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Abstract—To enhance the understanding of congestion points
at ports and provide visibility into the incoming container ships in
the USA, this study focuses on maritime ports and corresponding
terminals, using several ports along the East Coast of the United
States as case studies.

We analyzed Automatic Identification System (AIS) data from
January 2015 to September 2023, deriving comprehensive his-
torical berthing data. This analysis enabled us to build several
port congestion prediction models, such as Extreme Gradient
Boosting (XGBoost), Long Short-Term Memory (LSTM), and
a more sophisticated Spatial-Temporal Graph Neural Network
(ST-GNN) model. Additionally, this research traced the historical
routes of container ships and accurately mapped the sectors
where ships’ berth within terminals, thereby providing deeper
insights into ship scheduling.

This study offers considerable value to stakeholders in the
supply chain industry, contributing to both theoretical and
practical applications in maritime logistics.

Index Terms—Automatic Identification System (AIS), High-
performance Computing, ST-GNN, XGBoost, LSTM

I. INTRODUCTION

With an increasing level of international cooperation, the
vulnerability of supply chains to disruptions also grows. In
the last few years, supply chains have been affected by several
global events, such as the COVID-19 pandemic and the Suez
Canal obstruction, which, in turn, led to interruptions in
goods flows, increased volatility of demand and supply, and
increased costs for all participants. To reduce the negative
impact of future disruptions on supply chains in the United
States and, also, to provide greater visibility of goods flows
for key stakeholders to increase cooperation between them,
on March 15, 2022, the Biden-Harris Administration and
U.S. Department of Transportation (U.S. DOT) announced the
launch of a major supply chain initiative, Freight Logistics
Optimization Works (FLOW).

Ports are critical nodes in international trade and global
supply chain networks. This is also the case in the United
States, where ocean ports are integral parts of supply chain
networks. Every US $ of trade flowing through a port will
directly or indirectly generate an additional US $4 of global
industry output [1].

Moreover, the ports are major entry points for contain-
ers of imported goods arriving in the U.S. The visibility
envisioned by the FLOW initiative can help to make those
movements more efficient. However, it is impossible to achieve

a reasonable level of visibility without having the necessary
information about logistics in ports, congestion status, port
sequencing, and terminal scheduling. Without such data, it
is challenging to manage and optimize the flow of goods
effectively.

This study’s objective is to enhance the understanding of
congestion points at ports. Our method for the prediction of
port congestion status provides an estimation of the container
ship flow into the USA, possible delays, and the possibility to
re-route shipments.

In this study, we studied the Automatic Identification Sys-
tem (AIS) data, which collects vessel information throughout
maritime voyages via radio frequency, and then selected and
compared different statistical and machine learning models to
predict port congestion by predicting the number of ships at
berth and awaiting berthing areas.

The aim of our work is to create a spatial-temporal model
of the supply chain dynamics within global ocean logistics
networks. To achieve this, we focused on container terminals
at ports along the East Coast of the USA, as listed in Table
I, and developed descriptive and predictive models for port
congestion within the work’s scope.

TABLE I
LIST OF PORTS AND TERMINALS

Port Terminal
New York / New Jersey APM Terminals
New York / New Jersey Maher Terminals
New York / New Jersey The Red Hook Container Terminal
New York / New Jersey Port Newark Container Terminal
New York / New Jersey Port Liberty Bayonne Terminal
New York / New Jersey Port Liberty New York Terminal
Boston Conley Terminal
Savannah The Port of Savannah
Norfolk Norfolk International Terminals
Baltimore The Seagirt Marine Terminal

In this research, we utilized AIS data, where timestamps
and coordinate points of vessels provide us insights into the
routes of vessels crossing the ocean and the actual time spent
at anchorage areas, ports and terminals. We also retrieved
historical routes from AIS data. Moreover, the AIS data gave
us insider information about other aspects impacting traffic
flow, such as straits, channels or artificial obstacles on the



routes. We also analyzed the port at the terminal level and
developed an algorithm to identify berthing positions of ships,
which proved effective for several terminals in New York /
New Jersey and Los Angeles / Long Beach. We built and
compared several methodologies, such as statistics, machine
learning, and neural network models, to identify the most
accurate prediction model.

II. STATE OF PRACTICE

Several research studies have delved into predicting vessels’
behaviors, addressing challenges related to congestion and
traffic flow and to optimizing port operations. In addition to
traditional statistical models, more advanced methodologies
have been applied in transportation research, such as Neural
Networks and Transformer, showing promising results in pre-
dicting congestion of the port.

Reference [2] demonstrated that eXtreme Gradient Boost-
ing (XGBoost) combined with Shapley Additive Explanation
(SHAP) can effectively predict port congestion status and im-
prove the accuracy of predicting time spent in port. Reference
[3] stated that for predicting the traffic flow rate, the XGBoost
algorithm had the lowest error for hour-ahead forecasts in
comparison to Holt-Winters, Transformer, and Graph Neural
Network (GNN) models. We used the XGBoost algorithm as
a benchmark to compare it with our target model.

We built our model based on the work of [4]. The work
proposed the utilization of a Spatial Temporal Graph Neu-
ral Network (ST-GNN) for traffic prediction. This algorithm
captured comprehensive spatial data, which is necessary in
the maritime network of the East Coast of the USA, where
two major ports - New York / New Jersey and Savannah
significantly influence traffic and goods flows in the rest of the
East Coast ports. The ST-GNN model also captures temporal
patterns by incorporating sequential components, making it
well-suited for our study’s requirements.

III. METHODOLOGY

We approached the prediction of port congestion through
several steps. First, we identified the areas within the scope
of our work, including specific terminals, ports, and waiting
areas.

We then developed several statistical models aimed at
predicting berth occupation in several terminals and ports, as
well as the number of container ships in waiting areas. These
statistical models provided us a benchmark for evaluating the
performance of our ST-GNN model.

Next, we built, trained, and tested our ST-GNN model.
This involved several stages, including data processing, layer
structuring, and model architecture design. We then analyzed
the results and proposed next steps to enhance the value of
the model for the stakeholders.

A. Constructing the Network

In this section, we describe our approach for detecting and
describing points of interest and creating nodes for the graph
of the ST-GNN model.

1) Data Handling: We used AIS data for container ships
in the vicinity of the USA coastline from year 2015 through
2023, filtered by the IMO number of container ships. AIS data
collects vessel information throughout maritime voyages via
radio frequency, enhancing safety and traceability in global
ocean logistics. The data includes the International Maritime
Organization (IMO) number, a unique identifier for each
vessel; dynamic geographical data such as longitude and
latitude, which enables tracking of ship trajectories; and static
vessel information such as length and beam [5]. The Inter-
national Maritime Organization’s International Convention for
the Safety of Life at Sea requires AIS to be fitted aboard
international voyaging ships with 300 or more gross tonnage,
and all passenger ships, regardless of size [6].

As shown in Table II, AIS data collects a variety of vessel
information at regular intervals throughout the voyage.

TABLE II
AIS DATA INFORMATION

Field Name Description
MMSI Maritime Mobile Service Identity, unique nine-digit

identification number for each vessel
BaseDateTime Date and time of the AIS signal
LAT, LON Geographical coordinates of the vessel
SOG Speed over ground in knots
Draught Draught of ship
COG Course over ground in degrees from true north
IMO IMO ship identification number, a unique and per-

manent seven-digit identification number

Static data Length, width, draft, etc.

To narrow our research, we filtered data by speed over
ground, assuming that ships in anchorage and berth areas are
spending some time with drift speed or on full stop (berthed,
anchored). This filtering allowed us to focus on periods during
which ships were either waiting or being processed at the
ports, which are key factors in assessing and identifying port
congestion.

2) Addressing Ship Positions: For the purpose of our mod-
els and detecting ship positions, we applied several techniques
for different areas and points of interest:

• Berthing: Some ports, for example, Los Angeles / Long
Beach and New York / New Jersey, have several terminals
situated closely to each other and a complicated geometry
of the berth. To address this issue, we constructed a
multi-line using the coordinates of points at the beginning
and end of each terminal’s berth, as well as points
where the orientation of the berth changes. We assumed
that ships were berthing if the distance to the nearest
sector of the line was less than 60 meters. Given that
the heading data in AIS is sometimes unreliable and
the message frequency and time of berthing are smaller
compared to the time discrepancy of the model (one day),
this approximation was deemed sufficient for identifying
berthing ships.

• Berthing positions in terminals: We defined an algorithm
to detect berthing position sectors along the berth line



for ships inside a particular terminal. This allowed us
to accurately pinpoint specific berthing locations within
each terminal.

• Waiting (Anchorage) area: This area is defined as a
polygon surrounding a manually identified and classi-
fied cluster, determined by a clustering algorithm. All
container ships that appeared inside the polygon were
counted toward the total number of vessels that spent
some time in the area prior to entering the port.

• Harbor area: This area is a manually identified polygon
encompassing the water area from the harbor entrance
and all areas of the harbor open to container ships,
including terminals.

3) Building Features: To generalize the model, we analyzed
the list of container ships that visited ports in the USA and
categorized them based on major operators and ship sizes:

• We split the container ships into categories of operators,
focusing on major operators with more than 10 ships.
This grouping helped us align the ships with the terminals
preferred by each operator. Ships from less significant
operators were combined into a single group.

• We also grouped ships by size, specifically by length and
width, by applying k-means clustering [7]. Apart from
generalization, this clustering allowed us to decrease the
number of features and simplify computations.

For our models, we utilized a 7-day history of the number
of ships at each particular node (terminal) and the number
of ships heading to such nodes. Additionally, we incorporated
time series data, such as the month and day of the week, to
capture temporal patterns.

B. Statistical and Machine Learning Models

We built several models to predict the occupation of berth
and anchorage areas for terminals based on historical data.
We applied this method to predict congestion at all modeled
terminals and used them as benchmarks for the ST-GNN
model.

1) Random Forest Regression: Random Forest, or Random
Decision Forest, is a method used for classification or regres-
sion by constructing and combining multiple decision trees.
This approach was introduced by [8].

2) LSTM Networks: The Long Short-Term Memory
(LSTM) Networks, introduced by [9], are one of the most
widely known and commonly used methods for handling
time series data. As described by [10], LSTM networks are
particularly effective for forecasting and are well documented.

3) XGBoost: XGBoost is a scalable and efficient solution
for tree ensemble learning, consisting of multiple decision
trees that are combined to form robust predictive models. The
XGBoost algorithm assigns scores to the i-th leaf of each
decision tree and sums these scores for the corresponding
leaves to achieve the final prediction. To optimize the per-
formance of the model, XGBoost minimizes a regularized
objective function, as detailed by [11]. This method enhances
prediction accuracy and model robustness, making it a valuable
benchmark for comparison with the ST-GNN model.

C. Spatial Temporal Graph Neural Network

For the purpose of this work, we utilized the ST-GNN
model, a subclass of the more general model, Graph Neural
Networks (GNN), which are known for predicting traffic
intensity due to their ability to capture spatial information.

Fig. 1. ST-GNN Model representation, redrawn from [4]



The framework for our model was proposed by [4] and
initially used to predict road traffic and has demonstrated
robust performance in handling dynamic changes over time
and space.

We selected the ST-GNN model for this study due to
its advantages in modeling complex spatial and temporal
dependencies, which are crucial for predicting maritime trans-
portation patterns. The model’s graph-based representation
effectively captures interactions between different elements
of the transportation system, such as ship locations and port
layouts. Our motivation was to test whether the successful
techniques used in traffic prediction could be adapted to
maritime transportation, thereby providing insights into the
applicability of ST-GNN in a new domain.

1) Layers: The framework consists of four layers, as shown
in Fig. 1:

• GNN layer: Captures spatial information by processing
the graph structure of the data.

• Gated Recurrent Unit (GRU) layer: Captures local tem-
poral dependencies by handling sequential data.

• Transformer layer: Captures global temporal dependen-
cies.

• Multi-layer feed-forward network: Outputs the final pre-
dictions.

2) Building the Graph Neural Network: For our model, we
used three types of nodes:

• Ports: Represent physical ports like Boston or New York.
These nodes are connected by bidirectional edges.

• Waiting zones of ports: Represent zones where container
ships wait for berthing. Each port node is linked to its
waiting zone by a unidirectional edge.

• Terminals in ports: Represent terminals within each port.
Waiting zones are connected to every terminal in the port
by unidirectional edges. Terminals in the port are also
interconnected bidirectionally, representing the possibility
of ships using multiple terminals, and are linked to the
port node, indicating entering and exiting the port.

Edges in the model are represented by an adjacency matrix
defined by the physical distance between nodes, capturing the
spatial relationships and constraints within the network.

IV. RESULTS

This section is dedicated to the results of the statistical
and machine learning models we built to meet our research
objectives. In our work, Random Forest Regressor, LSTM,
XGBoost, and ST-GNN models were applied to predict the
number of vessels in each area.

A. AIS Data Analysis

By performing a statistical analysis of AIS data for the
Boston port area (berth, anchorage areas), we observed no
significant seasonal or time-related effects. We confirmed with
port authorities that the primary reason for ship timing in
the wait area, aside from unrelated issues to the port such as
technical issues or rescheduling, was traffic inside the harbor.

To address the problem of vessel berth identification, we
selected points at the end of each berth and the change in

Fig. 2. New York / New Jersey Maher Terminal



geometry of each terminal/port included in this work. Apart
from coordinate identification, this gave us the direction (head-
ing) of the berth. By using both coordinates and headings, we
were able to identify the mooring of ships by calculating the
distance between the ship and the berth line and comparing
the heading of the ship with the berth direction. The analysis
of AIS data showed that some ships had problems transmitting
the correct heading data. Therefore, our approach is to detect
the start and end times of berthing by filtering ships with
a distance less than the width of the berth. We assumed a
potential error margin of no more than 10-15 minutes, which
is acceptable to our model given our time discrepancy of 1
day.

To detect ships’ berthing positions inside the terminal, we
considered all ships at berth within a particular terminal and
split them into time windows of specified length (e.g., 3 or
6 hours, starting from 00:00 each day). We then identified
the time frame with the greatest number of ships staying
more than half of the time window length, which specified
the maximum number of positions inside the terminal. To
define the positions, we used initial coordinates and head-
ings of sequential ships in the eastward and then northward
directions. Subsequently, for each time frame, we sequenced
the ships and assigned them to the closest positions, updating
position coordinates if necessary. The results for New York /
New Jersey Maher terminal (Fig. 2) and Long Beach Pacific
Container Terminal (Terminal J) (Fig. 3) matched the actual
berthing positions observed in satellite images of the terminals.

B. Congestion Prediction Models

We built several models for the terminals under considera-
tion to predict congestion at those locations. These models
were used as a benchmark for our ST-GNN model. For
training, we used data from 2015/01/01 to 2023/08/31, and we
predicted congestion for the next 30 days, from 2023/09/01 to
2023/09/30 (this period served as our test data).

As an input for the models, we used the number of vessels at
the berth per day at terminals, the number of ships heading to
the particular terminal from other terminals in the model in the
last 7 days, and, additionally, time series categories like month
and day of the week. As an output, we predicted the number
of vessels at terminals. By analyzing benchmarking models,
we used such error metrics as Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), and Symmetric
Mean Absolute Percentage Error (SMAPE).

Although Random Forest Regression achieved the smallest
prediction error, the features it relied on appear to have no
meaningful relationship with the predicted outcomes. In this
case, the chosen features shared coincidentally similar values
with the target variable, leading to misleadingly low error
rates. Therefore, we excluded this model from the comparison.

Table III displays errors for three different models across
various terminals in our testing dataset. The results indicate
that the best-performing model varies by terminals. To under-
stand this phenomenon, additional research into the differences
between terminals and incoming traffic should be conducted.
This further study could reveal additional insights into improv-

Fig. 3. Long Beach Pacific Container Terminal (Terminal J)



ing the models.

TABLE III
ERRORS BY TERMINALS, MODELS

Port Terminal Model MAE MAPE SMAPE

APM Terminals
LSTM 1.57 37.64 47.08
ST-GNN 1.52 55.16 41.05
XGBoost 0.52 12.28 12.82

Port Liberty Bayonne
Terminal

LSTM 0.70 50.68 84.62
ST-GNN 0.51 37.75 45.18
XGBoost 0.67 58.92 54.50

The Red Hook
Container Terminal

LSTM 0.36 57.94 158.42
ST-GNN 1.39 79.62 147.71
XGBoost 0.94 72.32 146.14

Note. Bold numbers represent the best-performing error metric per
terminal.

V. CONCLUSION

In this section, we summarize the key findings from our
research on AIS data and port congestion. We also propose
recommendations for future research or practical applications.

• Incorporate additional maritime data: To increase predic-
tion capability, it is essential to incorporate information
about ships departing from the destination ports outside
the USA, as this will give more precise information for
the first port of entry. Additionally, incorporating infor-
mation about the Panama Canal is crucial for accurately
diagnosing disruptions in ship flows.

• Understand model performance differences: Further re-
search should investigate why models perform differently
across various terminals in the system; that is why some
models excel with certain terminals while performing
poorly with others. Understanding these differences can
help tailor models to specific terminal or port character-
istics.

• Incorporate port operations data: Knowledge of port
operations, such as port yard utilization and the ability to
serve ships quickly, could enhance the predictive models.
This information could be obtained directly from the ports
or be received indirectly. Additionally, it might be helpful
to analyze historical port berthing schedules. We could
either derive a reward function by utilizing Inverse Rein-
forcement Learning (IRL) or propose an assumed reward
function to apply a forward Reinforcement Learning (RL)
model for every port of interest, in order to predict ship
serving sequence and time spent in the area.

• Apply dynamic graph neural networks: For stakeholders,
utilizing dynamic graph neural networks could help pre-
dict potential ship diversions and route changes. Several
studies, such as [12] and [13], have addressed changes
in graphs, which could potentially improve prediction
accuracy and adaptability in maritime logistics problems.

Our research in this paper developed a promising algorithm
to detect ship berthing spots in specific port terminals. We also
demonstrated that advanced machine learning models, includ-
ing XGBoost, LSTM and ST-GNN models, can effectively
predict port congestion. Furthermore, by implementing our

recommendations and potential improvements, future research
can be built on this paper, developing more robust and accurate
models to predict port congestion and optimize port operation.
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