generated seed (a PUF response)
our protocol is robust to a PUF BER of ≈11% (or 30 of 256
bits) and a transmission bit error rate (TBER) of 30%. In this
scenario, on average the authentication mechanism on a secure
server requires ≲5 s. We also show results for higher PUF BERs
which have a <100% authentication success rate which indicates
the upper limit on the PUF BER tolerance of our protocol.

Index Terms—AES, Communication, Hashing, Parallel Com-
puting, Response-Based Cryptography, Security

I. INTRODUCTION

One drawback of Public Key Infrastructure (PKI) is that all
devices in the network use public/private key pairs, and the
private key is typically stored in non-volatile memory (e.g.,
disk). If a private key is recovered from a device by an attacker,
then they are able to masquerade as the user of the private key.

Several efforts have been proposed to mitigate this draw-
back by equipping client devices with Physically Unclonable
Functions (PUFs) for the purposes of authentication [1], [2].
PUFs are volatile memory and are unique due to variance
in the manufacturing process, allowing each PUF to act as a
unique fingerprint for a device. PUFs are employed to generate
random numbers (hereafter referred to as seeds) that are used
as input into cryptography algorithms. The cells in a PUF are

Research was sponsored by the Army Research Laboratory and was
accomplished under Cooperative Agreement Number W911NF-23-2-0014.
The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copyright notation
herein.

unstable and drift over time due to environmental factors such
as temperature [3]. This error needs to be corrected, otherwise
authentication will fail. One method that has been proposed
to mitigate this error is to use error correction codes (ECC),
data helpers, and fuzzy extractors [4]–[7] but they have two
major drawbacks: (i) many devices are low-powered and are
unable to correct for the error due to latency and/or power
constraints; and, (ii) these mechanisms leak information [8]–
[10] about the PUF if the device is compromised.

To address the drawbacks of error correction codes, the
Response-Based Cryptography (RBC) protocol was devel-
oped [1], [11]–[15] which places the computational burden of
authenticating PUF-equipped client devices on a secure server
such that low-powered client devices do not need to employ
error correction codes, data helpers, or fuzzy extractors. In
the RBC algorithm, during enrollment, a server records the
PUF images that are deployed in client devices. During the
handshake between the server and client, the server instructs
the client to read a subset of its PUF cells (this is denoted a
PUF challenge), and the client uses this to generate a seed (a
PUF response) which is used to create public/private key pairs.
The client sends the public key to the server for authentication
and the server generates a public key from the client PUF
image. Because the seed generated by the PUF may have
drifted and has a bit error rate (BER) >0% relative to when
the PUF was enrolled, the server performs a search by flipping
bits in the seed generated from the PUF image such that
it reproduces the client’s public key. If it does so within a
Hamming distance threshold, the client is authenticated.

Lee et al. [16] proposed an efficient search method for
iterating over PUF seed spaces. The search method employs
the probability that a given cell in the PUF is likely to flip (this
is information obtained during the PUF enrollment process),
such that an ordering of candidate seeds is exploited. This
allows searching the PUF seed space intelligently instead of
searching without any knowledge of the probability that a PUF
cell will flip. This significantly improves the performance of
the RBC search by reducing the total number of seeds that
need to be searched and allows for authentication even when
PUFs may have drifted significantly from their initial state.

The research on RBC to date, including the most recent by
Lee et al. [16] does not permit any error in the transmission be-

tween the client and server. Securing communication in noisy
or low signal environments is critical for many applications.
Examples include unmanned autonomous vehicle (UAV) drone
package delivery [17] in low signal environments, or wireless
communication at a music concert where numerous people are
accessing the same network. Securing communication in these
settings is challenging for cryptography because by definition,
cryptography primitives do not tolerate any error. A motivat-
ing example is as follows: Consider the following canonical
scenario employing Alice and Bob that wish to communicate.
Assume an asymmetric public key infrastructure (PKI) system
where Alice wishes to receive an encrypted message from Bob.
Alice generates a public/private key pair and sends her public
key to Bob but the public key contains an error (i.e., one
bit has flipped) due to noise in the transmission environment.
Bob encrypts and sends Alice a message using her public
key; however, Alice is unable to decrypt the message with her
private key due to the erroneous public key received by Bob.
This example illustrates that if any of the bits are incorrect,
then secure communication is impossible between two parties.
While ECC can be used to address this issue it burdens
the low-powered device with more work while also enabling
attackers to exploit vulnerabilities in ECC information leakage.
By correcting for the noisy environment on the server and not
the client, we gain an additional layer of security.

To address communication in noisy environments, the con-
tributions of this paper are two-fold. First, we propose an
authentication protocol that is resilient to noisy environments.
Second, we optimize the system through algorithmic innova-
tions and the parallelization potential of modern multi-core
CPUs which are needed to reduce authentication latency. The
same benefits of RBC are retained in our protocol, which in-
clude: requiring that the secure server perform error correction,
thus allowing client devices to be lightweight/low-powered,
and employ a probabilistic search of the PUF seed space.
Our protocol bolsters the prior work on RBC by extending
it to noisy or low-signal communication environments. To
summarize, we make the following contributions.
• We introduce Noisy Probabilistic Response-Based Cryp-

tography, NPRBC, a protocol to authenticate low powered
devices in high noise environments.

• We evaluate the protocol using a Monte Carlo approach
that spans PUF BER noise levels between 20-45 bits and
transmission errors (TBER) up to 44% (the upper bound is
50% [18]). The PUF BER is derived from enrollment data
of an SRAM PUF and the TBER is selected in intervals that
represent varying levels of noise in the environment.
The paper is organized as follows: Section II outlines the

proposed protocol, NPRBC, Section III presents the experi-
mental evaluation, and finally, Section IV concludes the paper
and discusses future work directions.

II. NPRBC

Our response-based cryptography protocol, NPRBC, builds
on the work of Lee et al. [16] which showed that response-
based cryptography can employ knowledge of enrollment data

which quantifies the bit error rate (BER) of each cell in a
client’s PUF and stores this information in the PUF image
on a secure server. Our proposed protocol differs from Lee
et al. [16] as it is robust to noise and requires that the client
send a SHA3-512 message digest (M1) of the hashed 256-bit
seed and also a ciphertext (C1) generated with AES256 using
the same 256-bit seed as the key. Sending both M1 and C1

allows the protocol to better identify the candidate seed which
the client used to generate M1 and C1 rather than using M1

alone, as was the case in Lee et al. [16].
We outline the steps of our protocol, NPRBC, which are

illustrated in Figures 1 and 2. The steps in the protocol
pertaining to Figure 1 are as follows:
1) Client/Server: The server/certificate authority (CA) per-

forms a handshake with the client and tells it which cells
to challenge in its PUF.

2) Client: The client uses this information to generate a 256-
bit seed (S1) for two purposes in Steps 3–4 below.

3) Client: S1 is salted and then is used to generate a pub-
lic/private key pair (Pk1/Pr1).

4) Client: S1 is used as input to create a message digest using
SHA3 (M1) and ciphertext generated by AES256 (C1).

5) Client: M1 and C1 are sent to the server for authentication.
6) Server: The server performs the RBC search (outlined in

the steps below). After the search finds the most likely
seed, S′, generated by the client it is used as input to
a cryptographic algorithm (e.g., ECC, or a post-quantum
cryptography algorithm), the client’s public key is gener-
ated (Pk1) and registered on the registration authority.

The steps in the protocol pertaining to Figure 2 (the RBC
Search Engine in Figure 1) are as follows:
1) The server receives M ′

1 and C ′
1 from the client.

2) The server reads the initial seed from the client’s PUF
image (Sinit).

3) The server hashes Sinit to create a message digest M and
checks if it matches M ′

1 (M ≈ M ′
1) received from the

client. Recall that M ′
1 is the corrupted variant of M1 (see

Section II-C for details).
4) If M ̸≈ M ′

1, then go to Step 10.
5) If the algorithm continues, then the next seed is generated

and the process restarts at Step 3 above, but S is permuted
and then hashed (Sinit is only used on the first iteration).

6) If M ≈ M ′
1 then we generate the ciphertext, C.

7) The ciphertext, C, is checked for a match with the cipher-
text received by the client (C ≈ C ′

1). Recall that C ′
1 is the

corrupted variant of C1 (see Section II-C for details).
8) If C ≈ C ′

1 then the seed, Sc, is added to the candidate set
and the termination criteria are checked and if the algorithm
continues then go to Step 5 above, otherwise go to Step 10.

9) If C ̸≈ C ′
1 then go to Step 10.

10) The termination criteria are checked (see Section II-D for
details). If the algorithm terminates, then all the candidate
seeds are checked and those with the highest probability
of being correct are selected (see Section II-E for details).
A seed is selected (Ss) and is salted to create S′.

Certificate Authority (CA)
Secure Environment

Generate Address

PUF
Image

Client 1

PUF
Image

Client 2
...

PUF
Image

Client

Client 1
Insecure environment

Address from CA

PUF Client 1

256-bit Seed
SHA: Hash

Plaintext to Create
Message Digest ()

AES: Encrypt
Plaintext to Create

Ciphertext ()

Handshake

Registration Authority (RA)
Secure Environment

Client 1:
...

Client :

RBC Search Engine

Validated:

Generate Public Key, ,
using cryptographic algorithm

256-bits,

Generate Public Key
(), Private Key

(), using cryptographic
algorithm

Salt

Noise()

Noise()

Noisy/Jammed
Environment

Challenge

Response

Fig. 1. The response-based cryptography protocol that is robust to noise (NPRBC). The RBC search engine is shown in Figure 2. This inspiration for this
figure is from similar figures in the literature [16], [19].

RBC Search Engine

No:

Yes

Check match
()

Generate next
seed ()

Salt

 SHA3(256-bits,
From Client

Message
Digest
()

Ciphertext
()

Add to
Candidate Set

Yes
No:

Check match
()

At Termination Select
from Candidate Set

Continue

Check
Termination

Criteria

Terminate Search

 AES256(

Fig. 2. The probabilistic RBC search engine. Colors represent comparisons between client and server information.

A. Probabilistic Searches of the PUF Seed Space

The cells of the PUF generate a response when challenged,
where each cell’s response is either a 0 or 1. During enroll-
ment, the cells of the PUF are challenged numerous times and
the responses are recorded to produce a PUF image. In the
PUF used in our evaluation, most cells are stable; Figure 3
shows that the PUF has 573 bits that do not change between
consecutive challenges, but some cells have a porbability of
yielding either 0 or 1. During the authentication process, both
the server and the client select the same cells (and in the same

order) for their respective seeds based on the handshake that
is initiated by the server. If all of the cells selected are stable,
then the client and the server share the same initial seed. If
cells are selected that vary between challenges then there is a
probability that the server’s and client’s seeds will not match.
In such a case, a search is performed on the server to determine
which bits have drifted in the client’s PUF relative to the image
stored on the server. The drift of a seed is the number of bits
that differ between the client’s seed and the seed image on the
server (this is the Hamming distance between the bits of the
client’s seed and the bits of the seed image).

0.0 0.1 0.2 0.3 0.4 0.5
Probability of Flipping

100

101

102

103
Nu

m
be

r o
f C

el
ls

573

88

24
11 9 13

7
12 13 9 9

Fig. 3. This histogram shows the probability of a bit flipping for the PUF used
in our experimental evaluation, which is an ISSI 61-64WV6416BLL SRAM
chip. There are a total of 768 enrolled cells that are stored in the PUF image
on the secure server. While 573 of those cells are stable and will not change
between authentication sessions, the other 185 cells have up to a 0.5 (or 50%)
probability of their state changing when challenged during authentication.

20 25 30 35 40 45
PUF Noise Level (n)

0
2

4
6

8
10

12
14

Dr
ift

 (N
um

be
r o

f B
its

)

51 19 10 2 1 0
161 100 37 23 18 10
224 195 133 83 55 26
240 215 188 127 97 56
174 190 210 191 165 124
102 143 191 202 166 174
34 87 125 161 150 162
10 36 66 99 159 173
3 9 27 61 101 101
1 5 8 30 47 85
0 0 3 13 23 48
0 1 1 7 11 26
0 0 1 0 2 8
0 0 0 1 5 4
0 0 0 0 0 2
0 0 0 0 0 1

0

50

100

150

200

250

Fig. 4. This heatmap plots the number of samples at each drift value for each
PUF noise (n) using the PUF outlined in Figure 3. There are 1,000 trials for
each n value with each trial selecting unstable cells at random from the PUF.
The intensity of the heat map is the number of trials for each selected n value
that had the corresponding amount of drift.

PUF Noise Level (n) – As described above, the server selects
which addresses the client reads from its PUF. Therefore, the
server selects some number of unstable cells (cells having a
non-zero probability of flipping). We denote the number of
unstable cells selected to be n (which is the PUF noise level).
For example a PUF noise level of n = 20 indicates that a seed
is generated using 20 cells from the PUF that are not stable
and have a chance of producing a different state compared to
the image on the server. Figure 4 shows the amount of drift
that occurs with varying PUF noise level values (n) for the
PUF used in our evaluation. For example, for n = 20, there
were 240 seeds out of 1000 where there was 3 bits of drift
from the server’s seed recorded in the PUF image (this is a
Hamming distance of 3 between the PUF image and client’s
seed). As n increases, the amount of drift increases as well.
Individual seeds with higher drift are less likely to occur, but

at each level of drift there are exponentially more possible
seeds, so while the individual seed with that level of drift has
a low probability of occurring, the set of seeds with that level
of drift may be more likely. This explains why higher noise
levels (n > 30) rarely have seeds with low (≤ 1) drift levels.
Accumulating Probability – The probability of each bit
flipping in the client’s seed is determined from the enrollment
data on the server. This information is used to determine the
likelihood of an individual seed being generated from the set
of selected cells. The single most likely seed to be correct
is the one where no bits have drifted relative to the server’s
image. As the probabilistic search proceeds, the probability
of each searched seed is added to a sum. This sum yields
the total probability of the correct seed having been found.
Individual seeds that have more drift, i.e. the number of bits
in the client’s seed that have flipped, are less likely to occur
than seeds with low drift.
Search Order – The probabilistic search checks seeds in
order of highest to lowest probability of matching. This
allows the search to prioritize the seeds which have a higher
chance of being correct while disregarding seeds that have
an infinitesimally small probability of being correct (e.g., a
seed with 15 bits that drifted would never be searched because
the probability of that occurring is too low to be worth con-
sidering). This search order leads to probability accumulating
quickly at the beginning of the search and then to diminishing
returns as the search continues. This search strategy is much
more work efficient than prior work that assumes all bits in a
seed have the same probability of flipping [1], [11]–[15].

B. Noisy Transmission

The transmission from the client to the server is vulnerable
to corruption by environmental noise. Our protocol allows for
the client to still be authenticated despite high environmental
noise which flips bits in both the message digest and cipher-
text. The protocol accepts a transmission bit error rate (TBER)
up to a set threshold, t, in both the message digest and the
ciphertext to account for corruption during transmission.

C. Match Criteria

A noisy/jammed environment will corrupt the signal from
the client to the server resulting in M ′

1 and C ′
1 which are

corrupted variants of the intended transmissions. The Ham-
ming distance, d, between the corrupted variants and server
generated variants is used to determine their similarity such
that dM = dist(M,M ′

1) and dC = dist(C,C ′
1) where the dist()

function is used to compute the Hamming distance between
two sets of bits. The match criteria sets the threshold value,
t, so that if d ≤ t, then the match is considered true and the
seed, S which is was used to generate M and C is added
to the candidate set. This allows the RBC Search Engine to
account for a given amount of noise during transmission and
to still authenticate the client without having a perfect match,
where dM = dC = 0. The server continues to generate seeds
and match them until a termination criterion has been met.

TABLE I
PARAMETER VALUES USED IN THE EVALUATION. VARIED REFERS TO

WHETHER THE PARAMETER IS VARIED IN THE EVALUATION.

Parameter Value Varied
Probability Threshold (t) 0.999
Time Limit 5 s
TBER 10-44% ✓
PUF Noise Level (n) 20-45 bits (7.81-17.6% BER) ✓

D. Termination Criteria

There are two factors that determine when the search
terminates. First, a probability threshold of 0.999 is used to
terminate the search once the sum of the probabilities of the
searched seeds reaches the threshold. Second, a time limit is
used to terminate the search in cases where the sum of the
probabilities has not accumulated to the threshold of 0.999.
After the termination criteria has been met, the server then
selects the best seed from the candidate set.

E. Candidate Seed Refinement

When the server accepts a high level of noise during
transmission a large number of seeds are added to the can-
didate set. To choose the correct seed, S, from all of the
candidates the server selects the seed with the lowest overall
transmission error, dtotal = dM +dC . The probabilistic search
only examines a small fraction of the total possible seeds and
so the probability of an incorrect seed on the server creating
both a message digest (M) and ciphertext (C) that is corrupted
during transmission to be closer to the client’s M ′

1 and C ′
1 than

the correct seed’s M and C is negligible. Requiring C ′
1 and

lengthening M ′
1 and C ′

1 increases the probability of identifying
the correct seed in high TBER scenarios.

III. EXPERIMENTAL EVALUATION

A. Experimental Methodology

All experiments are conducted on a platform containing
2× AMD EPYC 7542 CPUs (64 total physical cores) clocked
at 2.9 GHz with 512 GiB of main memory. All code is written
in C/C++. All executions of the program are parallelized using
OpenMP and employ 64 threads/cores as we found this to
achieve the best performance on our platform.
PUF Used in the Evaluation – We use the SRAM PUF with
characteristics outlined in Figures 3 and 4. In the protocol
we select up to n = 45 unstable bits out of a 256 bit seed,
where the remaining bits are stable. Note that while there
are numerous PUF technologies, the SRAM PUF employed
here has very high levels of noise. For instance, a Magnetic
RAM PUF yielded a 7.7% BER [20], which is lower than the
17.6% BER here (or n = 45 of 256 bits). Also, a Resistive
RAM (ReRAM) PUF has been reported to have a BER of
0.001 (only 1 in 1000 bits are unstable) [2]. Thus, our PUF is
representative of having a substantial BER which is the worst
case scenario for the protocol. Consequently the results are
applicable to PUFs with similar or lower levels of noise.

20 25 30 35 40 45
PUF Noise Level (n)

0
2

4
6

8
10

12
14

Dr
ift

 (N
um

be
r o

f B
its

)

1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 0.89
1.00 1.00 1.00 0.99 0.98 0.65
0.99 1.00 0.99 0.97 0.83 0.43
1.00 1.00 0.99 0.87 0.49 0.19
1.00 1.00 0.95 0.64 0.21 0.04
1.00 1.00 0.74 0.21 0.04 0.00
1.00 1.00 0.75 0.13 0.02 0.00

0.33 0.00 0.00 0.00
1.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00
0.00 0.00 0.00

0.00
0.00

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5. The heatmap plots the success rate of authentication for each PUF
bit error rate (n) and drift with a TBER of 30%. Blank values in the heatmap
indicate that there were no trials that had that combination of n and drift
(see Figure 4). A success rate of 1.00 indicates that it always succeeded to
authenticate with the given parameters, while a success rate of 0.00 indicates
that it never succeeded to authenticate.

Fixed Parameters for Experimentation – A number of
parameters are fixed for experimentation to allow for a de-
tailed examination of parameters that significantly change
the authentication rate of the protocol. The threshold, t, of
transmission noise acceptance is fixed to 50% to account for
TBER ≤ 44% (see Section II-B). Lower threshold values do
not improve authentication rates (nor do they degrade it as long
as they are ≥ 5% above the TBER) while higher threshold
values (t ≥ 50%) result in a lower authentication rate. A fixed
time limit of 5 seconds and an accumulated probability of
0.999 is used as the termination criteria (see Section II-D). A
ciphertext of 1024-bits is used as it was experimentally found
to have the best results on our platform. Additionally, SHA3-
512 is used instead of SHA3-256 because the longer message
digest increased the authentication rate in our experiments.
Monte Carlo Parameter Sampling – We employ a Monte
Carlo approach where each combination of parameters given in
Table I is trialed 1000 times. Each trial uses the trial number (1
to 1000) to set the seed for the random number generator. The
random number generator determines which cells are selected
for the seed and which bits flip during transmission (based
on the selected TBER). The number of bits that flip during
transmission follows a binomial distribution centered on the
average number of bits that flip due to the TBER. This is
modeled as Additive White Gaussian Noise (AWGN) resulting
in a maximum TBER of 50%, which is Shannon’s Limit [18].

B. Experimental Results

We simulate different PUF seeds with the Monte Carlo
approach described above and report the results in Table II.
The results show that, up to a TBER of 30%, the determining
factor for a successful authentication is the amount of PUF
noise (n). Noise levels n = 20 − 30 bits with TBER ≤ 30%
successfully authenticate ≥ 98% of the time. As the n value

TABLE II
AVERAGE EXECUTION TIMES AND AUTHENTICATION RATES FOR PUF NOISE LEVELS n = 20− 45, TBER LEVELS 10 – 40% AND TIME LIMIT OF 5S.

PUF Noise (n) 20 Bits 25 Bits 30 Bits 35 Bits 40 Bits 45 Bits
TBER (%) 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40
Time (s) 0.37 0.36 0.37 0.37 1.60 1.60 1.62 1.61 4.56 4.56 4.56 4.56 4.56 4.56 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
Success 0.99 0.99 0.99 0.88 0.99 0.99 0.99 0.77 0.98 0.98 0.98 0.67 0.84 0.84 0.84 0.57 0.58 0.58 0.58 0.39 0.28 0.28 0.28 0.00

10 20 30 40 42 44
Transmission Bit Error Rate (TBER)

0
1

2
3

4
5

6
7

8
9

10
11

12
Dr

ift
 (N

um
be

r o
f B

its
)

1.00 1.00 1.00 0.70 0.20 0.10
1.00 1.00 1.00 0.62 0.16 0.03
1.00 1.00 1.00 0.68 0.27 0.05
1.00 1.00 1.00 0.74 0.27 0.04
1.00 1.00 1.00 0.67 0.27 0.03
0.99 0.99 0.99 0.63 0.27 0.03
0.99 0.99 0.99 0.70 0.27 0.07
0.95 0.95 0.95 0.64 0.29 0.02
0.74 0.74 0.74 0.52 0.22 0.04
0.75 0.75 0.75 0.12 0.00 0.00
0.33 0.33 0.33 0.33 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 6. The fraction of successful authentications are plotted vs. the TBER
(the chance of each transmitted bit flipping in the message digest or ciphertext)
for a PUF noise level (n) of 30%.

increases to 35, 40 and 45 bits the fraction of successful
authentications with TBER of 30% drops from 0.98 to 0.84,
0.58, and 0.28, respectively. Additionally, the average time
to complete the search increases as a function of n. The
time limit only impacts the success rate of the searches when
n ≥ 35. Recall from Figure 4 that the higher the PUF
BER (n), the higher the average drift. The increase in drift
requires more computation to find the correct seed. This is
reflected in the average execution time values in Table II. In
the scenarios where the search is terminated by the time limit,
the probability of finding the correct seed is lower because an
insufficient number of seeds are searched.

In Figure 5 the success rate is plotted for each n and
corresponding drift value. Every seed with a drift of 2 or
lower is found while every seed with a drift of 12 or higher
is not found. Additionally, the higher n values fail to find the
correct seed at drift levels where lower n values succeed. This
is due to the probabilistic search having to search through more
possibilities at each drift value. From Table II we observe that
this results in the time limit of 5 seconds being reached, and
the search terminating before the correct seed is identified.

While a TBER below 30% does not impact the authentica-
tion rate for a given n value, as the TBER increases past 30%
it begins to be the limiting factor in authentication as opposed
to n. Recall from Section II-E that the seed which is selected
from the candidate set is the one with the lowest transmission
error. In Figure 6 we observe that as the TBER approaches
44% the success rate rapidly decreases. We found that this is
because we cannot identify and select the correct seed from

the candidate set because of the high transmission error. High
TBER compounds the issue with high n, resulting in poor
authentication rates for seeds generated with a high n coupled
with a high noise environment. The protocol mitigates this by
selecting PUF cells that generate seeds with lower noise levels
(n) in environments with high transmission bit error rates.
Leveraging Compute Power for Security – The two factors
contributing to the success rate of NPRBC are the PUF
Noise and the TBER. Increasing the compute power avail-
able increases the number of seeds searched which increases
authentication rates at higher n values. This has the added
affect of increasing the overall security because a higher n
value (corresponding to a noisier PUF) is harder to attack.
Increasing the time limit also allows more seeds to be searched
but gives attackers additional opportunity to compromise the
system and adds latency to time sensitive communications.
The more compute power available on the server, the more
secure NPRBC becomes. We reiterate that because the server
has secret information regarding the client (the PUF image),
compared to the number of seeds searched by the server, the
search space for an attacker is intractable (2256 seeds).

IV. DISCUSSION & CONCLUSION

NPRBC enables rapid device authentication in congested
electromagnetic environments that have been previously found
to be too noisy for canonical (zero-noise tolerance) crypto-
graphic protocols [1], [11]–[15], [19]. We evaluated NPRBC
using a range of PUF noise levels n = 20−45 and transmission
bit error rates (TBER) of 10–44%. Recall that the 44% limit
refers to where each bit in the transmission of the message
digest or ciphertext has a 44% chance of flipping. We evaluated
the protocol by using a Monte Carlo approach that varied
which bits are selected from the PUF and which bits flip in the
transmitted data (message digest and cipertext). With low PUF
noise (n ≤ 30), the protocol is successful in almost every trial.
Non-probabilistic search methods are unable to authenticate in
as noisy an environment as NPRBC because they search too
many seeds which increases the difficulty of distinguishing the
correct seed from all of the candidate seeds. Additionally, non-
probabilistic searches are intractable for seeds with higher drift
values as shown in previous work [19]. NPRBC successfully
authenticates with a drift of up to 11-bits which for previous
works requires more than 6.2×1018 seeds to be searched and
would require >20 years to authenticate on a modern multi-
GPU server node.

REFERENCES

[1] B. Cambou, “Unequally Powered Cryptography With Physical Unclon-
able Functions for Networks of Internet of Things Terminals,” in 2019
Spring Simulation Conf., 2019, pp. 1–13.

[2] B. Cambou and S. Jain, “Key Recovery for Content Protection Using
Ternary PUFs Designed with Pre-Formed ReRAM,” Applied Sciences,
vol. 12, no. 4, p. 1785, 2022.

[3] S. Taneja, A. B. Alvarez, and M. Alioto, “Fully synthesizable PUF
featuring hysteresis and temperature compensation for 3.2% native BER
and 1.02 fJ/b in 40 nm,” IEEE Journal of Solid-State Circuits, vol. 53,
no. 10, pp. 2828–2839, 2018.

[4] M. Hofer and C. Böhm, “Error Correction Coding for Physical Unclon-
able Functions,” in Austrochip, Workshop on Microelectronics, 2010.

[5] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Helper Data
Algorithms for PUF-Based Key Generation: Overview and Analysis,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 34, no. 6, pp. 889–902, 2014.

[6] G. T. Becker, A. Wild, and T. Güneysu, “Security Analysis of Index-
Based Syndrome Coding for PUF-Based Key Generation,” in 2015 IEEE
Intl. Symp. on Hardware Oriented Security and Trust, 2015, pp. 20–25.

[7] B. Fuller, X. Meng, and L. Reyzin, “Computational fuzzy extractors,”
Information and Computation, vol. 275, p. 104602, 2020.

[8] J. Darbon, B. Sankur, and H. Maitre, “Error correcting code performance
for watermark protection,” in Security and Watermarking of Multimedia
Contents III, vol. 4314. SPIE, 2001, pp. 663–672.

[9] S. A. Vanstone and P. C. Van Oorschot, An introduction to error
correcting codes with applications. Springer Science & Business
Media, 2013, vol. 71.

[10] A. R. Korenda, F. Afghah, and B. Cambou, “A secret key generation
scheme for internet of things using ternary-states reram-based physical
unclonable functions,” in 14th Intl. Wireless Communications & Mobile
Computing Conf. IEEE, 2018, pp. 1261–1266.

[11] C. Philabaum, C. Coffey, B. Cambou, and M. Gowanlock, “A Response-
Based Cryptography Engine in Distributed-Memory,” in Intelligent
Computing, K. Arai, Ed. Cham: Springer Intl. Publishing, 2021, pp.
904–922.

[12] J. Wright, Z. Fink, M. Gowanlock, C. Philabaum, B. Donnelly, and
B. Cambou, “A Symmetric Cipher Response-Based Cryptography En-
gine Accelerated Using GPGPU,” in 2021 IEEE Conf. on Communica-
tions and Network Security, 2021, pp. 146–154.

[13] B. Cambou, M. Gowanlock, B. Yildiz, D. Ghanaimiandoab, K. Lee,
S. Nelson, C. Philabaum, A. Stenberg, and J. Wright, “Post Quantum
Cryptographic Keys Generated with Physical Unclonable Functions,”
Applied Sciences, vol. 11, no. 6, 2021.

[14] K. Lee, M. Gowanlock, and B. Cambou, “SABER-GPU: A Response-
Based Cryptography Algorithm for SABER on the GPU,” in 2021 IEEE
26th Pacific Rim Intl. Symp. on Dependable Computing, 2021, pp. 123–
132.

[15] J. Wright, M. Gowanlock, C. Philabaum, and B. Cambou, “A
CRYSTALS-Dilithium Response-Based Cryptography Engine Using
GPGPU,” in Proc. of the Future Technologies Conf. 2021, Volume 3,
K. Arai, Ed. Cham: Springer Intl. Publishing, 2022, pp. 32–45.

[16] K. Lee, B. Donnelly, M. Gowanlock, and B. Cambou, “Efficient searches
of physical unclonable function seed spaces for response-based cryp-
tography,” in Autonomous Systems: Sensors, Processing and Security
for Ground, Air, Sea, and Space Vehicles and Infrastructure 2023, vol.
12540. SPIE, 2023, pp. 112–125.

[17] S. A. H. Mohsan, M. A. Khan, F. Noor, I. Ullah, and M. H. Alsharif,
“Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive
Review,” Drones, vol. 6, no. 6, 2022.

[18] C. E. Shannon, “Communication in the presence of noise,” Proceedings
of the IRE, vol. 37, no. 1, pp. 10–21, 1949.

[19] K. Lee, B. Donnelly, T. Sery, D. Ilan, B. Cambou, and M. Gowanlock,
“Evaluating accelerators for a high-throughput hash-based security pro-
tocol,” in Proc. of the 52nd Intl. Conf. on Parallel Processing Workshops,
2023, pp. 40–49.

[20] A. Nejat, F. Ouattara, M. Mohammadinodoushan, B. Cambou,
K. Mackay, and L. Torres, “Practical experiments to evaluate quality
metrics of mram-based physical unclonable functions,” IEEE Access,
vol. 8, pp. 176 042–176 049, 2020.

