
Towards Just-in-Time Instruction Generation for
Accelerated Sparse Matrix-Matrix Multiplication on

GPUs
Seth David Kay

GraphLab
George Washington University

sdkay@gwu.edu

H. Howie Huang
GraphLab

George Washington University
howie@gwu.edu

Abstract—Sparse Matrix-Matrix Multiplication (SpMM) is a
fundamental operation in neural networks and high performance
graph algorithms. Most popular solutions to SpMM adhere to
ahead-of-time (AOT) compilation, where the entire program
is compiled before execution. With the introduction of GPU
threading in SpMM there have been significant leaps in perfor-
mance. However, AOT compilation for threaded SpMM has four
major limitations: unnecessary memory access, greater branch
overhead, unnecessary retained memory, and slow memory
transfers between the host and the device. These limitations are
due to the nature of AOT compilations where key information
is unaccessible during the compilation time but later becomes
available during the programs run-time. In this paper, we propose
a SIMD GPU threaded just-in-time (JIT) compilation solution
to SpMM, improving SpMM resource usage and run time on
GPUs. The most significant advantage of our framework is that
JIT compilation provides our solution with runtime information.
This information is used to dynamically create precise thread
structures based on input matrices. Operations are evenly dis-
tributed to each thread in their smallest denominations to achieve
maximum efficiency and a balanced workload distribution.
Runtime information is also used to manage a self-maintained
memory pool which increases memory efficiency, bandwidth,
and SpMM speed. Improved forms of memory allocation and
storage are used, decreasing the amount of transfers needed
between the device and host, as well as increasing GPU memory
bandwidth and decreasing memory access times. We conduct a
performance evaluation of our framework and compare it to a
AOT baseline provided by NVIDIA, a threaded matrix multiplier
using the CUDA framework, adjusted for SpMM using an array
in compressed sparse row (CSR) format. Our JIT framework
consistently delivers a significant performance enhancement over
the native CUDA solution, achieving on average, a 1.3x improve-
ment in execution time and a 3x improvement in GPU memory
footprint.

Index Terms—SpMM, Just-in-Time Compilation, GPU
Threading, Performance Optimization

I. INTRODUCTION

Over recent years sparse data has seen greater and greater
prevalence. As a result, sparse computation - algorithms that
leverage the understanding of operating with sparse data to
minimize the number of fundamental operations performed -
is receiving large amounts of attention, in hopes to improve
preexisting algorithms using the knowledge that the opera-
tional data will be sparse [1]–[5], [7]. SpMM (Sparse Matrix-

Matrix Multiplication), is no exception to this trend. SpMM
is a form of matrix multiplication that is performed on one
sparse matrix, A (a matrix in which most elements are zero)
[1], and one dense matrix, X (a matrix in which most elements
are non-zero) [1]. Each index j each row i in the sparse matrix
A is multiplied by index j in the corresponding column i in
the dense matrix, and products of the multiplications are then
added to form one index in the resulting dense matrix Y , stored
at Y[i][j]. SpMM has found extensive applications, being used
in matrix factorization algorithms, graph clustering algorithms,
and is a key component in Graph Neural Networks, being used
in graph convolution [7]–[9].

SpMM frameworks popular today are limited by design
challenges. These limitations include memory transfer between
the host and the device, unnecessary branch overhead, limiting
memory storage techniques, and unnecessary retained device
memory. Our framework aims to solve these limitations. To
do so we use the following approaches. First, we use just-
in-time (JIT) compilation to gain access to valuable runtime
information which allows us to perfectly balance thread struc-
tures and deallocate memory when needed, extending our prior
work on multicores [11] to GPUs. Second, we employ CSR
format for sparse matrices to improve memory and runtime
efficiency. Third, we utilize a highly efficient self-maintained
memory pool using improved forms of memory allocations.
Using the framework described above, our SpMM solution -
using both JIT compilation and GPU threading - addresses the
limitations of popular SpMM solutions today. By addressing
these limitations, our JIT threaded SpMM exhibits a 1.3x
improvement in execution time and a 3x improvement in GPU
memory efficiency, meaning problems 3x larger are able to be
processed without exhausting GPU memory.

The rest of the paper is organized as follows. Section 2
provides a background on technologies used in our SpMM
solution. Section 3 discusses current iterations of SpMM lim-
itations and the opportunities provides by these limitations for
our framework to improve on SpMM. In section 4, we present
our framework’s design and optimization techniques. Section
5 describes our findings and discusses their implications and
potential origins. Finally, section 6 concludes the paper.



TABLE I
LIST OF NOTATIONS.

Symbol Description

A Sparse Matrix of Dimensions m× n

X Input Dense Matrix of Dimensions n× d

Y Output Dense Matrix of Dimensions m× d

m Number of Rows of Matrix A

n Number of Columns of Matrix A, Number of Rows of Matrix
X

d Number of Columns of Matrix X

M [i] The i-th Row of a Matrix M

M [i][j] The Element at the i-th Row and j-th Column of a Matrix M

ni,j An Element n, which is at Row i and Column j

II. BACKGROUND AND RELATED WORK

To increase the performance of SpMM operations and
decrease the amount of memory used to store sparse matrices,
many sparse matrix storage techniques have been designed.
Matrices are commonly represented as two-dimensional arrays
in software. Each element, ni,j , is accessed using two indices
- i for the row and j for the column. Rows are numbered from
top to bottom, while columns are numbered from left to right.
This means, for an m×n matrix, the memory required to store
this two-dimensional array representation of a matrix scaled
linearly with the product of its dimensions (m×n), excluding
the storage needed for the matrix’s dimensions themselves.
Table I, a table of frequently used notations throughout this
paper, is provided for the convenience of the reader.

To improve memory usage, the Compressed sparse row
(CSR) formatting of sparse matrices, also known as com-
pressed row storage (CRS) or Yale format, and many formats
like it, where created. CSR format is represented as follows
(zero-basing is used). An m×n sparse matrix A is represented
not by using one two-dimensional array but by using three
one-dimensional arrays: a values array (V), an array to hold
column indices (col index), and an array to hold the number of
non-zero elements above each row (row index). CSR format
compresses row indices, only storing nonzero values. The
values array, V, holds all nonzero elements from the matrix,
and is the same length as the number of nonzero elements. The
column indices array, col index, at it’s i’th element contains
the column location of the value at V’s i’th element. col index
also has length equal to the number of nonzero elements in
the sparse matrix. The row index array has a length of m +
1, and stores at index i the total amount of non-zero elements
that occur above row i. This results in the final element of
row index being equal to the total number of nonzero values
in the sparse matrix A. Figure 1 presents an example of the
process. CSR formatted sparse matrices drastically reduce the
amount of memory needed to store the sparse matrix.

When performing SpMM with a sparse matrix A in CSR
format and a dense matrix X , we can greatly reduce the
amount of individual multiplications necessary during exe-

Fig. 1. Example of CSR format (bottom) and the matrix representation (top).

cution by doing SpMM using a CSR-formatted sparse array.
The algorithm performs SpMM on a sparse matrix A in CSR
format and a dense matrix X . First, the row index is accessed
to locate the initial position of row i. Segments of col index
and V are traversed to perform the necessary multiplications
on all non-zero entries in the sparse row i. For each nonzero
entry, the algorithm utilizes the column index from col index
to find the corresponding row in the dense matrix X . The
value at X is then multiplied by the nonzero value at A, and
the product is added to the row-column total, yielding the final
value stored at Y [A col][X row].

Multiplying a sparse matrix in CSR format by a dense
matrix using GPU threading is shown in Algorithm 1. First,
we get the position of the thread as a vector, where the first
position is the position within the thread block and the second
position is the position of the thread block in relation to the
overarching thread grid. Then for each thread, the return value
is initialized, and the thread iterates over the row index array
of the sparse matrix from the thread’s position to the next
thread’s position (row index[posx] to row index[posx+1]).
Then the result of all nonzero multiplications in the thread’s
row are added to the result, which is then inserted into the

Algorithm 1 A threaded implementation of SpMM based on
CSR
Require: Sparse matrix A of size m × n, i.e., A.row index,
A.col index, A.V, dense matrix X of size n×d, and return
matrix Y of size m× d.

Ensure: Dense matrix Y = AX .
thread posx, thread posy = cuda.grid(2) ▷ Get thread
positions using cuda framework
if thread posx < n and thread posy < d then ▷ Make
sure the thread is needed

ret = 0
for idx = A.row ptr[i] to A.row ptr[i+ 1] do

k = A.col indices[idx]
ret+ = A.vals[idx]×X[k][thread posy]

end for
Y [thread posx][thread posy] = ret

end if
return Y



correct position in Y (the dense array that is a result of the
SpMM). When doing this for every thread in a specialized
thread and thread block format for the specific input arrays,
every position in Y is filled in by one thread. Done simul-
taneously, the longest the algorithm can run for is the time
taken for the largest amount of multiplications for a single
row-column pair to be done, added, and inserted into Y .

III. MOTIVATIONS AND OPPORTUNITIES

As SpMM has become more prevalent, ways to improve
runtime have been proposed. A popular method is to mas-
sively thread the operation using GPUs [13]. To achieve this
threading, we use NVIDIA’s API framework, CUDA. NVIDIA
provides an extensive API for threading using their GPUs,
allowing for thread structures to be created, memory pool
manipulation, and optimized data transferred between the host
and the device. It also allows for the creation of unified
and shared memory pools, increasing memory efficiency and
transfer speeds. The use of GPUs allows for individual mul-
tiplication operations to be executed at once, allowing for a
significantly faster SpMM.

Leveraging NVIDIA’s CUDA framework for GPU threading
can provide powerful efficient parallelization, and is utilized
in our JIT threaded approach to SpMM. A core aspect of
CUDA’s framework is their extremely customizable thread
hierarchy. This hierarchy consists of three denominations of
threading: threads, blocks, and grids. Threads are used in
SIMD architecture, each one performing one iteration of a
given GPU kernel method. Programs typically base thread
execution on the specific thread architecture used. Threads can
be grouped into blocks, which subsequently can be grouped
into grids. Precise thread architecture is decided at runtime,
which allows for dynamic thread structure allocation that
corresponds to a GPU kernel method’s specific requirements.
This allows for only threads that are necessary for computation
to be deployed for execution, which decreases memory and
GPU bandwidth consumption. Each thread is given its own
registers and local memory, whereas thread blocks in CUDA
can cooperate by sharing data through shared memory pools,
as well as synchronize their execution. Grids are a collection
of thread blocks that do not share memory but are useful in
terms of simplifying the code needed by adding another layer
of thread grouping often used to deploy individual threads to
each index in three-dimensional arrays.

The CUDA framework also provides many ways to store
memory, and understanding what memory type to use and
where is pivotal for optimizing performance. There are three
main types of memory CUDA offers. First, global memory,
which is accessible by all threads in every thread block and
grid. Global memory is not cached, leading to latency in read-
ing and writing. Second, shared memory, which is accessible
only by all threads in a specific thread block. Our solution
typically uses shared memory, as it offers synchronization,
automatic data locking, and quick access. Third, there is local
memory, which is specific to each thread. Because it stored

in the same way global memory is, it is prone to the same
latency.

Our SpMM solution only utilizes shared memory when
storing data on the GPU. This is because shared memory
latency is roughly 100x lower than other memory formats
able to be used for NVIDIA GPU computation, and when
a bottleneck of the algorithm stems from reading and writing
to arrays, it becomes very important to improve [16]. Shared
memory also allows for data cashes in a custom memory pool,
which our solution uses. Shared memory can also be read-
only, further reducing the runtime of reading data from input
arrays when performing SpMM. Using shared memory in our
framework allows for both faster speeds at runtime and also
increased memory bandwidth on the GPU.

Popular threaded and non-threaded solutions to SpMM
adhere to AOT (ahead-of-time) compilation. This involves
the entire program being compiled before execution. AOT
compilation for SpMM has limitations in the form unnecessary
memory access and greater branch overhead. To address
these limitations, we propose the use of JIT (just-in-time)
compilation for threaded SpMM. JIT compilation compiles
GPU kernel functions into machine code at runtime, allowing
runtime information to be available for optimizations. Using
information known at the program’s runtime, we are able to
address each of these limitations in turn and greatly improve
the speed of SpMM.

NVIDIA does not provide a JIT framework with the CUDA
API, so to perform JIT compilation using NVIDIA GPUs,
Numba, a Python JIT framework for generating machine code
from Python code using the LLVM compiler infrastructure
[14]. Numba provides decorators for Python functions to allow
them to be compiled to machine code at runtime. Numba in-
tegrates with the CUDA framework almost seamlessly, which
allows for the same benefits of the CUDA framework, such as
pinned and shared memory pools, while also allowing for the
access of runtime information.

Current solutions to SpMM have many limitations. Our
solution is able to alleviate them by using the strategies and
technologies described above. First, CSR format allows us to
reduce the time taken for SpMM to run, as well as greatly
reduce memory consumption and data transfer speeds. Second,
by threading SpMM on the GPU we are able to improve
SpMM speeds. Third, by using JIT compilation we gain access
to important runtime information. Fourth, using this runtime
information, our solution is able to precisely allocation thread
structures perfectly suited for GPU execution. And fifth, the
use of initially writing to pinned memory and by utilizing
only shared memory on the GPU, we are able to decrease
the speed of memory transfers as well as reduce memory
usage on the GPU. Using the technologies described above,
as well as highly specific techniques such as loop unrolling,
memory coalescing, and minimized memory access latency,
our proposed solution achieves less memory usage and faster
runtime.



Fig. 2. How our solution uses pinned memory directly during host to
device data transfers. Writing data directly into pinned memory when read
circumvents the need to transfer a host array to pinned memory before copying
memory the device.

IV. FRAMEWORK

The implementation of the above frameworks and solutions
culminates in our proposed solution. Here, we will discuss
how each technology is used in our solution to improve on
previous iterations of SpMM. The first technology to discuss
is our threading model. Due to the nature of global and
local memory and the latency they produce, our solution uses
only shared memory structures. This meant that thread grids
were impractical, and they were not necessary or useful for
our solution from the beginning, so our solution implements
threads only as part of thread blocks. This allows for easily
shared memory that can be accessed quickly, and it allows for
all of the threads to interact with one array simultaneously
due to the automatic locking and synchronization capabilities
of the CUDA shared array framework. This also allowed
for simple calculations to determine how many threads were
needed in each block, as well as how many blocks were
needed in total, given the dimensions of the matrices we are
multiplying. This allows for the perfect amount of threads and
thread blocks to be allocated for our specific GPU method, see
Algorithm 2.

The decision to use shared memory was a valuable one.
While it did allow for threads to easily access data in the
same array, it also improved data read, write, and even transfer
speeds, because it is able to be cached. Shared memory has
significant improvements on alternative types of GPU memory
for SpMM implementations, as it is much faster at accessing
memory, able to be allocated from the custom memory pool
our solution employs, is able to be accessed safely by every
thread in a grid at once, and can be made to function as a
read-only array, even further reducing memory usage for input
arrays into the SpMM.

Another less commonly used but important form of memory
is pinned memory. As shown in Figure 2, host data allocations
are pageable by default when normally allocating memory.
Because of this, the GPU cannot access data directly, so the
CUDA driver first must allocated a page-locked, or pinned,
host array, which can then be copied to device memory.
This causes slower data transfer speeds. To circumvent this
bottleneck in data transfer between the host and the device, we
utilize directly allocating data into pinned memory, allowing
for the transfer to host data structures to improve greatly [15].

To further optimize performance and memory usage, our

Algorithm 2 An implementation of thread block allocations
Require: Dense matrix X size n × d, and return
blocks per grid, a description of thread and thread block
count and shape.

Ensure: blocks per grid = thread block allocations.
threads per block = (16, 16)
blocks per grid x = math.ceil(n/threadsperblock[0])
blocks per grid y = math.ceil(d/threadsperblock[1])
blocks per grid = (blockspergrid x, blockspergrid y)
return blocks per grid

solution implements a self-regulated memory pool. Numba’s
memory pool increased calls to the CUDA API for memory
retention while executing on the GPU, and made it difficult to
individualize the storage of each array. By managing memory
allocation and deallocation dynamically, memory is able to
be freed when it has been used, reducing memory usage and
improving runtime performance. This also allowed us to write
data into pinned arrays when initially reading them, reducing
the amount of data transfers done. See 2. This initial pinned
memory is stored on the host. While this is necessary for
initializing the SpMM, the CPU memory becomes a burden for
CUDA’s framework to upkeep while executing on the GPU.
Having the ability to remove this pinned memory as soon as
it is transferred to device memory improves the runtime and
memory usage of our solution. A dynamic memory pool also
allows for the allocation of read-only arrays for input arrays.
This improves memory access speeds and increases memory
bandwidth using caching mechanisms that are more effective
for read-only data. Because our solution is able to dynamically
allocate to a memory pool it controls, it allows for greater
memory bandwidth and faster runtime speeds when executing
on the GPU.

JIT compilation is also a critical part of our solution. JIT
offers many benefits to SpMM, as it allows for increased
performance overall for SpMM as well as flexibility during
runtime. By compiling CUDA GPU kernel code at runtime,
JIT compilation allows for optimizations suited for specific
hardware, which Numba employs. This alone results in faster
execution times for SpMM when compared to an AOT algo-
rithm. JIT compilation also allows our solution to dynamically
adapt to specific inputs, allowing for easily thread block
allocations, which optimizes the algorithm for specific matrix
structures during runtime. Because thread allocation, memory
usage, and runtime is highly dependent on the nature of the
data on GPU’s, having access to and using runtime information
through a JIT framework allows for more dynamic, fast, and
memory efficient SpMM. Choosing to use a JIT compilation
framework in our proposed solution has enhanced the effi-
ciency and scalability the SpMM, as well as allowing us to
understand and process unique data by dynamically allocating
thread structures during runtime based on the input data.

The use of CSR format in our solution was important. When
working with matrices of a known specific type, using storage
and computational methods uniquely made for that matrix can



Fig. 3. Time vs. array total number of elements of the resulting array (m×d)
in 100 millions, comparing our solution and the AOT CUDA solution.

improve an algorithm significantly. CSR format for SpMM is
no exception. Since we know an input matrix is sparse, and
because the sparse matrix is stored in CSR format, accessing
the arrays and doing the few multiplications necessary for one
thread is highly efficient, which also leads to a drastically
lower runtime than a basic SpMM would produce. Using CSR
format not only allows us to rewrite our SpMM function to be
much faster, it also drastically reduces the amount of memory
used to store the sparse matrix. This in turn decreases the
amount of time taken to transfer read the data as well as
dramatically decreasing the transferring of data between the
device and host.

To optimize our solution we employed smaller scale specific
optimized techniques to the general computation. First, we use
loop unrolling, as shown in Algorithm 1, to thread the SpMM
and achieve a balanced thread workload. Second, we use
memory coalescing to optimize memory access patterns and
GPU bandwidth usage during GPU kernel execution. Third, we
minimize memory copying latency by only returning the array
resulting from the SpMM back to host memory and removing
the input arrays from both device and host memory as soon as
soon as they are no longer needed. These techniques maximize
the utility of the frameworks that our solution uses, and they
achieve significant performance improvements when scaling
up the SpMM.

V. EVALUATION

The hardware used to test our implementation of SpMM
were as follows: GPU type - Tesla V100-SXM2, GPU count
- 4, driver version - 515.65.01, cuda version - 11.7, Numba
version - 0.59.1. All tests run were done utilizing these systems
to their full capacities. When creating data sets, two two-
dimensional arrays are created using a python script of type
int32. The dense matrix is generated randomly using Python’s
random number generation framework, and the sparse ma-
trix is generated similarly, the only difference being that is
generated with a sparsity of 0.00001, or .001 percent. This
sparsity of matrices is only used for the largest generated,
when generating smaller matrices for testing a sparsity of

Fig. 4. Time difference (AOT Cuda Solution - Our Solution) vs. array storage
size in gigabytes.

0.001, or 0.1 percent, is used. Numpy is then used to house
the sparse matrix, so it can then be separated into its CSR
components using the Scipy framework. The sparse and dense
arrays are then written to files, the sparse array being written as
three lines, one line for each of its components, V, col index,
and row index. The dense array is stored with one line being
one row in the matrix, and spaces separate the indices. There is
also a file in which the resulting array dimensions are written
into, to avoid unnecessary iterations over the input matrices to
gather dimension data. When running each solution, the files
are first read into pinned memory to gather the correct input
data.

The AOT CUDA SpMM baseline algorithm run was created
by NVIDIA and listed in the CUDA documentation. In order
to identify the effect that JIT compilation was having on
the algorithm, the AOT implementation was adjusted to fit
SpMM best. First, memory is read from files holding the
data directly into pinned memory, allowing faster allocation
from host to device memory when calling the GPU kernel.
Shared memory is used to improve latency in reading and
writing arrays and simplify thread memory access. Threads
structure allocations are the same as our solution utilizes, see
Algorithm 2, meaning only thread blocks are used to organize
threads. CSR format is used when processing and iterating
over the sparse matrix, improving memory usage and memory
transfer speeds. Our CSR specific algorithm, see Algorithm 1,
is used when executing the SpMM in the GPU kernel to
improve memory usage and runtime speeds. Only the resulting
array, Y , is copied from device memory back to host memory.
These changes ensure that the baseline algorithm is as fast as
possible given its constraints.

Running on the above architecture, our solution to SpMM
outperformed its AOT official CUDA counterpart in every
tested evaluation. First, we testing the proposed solution
against the AOT baseline for time taken to run. Here we see
an average difference in runtime of 34 percent. In other words,
our algorithm performed on average 1.3 times faster than our
baseline. In figure 3, shown is the time taken for our solution



Fig. 5. API calls recorded on a small SpMM example for both our solution
and the AOT CUDA baseline.

and the AOT CUDA baseline. This shows how our SpMM
runs faster at every point than its counterpart.

Scalability is a critical factor for modern SpMM solutions
to focus on. Shown in 4 is a larger graph showing much larger
arrays than 3, up to the largest arrays the SpMM could run on
with the GPU memory available, and depicts the difference
in runtime between the two solutions. As is clearly shown,
as the matrices get larger, our solution consistently performs
better than the AOT CUDA baseline at an increasing rate.
This graph further emphasizes the runtime improvements our
SpMM solution offers, especially when scaling up matrix
sizes.

After observing inconsistencies between the GPU memory
usage of the two algorithms, we also ran GPU memory usage
tests. We found that the percent difference in memory able to
be stored on the GPU in our solution compared to the AOT
CUDA baseline was, on average, a 203 percent difference.
In other words, our algorithm was able to store 3 times as
much memory on the GPU as its counterpart, allowing our
solution to handle problems that are 3 times are larger than
the baseline. This is due to the dynamic self-hosted memory
pool our solution utilizes, which is able to deallocate memory
using runtime information. It also allows for our program to
circumvent unnecessary memory expenditure by allowing us to
create read-only arrays on device memory, as well as remove
any excess memory usage caused by CUDA API calls.

Finally, we ran performance evaluations on CUDA API
calls for both of the algorithms using CUDA’s nvprof [17].
Figure 5 shows comparisons of the largest api calls that
both algorithms ran. The data was filtered to pertain just to
memory allocation, retention, and copying. Data was collected
by running randomly sized SpMM calculations and averaging
the nvprof results. The graph shows that memory copying
between the host and device takes close to the same amount of
time between the algorithms, but the copying of memory from
pinned memory to shared memory (cudaMemcpy) is improved
in our solution.

VI. CONCLUSION

Sparse Matrix-Matrix Multiplication is an important al-
gorithm and is growing more so rapidly. Increased atten-

tion and research into increasing memory usage run time is
important. In this paper, we proposed a JIT compiled and
GPU threaded SpMM algorithm that improved on the cutting-
edge implementation of SpMM from NVIDIA. Our solution
improved on time taken to run by 34 percent. It also improved
memory consumption by 102 percent. This clearly shows that
despite most popular SpMM algorithms adhere to ahead-of-
time compilation, the information and control over thread
allocation and memory given using the runtime information
provided only by JIT compilation reduces the limitations of
AOT compilation for SpMM. Our solution decreases memory
consumption, memory access time, time taken to run, and
memory copying between the host and the device.

For future work, we plan to explore a number of research
directions, including studying data partitioning methods to
scale to multiple GPUs [18], [19], leveraging tensor cores [20],
as well as investigating I/O support for semi-external memory
based SpMM algorithms [21], [22].

ACKNOWLEDGMENT

The authors thank the anonymous reviewers for their sug-
gestions. This work was supported in part by National Science
Foundation grant 2127207.

REFERENCES

[1] D. Yan, T. Wu, Y. Liu and Y. Gao, ”An efficient sparse-dense matrix
multiplication on a multicore system,” 2017 IEEE 17th International
Conference on Communication Technology (ICCT), Chengdu, China,
2017, pp. 1880-1883, doi: 10.1109/ICCT.2017.8359956.

[2] A. Bik, P. Koanantakool, T. Shpeisman, N. Vasilache, B. Zheng, and F.
Kjolstad, “Compiler Support for Sparse Tensor Computations in MLIR,”
ACM Trans. Archit. Code Optim., vol. 19, no. 4, pp. 1–25, Dec. 2022,
doi: 10.1145/3544559.

[3] W. W. Sun, J. Lu, H. Liu, and G. Cheng, “Provable Sparse Tensor
Decomposition,” Journal of the Royal Statistical Society Series B:
Statistical Methodology, vol. 79, no. 3, pp. 899–916, Jun. 2017, doi:
10.1111/rssb.12190.

[4] G. Blelloch, M. Heroux, and M. Zagha, “Segmented Operations for
Sparse Matrix Computation on Vector Multiprocessors,” Oct. 1993.

[5] E. T. Phipps and T. G. Kolda, “Software for Sparse Tensor Decompo-
sition on Emerging Computing Architectures,” SIAM J. Sci. Comput.,
vol. 41, no. 3, pp. C269–C290, Jan. 2019, doi: 10.1137/18M1210691.

[6] J. R. Gilbert, C. Moler, and R. Schreiber, “Sparse Matrices in MATLAB:
Design and Implementation,” SIAM J. Matrix Anal. Appl., vol. 13, no.
1, pp. 333–356, Jan. 1992, doi: 10.1137/0613024.

[7] C. Hong, A. Sukumaran-Rajam, I. Nisa, K. Singh, and P. Sadayappan,
“Adaptive sparse tiling for sparse matrix multiplication,” in Proceedings
of the 24th Symposium on Principles and Practice of Parallel Program-
ming, in PPoPP ’19. New York, NY, USA: Association for Computing
Machinery, Feb. 2019, pp. 300–314. doi: 10.1145/3293883.3295712.

[8] G. Huang, G. Dai, Y. Wang, and H. Yang, “GE-SpMM: General-
Purpose Sparse Matrix-Matrix Multiplication on GPUs for Graph Neural
Networks,” in SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, Nov. 2020, pp. 1–12.
doi: 10.1109/SC41405.2020.00076.

[9] Qiu, Shenghao, Liang You, and Zheng Wang. ”Optimizing sparse matrix
multiplications for graph neural networks.” International Workshop on
Languages and Compilers for Parallel Computing. Cham: Springer
International Publishing, 2021.

[10] Saad, Youcef. SPARSKIT: A basic tool kit for sparse matrix computa-
tions. No. NAS 1.26: 185876. 1990.

[11] Q. Fu, T. B. Rolinger and H. H. Huang, ”JITSPMM: Just-in-Time
Instruction Generation for Accelerated Sparse Matrix-Matrix Multipli-
cation,” 2024 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), Edinburgh, United Kingdom, 2024, pp. 448-
459, doi: 10.1109/CGO57630.2024.10444827.



[12] A. Buluç, J. T. Fineman, M. Frigo, J. R. Gilbert, and C. E. Leiser-
son, “Parallel sparse matrix-vector and matrix-transpose-vector mul-
tiplication using compressed sparse blocks,” in Proceedings of the
twenty-first annual symposium on Parallelism in algorithms and ar-
chitectures, Calgary AB Canada: ACM, Aug. 2009, pp. 233–244. doi:
10.1145/1583991.1584053.

[13] A. Mehrabi, D. Lee, N. Chatterjee, D. J. Sorin, B. C. Lee, and M.
O’Connor, “Learning Sparse Matrix Row Permutations for Efficient
SpMM on GPU Architectures,” in 2021 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), Mar. 2021,
pp. 48–58. doi: 10.1109/ISPASS51385.2021.00016.

[14] “Overview — Numba documentation.” Ac-
cessed: Jul. 09, 2024. [Online]. Available:
https://numba.readthedocs.io/en/stable/user/overview.html

[15] “How to Optimize Data Transfers in CUDA C/C++,” NVIDIA
Technical Blog. Accessed: Jul. 12, 2024. [Online]. Available:
https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/

[16] “Using Shared Memory in CUDA C/C++,” NVIDIA
Technical Blog. Accessed: Jul. 12, 2024. [Online]. Available:
https://developer.nvidia.com/blog/using-shared-memory-cuda-cc/

[17] “NVIDIA Profiler.” Accessed: Jul. 12, 2024. [Online]. Available:
https://docs.nvidia.com/cuda/profiler-users-guide/

[18] Y. Hu, P. Kumar, G. Swope and H. H. Huang, ”TriX: Triangle counting
at extreme scale,” 2017 IEEE High Performance Extreme Comput-
ing Conference (HPEC), Waltham, MA, USA, 2017, pp. 1-7, doi:
10.1109/HPEC.2017.8091036.

[19] Jianhua Gao, Weixing Ji, and Yizhuo Wang. 2024. Optimization of
Large-Scale Sparse Matrix-Vector Multiplication on Multi-GPU Sys-
tems. ACM Trans. Archit. Code Optim. Just Accepted (July 2024).
https://doi.org/10.1145/3676847

[20] Ruibo Fan, Wei Wang, and Xiaowen Chu. 2024. DTC-SpMM: Bridg-
ing the Gap in Accelerating General Sparse Matrix Multiplication
with Tensor Cores. In Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 3 (ASPLOS ’24), Vol. 3. Asso-
ciation for Computing Machinery, New York, NY, USA, 253–267.
https://doi.org/10.1145/3620666.3651378

[21] Pradeep Kumar and H. Howie Huang. Falcon: Scaling IO Performance
in multi-SSD Volumes. In Proceedings of the 2017 USENIX Conference
on Usenix Annual Technical Conference . USENIX Association, 41–53.

[22] D. Zheng, D. Mhembere, V. Lyzinski, J. T. Vogelstein, C. E. Priebe
and R. Burns, ”Semi-External Memory Sparse Matrix Multiplication
for Billion-Node Graphs,” in IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 28, no. 5, pp. 1470-1483, 1 May 2017, doi:
10.1109/TPDS.2016.2618791.


