A Framework to Enable Algorithmic Design Choice
Exploration in DNNs

Timothy L. Cronin IV, Sanmukh Kuppannagari
Department of Computer and Data Sciences, Case Western Reserve University
Contact: {tlc107, sxk1942} @case.edu

Abstract—Deep learning technologies, particularly deep neural
networks (DNNs), have demonstrated significant success across
many domains. This success has been accompanied by substantial
advancements and innovations in the algorithms behind the op-
erations required by DNNs. These enhanced algorithms hold the
potential to greatly increase the performance of DNNs. However,
discovering the best performing algorithm for a DNN and altering
the DNN to use such algorithm is a difficult and time consuming
task. To address this, we introduce an open source framework
which provides easy to use fine grain algorithmic control for
DNNs, enabling algorithmic exploration and selection. Along
with built-in high performance implementations of common deep
learning operations, the framework enables users to implement
and select their own algorithms to be utilized by the DNN.
The framework’s built-in accelerated implementations are shown
to yield outputs equivalent to and exhibit similar performance
as implementations in PyTorch, a popular DNN framework.
Moreover, the framework incurs no additional performance
overhead, meaning that performance depends solely on the
algorithms chosen by the user.

Index Terms—Deep Neural Network, Algorithmic Design
Choices, PyTorch

I. INTRODUCTION

Artificial Intelligence (Al) and more specifically deep learn-
ing which utilizes deep neural networks (DNNs), has had a
profound impact on society and is now a core part of modern
technology. Due to its ability to achieve significant success in
many classification, regression and generative problems, deep
learning has seen applications in many fields [1]. Fields such
as healthcare [2], computer vision [3], language [4], speech
recognition [5], cybersecurity [6], and many more.

Due to this impact, extensive research is being conducted
in hopes of improving DNNs’ performance. Efforts to achieve
these improvements span advancements in algorithms, hard-
ware, architectures and more [7]. As the number of parameters
in state-of-the-art DNN models grows to reach one billion in
the field of computer vision [8] and far surpass one billion in
the field of large language models [9], enhancing performance
becomes imperative.

Algorithmic innovations hold the potential to significantly
enhance the efficiency of DNNs. For example, from 2012 —
2019 algorithmic innovations lead to doubling the efficiency of
computer vision models every 16 months, for large language
models algorithmic innovations lead to doubling efficiency
every 6 months over a course of 3 years [10]. These im-
provements can be achieved by reducing the number of
computations, reducing memory usage and other methods.

Convolution, which is the backbone of many computer
vision models, namely convolutional neural networks (CNNs)
[11], has had several algorithms developed to perform the
operation. Similarly, attention [12] which is the operation
behind transformer models and many large language models
[13] has seen several algorithms developed for it. Selecting the
appropriate algorithm, though, is not a simple task. It depends
on the use case of the DNN and various other factors, such as
input size, operation configuration, and available hardware.

In addition, incorporating different algorithms for the op-
erations used in a DNN 1is a non-trivial task. A task which
requires expertise in both the algorithms and the format the
DNN exists in. Thus, the ability to easily explore the impact
of algorithms and select the algorithms in use by a DNN has
been lost.

To address this, in this work, we present an open source
framework! that enables a user to easily select the algorithms
used in the operations of a DNN, facilitating the exploration
of various algorithmic design choices and potentially lead-
ing to a more efficient DNN. The framework is titled ai3,
an abbreviation for “algorithmic innovations for accelerated
implementations of artificial intelligence”. ai3 provides accel-
erated C++ [14] implementations of various algorithms for
deep learning operations as well as a frontend in Python [15]
which gives users fine grain control over the algorithms used
by their PyTorch DNN. ai3 also allows users to implement their
own algorithms in C++ and easily include these algorithms
when installing the package. After installation, the user’s
implementations can be selected in the same manner the built-
in implementations are. The algorithmic selection and ability
for users to implement their own algorithms provides the
possibility of algorithmic innovations.

II. BACKGROUND

A. Deep Neural Networks

Deep neural networks are the primary method used to apply
deep learning technologies [1]. Deep neural networks chain
various layers in sequence to form a single computational
model. The different layers represent the various operations
performed on the data. Deep neural networks typically include
many hidden layers along with the input and output layers.
Input layers receive the data and output layers form the output
from the altered data they receive. The hidden layers between

Source code at github.com/KLab-Al3/ai3

the input and output layers are the networks computational
engine.

Usually, DNN development is split into two stages. The
first stage is the training stage where the parameters of the
operations performed to the data are learned. The strategy
for learning the parameters can vary greatly between DNN,
depending on the type of output the model produces, the
data available, the operations performed in the model and
more. The second stage is the inference stage in which the
capabilities developed during the training stage are used to
produce outputs. In this stage the DNN infers an output, based
on its training, from data it has not encountered before.

B. Algorithmic Design Choices

Fine grain levels of control over the algorithms used in
the DNNs operations can yield great benefits in performance.
For example, changing the algorithm which performs the
convolution in CNNs can alter the latency and memory usage
of the model greatly [16] [17]. These results are reflected
in transformer models as well [18]. Despite the existence of
numerous algorithms, there is no single best algorithm for a
given operation. Selecting the appropriate one is not a trivial
task and depends on the specific DNN use case, memory and
time constraints, available hardware, and other factors [19].

Many different algorithms to perform the convolution oper-
ation have been developed, these include IM2COL, KN2ROW
[16], scalar MM [20] and more.

(a) IM2COL: The image to column technique transforms the
convolution operation to a matrix multiplication operation
by reshaping the input and kernel to column vectors. Once
this is complete, highly optimized general matrix multiply
(GEMM) routines can be utilized.

(b) KN2ROW: The kernel to row technique is also used to
transform the convolution to matrix multiplication but
differs in that it transforms the kernel into row vectors in
order to decrease memory usage. After transforming the
problem to one of matrix multiplication the same highly
optimized routines can be utilized.

(c) SMM: Scalar Matrix Multiplication with Zero Packing
avoids matrix multiplications and replaces it with matrix
scaling operations. Each output image can be considered
as the summation of shifted versions of the input image
multiplied by the corresponding kernel weight.

(d) Direct: Direct convolution, as the name suggests, is a
straight forward approach to convolution. Kernels are
applied directly to the input without transforming the
data.

The ability to choose between these algorithms is key
to enhancing a CNNs performance as CNNs spend the vast
majority of their time inferencing on performing the convolu-
tions [21]. Determining the best algorithm for a convolution
operation is a non-trivial task depending on many features of
the operation such as input sizes, number of output channels,
kernel dimensions, stride of the kernel and more [22].

Similar to CNNs, transformer models spend the vast ma-
jority of their inferencing time in utilizing one mechanism,

attention [13]. Attention is an operation used in DNNs for
language processing, it is used as it provides the benefit of
being able to predict the target word depending on the context
associated with the source, the DNN is aware of what part
of the source should receive the most attention. In response
to this, many different algorithms have been developed in
order to complete the operation. These include flash, bigbird,
longformer, linformer attention and more.

(a) Flash: An exact attention algorithm that uses tiling to
increase the number of cache hits and decrease the
number of memory read and writes between GPU high
bandwidth memory.

(b) LongFormer: A self-attention algorithm which scales
linearly as opposed to quadradically with input sequence
length. This is achieved by combining a smaller win-
dowed attention mechanism with a larger global attention
mechanism.

(c) BigBird: A sparse attention mechanism which also re-
duces the quadratic dependency on input size to linear.
BigBird is a universal approximator of sequence to se-
quence functions which preserves the properties of the
quadratic full attention models.

(d) Linformer: An algorithm that approximates the attention
mechanism reducing the time and space complexity from
quadratic to linear. The algorithm has been found to
perform on par with standard attention implementations.

Again, the algorithm providing the best performance de-
pends on many factors such as, input sequence length, memory
limitations and required accuracy [23].

C. Relevant Related Works

One library that has many implementations of deep learn-
ing operations is the NVIDIA CUDA Deep Neural Network
library (cuDNN) [24]. cuDNN provides highly tuned, GPU
accelerated implementations of common routines utilized in
deep learning. These implementations include forward and
backward operations for convolution, matmul, attention, pool-
ing and normalization. The cuDNN library solely exposes a
C [25] API meaning that it is non-trivial to explore different
algorithms and select the algorithms in use by a DNN.

PyTorch is a leading Python package used for training and
inferencing with DNNs. It is a highly optimized framework,
especially for GPUs. When using PyTorch’s implementations,
however, there is currently no support for selecting the algo-
rithm used to complete the operation. PyTorch uses cuDNN
when possible and if forch.backends.cudnn.benchmark is set
to true will try to discover and use the fastest implementation
from cuDNN. However, support for manually setting the
algorithm from cuDNN to use is not supported, though it may
be in the future.

One package which seeks to optimize PyTorch models is
the Intel Extension for PyTorch (IPEX) [26]. IPEX provides
a very easy way to optimize PyTorch models via a Python
front end to their C++ implementations. Though this enables
users to easily optimize their models, given they have the

proper hardware, IPEX does not allow users to customize the
algorithms used in the optimized models.

III. FRAMEWORK OVERVIEW

The framework, titled ai3, enables users to seamlessly select
different algorithms to be used in each layer of a DNN.
Additionally, it provides a straightforward library which can be
used to develop custom implementations of the operations used
in the DNN. These custom implementations are then compiled
along with the built-in ones and can be selected for use in the
same manner the built-in implementations are. ai3 currently
supports the following operations, linear, convolution, flatten,
ReLU, and adaptive average, max, and average pooling.

(" import torch
L import ai3 # the framework

torch_model: torch.nn.Module = Model())

S~

ai3. swap_conv2d(torch_model, algos)

(ai3_model = ai3.swap_backend(torch_model, algos) | [

L torch.nn.conv2d *)aii.swap_torch.cunvznj

Ce+ implementation of |
the algorithm selected [&—
by user

[pred: torch.Tensor = turch_ccnv(input)]

torch.nn.Module —— ai3.Model

torch.nn.convad ——» ai3.layers.conv2p
torch.nn.Linear ——» ai3.layers.Linear
torch.nn.MaxPoo12d ——> ai3.layers.MaxPoo12D
torch.nn.X — > ai3.layers.x

[pred: torch.Tensor = aiz_modemnpuc)]

Fig. 1: Example paths of a PyTorch module through the
framework?

A. Use Cases

1) DNN Application Development: The first use case ai3
seeks to address is a user who does not wish to implement their
own algorithms but still wishes to customize the algorithms
the existing DNN uses. This user is expected to be able to
use Python and PyTorch but does not need to be familiar with
C++ or accelerated computing. For these users all that must be
done to enable algorithmic selection is importing the package
and adding a single line of Python code calling one of two
functions which perform algorithmic selection on the PyTorch
DNN.

2) DNN Algorithm Development: The second use case
ai3 seeks to address is a user developing implementations
of custom algorithms for DNNs. For these users, ai3 pro-
vides a C++ library containing a Tensor class and various
utility functions to do complete simple tasks and improve
the developer experience. ai3 also provides C++ placeholder
functions where users should implement their algorithms.
After the package is installed, users can select their custom
implementations for use by the DNN.

IV. FRAMEWORK IMPLEMENTATION

Depending on the use case, there are two paths for installing
the package. For the first use case, ai3 is available as a
Python package that can be installed via pip, the package
installer for Python, with the command, pip install aithree.
During installation, supported parallel computing platforms

2Created with draw.io [27)

and libraries will be searched for and if found, the built-
in implementations using such platforms and libraries will
be utilized. For the second use case, where a user wishes
to implement algorithms manually, users must download the
source code instead of installing with pip. After downloading,
users will find a C++ header file for each operation. The
header file contains the function signature of the operation
to be implemented, access to the framework’s C++ library,
and a boolean which controls default algorithm selection using
the custom algorithm. As the installation process is able to
compile arbitrary C++ code, any existing C++ compatible
library can be used for the users implementation. Therefore,
the ability to use existing libraries like cuDNN, oneMKL
[28], etc. is not lost. Operability between Python and C++
is provided via PyBindll [29]. The framework utilizes a
build system consisting of scikit-build-core [30] and CMAKE
[31]. After implementing their algorithms, users can install
the package using pip with the installation target pointing
to their local directory, again, parallel computing platforms
and libraries on the machine will be utilized if possible.
After installing the package, ai3 provides a comprehensive test
suite which can be used to ensure the correctness of custom
implementations.

After installing the package, two functions to perform
algorithmic selection become available for use in Python.
The first, swap_backend, replaces all operations in a DNN
with ai3’s implementation of the operation using the selected
algorithm, resulting in a DNN fully managed by ai3. The
second, swap_(module type), swaps out all operations of a
specific type with ai3’s implementation of the operation using
the chosen algorithm. Code sample 1 demonstrates use of these
functions.

import torch
from torch import nn

import ai3 # the framework

class ConvNet (nn.Module) :
def __init_ (self):

super (ConvNet, self)._ _init__ ()

self.convl = nn.Conv2d(in_channels=3,
out_channels=16,
kernel_size=3, padding=1)

self.maxpool = nn.MaxPool2d(kernel size=2,

stride=2)

self.conv2 = nn.Conv2d(in_channels=16,
out_channels=32,
kernel_size=3, padding=1)

def forward(self, x):
X torch.relu(self.convl (x))
X self.maxpool (x)
X torch.relu(self.conv2(x))
X torch.flatten(x, 1)
return x

input_data = torch.randn (10, 3, 224, 224)

orig = ConvNet ()

torch_out = orig(input_data)

model: ai3.Model = ai3.swap_backend(orig,
{"conv2d": "direct"})

sb_out = model (input_data)

ai3.swap_conv2d(orig, ["direct",

sc_out = orig(input_data)

assert torch.allclose(torch_out, sb_out, atol=le-6)

assert torch.allclose(torch_out, sc_out, atol=le-6)

"smm"])

Listing 1: Basic Use of the Framework

The first function called, swap_backend, replaces every
PyTorch module and function used with ai3’s implementation.
It returns an object completely managed by the framework.
The second function, swap_conv2d, replaces, in place, ev-
ery instance of a PyTorch torch.nn.Conv2d, with another
torch.nn.Module that uses ai3’s implementation of the selected
algorithm. Both of these functions enable fine grain customiza-
tion of the algorithms in use by the DNN. When swapping,
each module type is associated with one of three algorithmic
selectors. The simplest is a single string containing the name
of algorithm to use for all modules of that type. In code
sample 1, this strategy is used in the call to swap_backend,
meaning that all the convolution layers in the ai3.Model utilize
direct convolution as “direct” was passed. Next, a list of
algorithms to use can be passed. As modules are encountered,
they are replaced with an implementation of the algorithm
in the list with the same index as that module has relative
to the other modules of the same type. In code sample 1,
this strategy is used in the call to swap_conv2d, meaning the
first convolution module is replaced with an implementation
of direct convolution and the second convolution module is
replaced with an implementation of SMM convolution. The
third method for algorithmic selection is a function which
returns the algorithm to use and whose single parameter
is the module the framework is currently replacing. This
strategy enables powerful automated algorithmic selection.
Code sample 2 demonstrates this strategy.
import torch

brt torchvision
import ai3 # the framework

def selector (orig: torch.nn.Conv2d) -> str:
in_channels = orig.weight.shape[1l]
if in_channels > 200:
return "smm"
return "direct"
input_data = torch.randn (1, 3, 224, 224)

vgglée = torchvision.models.vgglé (
weights=torchvision.models.VGGl6_Weights.DEFAULT)

vgglé.eval ()

torch_out = vgglé6 (input_data)

model: ai3.Model = ai3.swap_backend(vgglé6,

{"conv2d": selector})

sb_out = model (input_data)
assert torch.allclose(torch_out, sb_out, atol=le-4)

ai3.swap_conv2d(vggl6, selector)
sc_out = vgglé (input_data)
assert torch.allclose(torch_out, sc_out, atol=le-4)

Listing 2: Sample Using a Function to Select the Algorithms

When using swap_backend, a mapping is passed from the
names of the modules to one of the three algorithmic selectors.
If the user defines custom algorithms to use, they could select
them explicitly by passing “custom” for the algorithm name.
If the user has not made selections on which algorithms to use
for a module, equivalent to passing “default” as the algorithm,
then one of the framework’s implementations is selected unless
there is a user defined implementation for that operation in
which case that is used. Additionally, if the user is swapping
algorithms in a PyTorch DNN in place using swap_(module

type then a “forch” can be passed to keep the current PyTorch
implementation.

As shown in samples 1 and 2, after calling the functions
the altered object can be used to make predictions the same
way a PyTorch DNN is.

In order to properly construct an equivalent DNN, a
symbolic pass through the original DNN must be per-
formed, storing all the operations encountered in a graph.
This symbolic trace is achieved using the PyTorch function,
torch.fx.symbolic_trace, this function performs the pass and
returns a graph. This graph is then searched through to either
construct a module separate from PyTorch in the case of a
swap_backend call, or alter the PyTorch DNN in the case of
a swap_(module type) call.

In order to construct a DNN completely managed by the
framework, instances of the framework’s modules are created
and stored in a list in the order they are reached in the pass.
This list is then passed to another module which constructs a
single callable, an ai3.Model, containing all of them. As the list
is formed, each module is given the algorithm the user chose
to ensure that it utilizes the proper algorithm. The module
which is returned to the user is completely managed by the
framework and is able to perform all of its operations in C++
without any Python until it has completed its operations.

On the other hand replacing only some operations of a Py-
Torch module requires that the replacements are descendants of
the torch.nn.Module class. The replacement forch.nn.Modules
act as slim wrappers around the frameworks equivalent oper-
ation whose forward function calls the implementation of the
algorithm selected by the user.

As noted earlier, the framework provides an easy to use and
robust testing suite. First, unit tests are employed to validate
each operation. By varying hyperparameters, input sizes and
more, we ensure that the operations remain equivalent to
PyTorch’s regardless of the operation’s configuration. For
example, when testing the MaxPool2D implementation against
PyTorch’s implementation, parameters such as kernel size,
padding, dilation and stride are varied. Additionally, the input
shape is adjusted by modifying the batch size, number of
channels, height, and width. In addition to the unit tests, tests
for both the swap_backend and swap_(module type) functions
are present. These functions are performed by first creating a
PyTorch DNN, then performing the swap and then performing
a forward pass on the same input data, ensuring the results
are the same. The original PyTorch modules used in these
tests include various models in the torchvision [32] package
along with some manually created PyTorch modules. For
all tests, including unit tests, if more than one algorithm is
available, all algorithms implemented will be tested to ensure
the correctness of every implementation.

V. EXPERIMENTAL EVALUATIONS
A. Setup

Experiments and evaluations are performed on the High
Performance Computing Resource in the Core Facility for
Advanced Research Computing at Case Western Reserve

University. The operations are performed on an NVIDIA
GeForce RTX 2080 Ti GPU. Benchmarks are conducted on a
single convolutional module as well as many prevalent CNNs.
The CNNs used for benchmarks are AlexNet [33], DenseNet
[34], GoogleNet [35], Inception-v3 [36], ResNet [37], Swin
Transformer [38], Vision Transformer [39], Squeezenet [40]
and VGG16 [41]. The input shapes used for the single
convolution module are (10,3,224,224), (10,64,112,112),
(10,256, 28, 28), and (10,512,14,14). The input shape used
for all the CNNs is (10,3,224,224). The dimensions of the
input correspond to (batch size, channels, height, width).

When benchmarking, we perform the operation using Py-
Torch in eager mode, along with multiple algorithms imple-
mented by the framework. The benchmarks focus on convo-
lution as it is a computationally expensive operation and acts
as the core of many prevalent DNNs.

B. Algorithm Implementation

When performing benchmarks on the GPU, PyTorch makes
use of cuDNN for implementations. Algorithms implemented
by the framework and used in the benchmarks also rely
on cuDNN to provide times comparable with PyTorch and
demonstrate the low overhead of ai3. Operations are per-
formed within a torch.inference_mode() context to avoid any
computational overhead associated with preparing for gradient
calculation. The algorithms implemented by cuDNN and used
by ai3 while performing benchmarks are, implicit precomp
GEMM, implicit GEMM, Winograd [42], GEMM and using
the algorithm selected by the cuDNN function cudnnGetCon-
volutionForwardAlgorithm_v7, which serves as a heuristic for
obtaining the best suited algorithm.

(a) Implicit precomp GEMM: Expresses the convolution as a
matrix product while not actually forming the necessary
matrix. Various indices are calculated in a precomputation
step which requires memory but assists the operation.

(b) Implicit GEMM: A zero memory overhead algorithm
which expresses the convolution as a matrix product
while not actually forming the necessary matrix.

(c) GEMM: Expresses the convolution as a matrix product
and explicitly forms the matrix necessary.

(d) Winograd: Utilizes results of minimal complexity convo-
lutions to increase performance when using smaller filters
and batch sizes.

C. Results

Figures 2 and 3 represent the latency of a single convolution
operation. The different colored bars represent the different
algorithms. All algorithms but torch are run utilizing ai3. The
guess algorithm uses the algorithm given by the cudnnGet-
ConvolutionForwardAlgorithm_v7 function described earlier.
Figure 2 shows latency where algorithmic selection was per-
formed via a call to the swap_backend function.

In contrast, in figure 3, algorithmic selection was performed
via a call to the swap_conv2d function.

Figure 4 describes the end-to-end latency of the CNNs
listed earlier processing 10 samples. The PyTorch convolution

Latency of Conv2D Operation with Swapped Backend

0.016 torch
implicit precomp GEMM
0.014 implicit GEMM
0.012 Winograd
GEMM
$0.010 guess
[
£ 0.008
£
0.006
0.004
0.002
0.000
(10, 3, 224, 224) (10, 64, 112, 112) (10, 256, 28, 28) (10, 512, 14, 14)

Input Shapes (N, C, H, W)

Fig. 2: Latency of Algorithms Using Swapped Backend

Latency of Conv2D Operation with Swapped Module

0023 torch
implicit precomp GEMM
0.020 implicit GEMM
winograd
GEMM
©0.015 guess
v
E
~ 0.010
0.005
0.000
(10, 3,224, 224) (10, 64, 112,112) (10, 256, 28,28) (10, 512, 14, 14)

Input Shapes (N, C, H, W)

Fig. 3: Latency of Algorithms Using Swapped Modules

modules are swapped out for ai3’s implementation of the given
algorithm via ai3’s swap_conv2d function. The elements are
normalized per row with respect to the latency of PyTorch.
This means that algorithms with values < 1 have lower latency
and algorithms with values > 1 have greater latency than
PyTorch.

implicit GEMM implicit precomp GEMM guess
AlexNet 0.6106 0.6477
DenseNet 1.7611 1.884 1.9769
GoogleNet 1.2329 1.2646 1.3447
Incetion V3 1.1797 1.3192 1.4631
ResNet152 1.2914 1.4376 1.4565
Squeezenet 1.1 0.8348 0.991 1.0879
Swin Transformer Base 0.6393 0.6597 0.7404
VGG16 1.2419 1.1621 1.2074
Vision Transformer Base 16 0.7235 0.7287 0.796

Fig. 4: End-to-End Latency of CNNs with Swapped Modules
Relative to PyTorch

Figures 3 and 2 which describe the latency of a single
convolution operation generally show lower latency when
utilizing ai3 instead of PyTorch. As both packages utilize
cuDNN implementations to perform the convolution, these
results suggest that the latency in starting and finalizing the
operation is lower in ai3 compared to PyTorch, demonstrating
the low overhead of ai3. The difference in latency between
ai3 and PyTorch is generally larger on bar graph 2 which
shows the latencies of an ai3.Model which is returned by

swap_backend. This again demonstrates the low overhead of
the framework as a ai3.Model is generally able to commence
the operations with lower latency than a PyTorch nn.Module.
However, these results are not reflected in table 4 which
displays the relative latencies of the CNNs listed earlier. On
average, the original PyTorch CNNs have lower latency before
swapping the convolution modules for ai3’s implementations
of the given algorithm. This is likely due to optimizations for
successive convolution calls in PyTorch that are not reflected
in ai3. For example, PyTorch may be caching data for reuse
to avoid reallocating and reconfiguring. Implementing such
optimizations for the framework is possible and will be useful
for improving performance.

VI. LIMITATIONS AND FUTURE DIRECTIONS

Currently, some popular modules in PyTorch are still not
implemented by ai3. This means that swap_backend is often
not able to replace all operations of the PyTorch DNN.
Adding support for additional modules will contribute towards
swap_backend executing successfully in the majority of cases
allowing an easy way to configure all algorithms utilized by
the DNN. Until then, repeated calls to swap_(module type)
functions can be made to enable algorithmic selection on as
many modules as possible.

Secondly, ai3 does not have built-in support for grouped
convolution. However, once implemented, grouped convolu-
tion will be trivial to integrate and users will not have to make
any change to their code. ai3 is still able to perform grouped
convolution provided the user implements a convolution al-
gorithm that has grouped support using the custom algorithm
features of the framework described earlier.

Lastly, some operations do not have accelerated implemen-
tations. Once all operations have accelerated implementations,
swap_backend should provide similar or improved perfor-
mance compared to the original PyTorch DNN. Until this is
achieved, users can swap out as many modules as desired
for ai3’s accelerated implementations using the swap_(module
type) functions.

All of these limitations are not permanent and being worked
on currently.

There are many future directions for ai3. First, support
for more operations will be implemented. With the rise of
transformer models, enabling algorithmic selection between
various attention algorithms is becoming more and more
crucial. Implementations for attention are being worked on
and once implemented can be integrated into ai3 and easily
usable.

Second, in order to improve performance and integrate bet-
ter with PyTorch, the ability to use ai3while in PyTorch graph
mode is planned. This will enable improved performance
as the operations surrounding ai3’s will be optimized. It is
also planned to provide similar optimizations as torch.compile
when using the swap_backend function.

Third, to enhance ai3’s portability, support for other DNN
representations like the ONNX [43] format and TensorFlow

[44] is planned. This will enable broader algorithmic selection
and accessibility for a wider range of DNNs and users.

Lastly, backward propagation is planned to be supported.
Integrating these computations into various DNN frameworks
may be challenging, but it will enable powerful algorithmic
selection for both the forward and backward passes of the
DNN. Meaning users will have fine grain algorithmic control
throughout the DNN’s entire lifetime.

ACKNOWLEDGEMENTS

This work was supported in part by a summer research
award provided by CWRU Undergraduate Research Office and
by the U.S. National Science Foundation Award 2411447.
Additionally, this work made use of the High Performance
Computing Resource in the Core Facility for Advanced Re-
search Computing at Case Western Reserve University.

VII. CONCLUSION

In this work we justified the existence of and demonstrated
the usefulness of a framework that enables easy to use fine
grain algorithmic selection for a DNN. The framework, ai3,
features a frontend in Python, accelerated implementations
of common deep learning operations, and a C++ library
which can be used to implement custom algorithms using any
valid C++ code. After installing the package two types of
functions become available, one that swaps the entire backend
of an existing DNN, swapping all the modules for ai3’s,
and one that swaps a specific module type for ai3’s imple-
mentation. These functions allow fine grain customization of
the algorithms used by passing the names of the algorithms
to use directly or passing a function which examines the
module and returns the algorithm to use. These algorithms
are benchmarked and ai3is shown to have low overhead. In
fact, the result of a swap_backend call is often able to begin
the computations required faster than alternatives. ai3 provides
algorithmic selection at low cost, bringing the possibility of
higher performance.

REFERENCES

[1] I H. Sarker, “Deep learning: A comprehensive overview on techniques,
taxonomy, applications and research directions,” SN Computer
Science, vol. 2, no. 6, p. 420, Aug 2021. [Online]. Available:
https://doi.org/10.1007/s42979-021-00815- 1

[2] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep
learning for healthcare: review, opportunities and challenges,” Briefings
in Bioinformatics, vol. 19, no. 6, pp. 1236-1246, 05 2017. [Online].
Available: https://doi.org/10.1093/bib/bbx044

[3]1 A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis,
and D. Andina, “Deep learning for computer vision: A brief
review,” Intell. Neuroscience, vol. 2018, jan 2018. [Online]. Available:
https://doi.org/10.1155/2018/7068349

[4] 1. Lauriola, A. Lavelli, and F. Aiolli, “An introduction to deep
learning in natural language processing: Models, techniques, and tools,”
Neurocomputing, vol. 470, pp. 443-456, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231221010997

[5] Z. Zhang, J. Geiger, J. Pohjalainen, A. E.-D. Mousa, W. lJin,
and B. Schuller, “Deep learning for environmentally robust speech
recognition: An overview of recent developments,” ACM Trans.
Intell. Syst. Technol., vol. 9, no. 5, apr 2018. [Online]. Available:
https://doi.org/10.1145/3178115

[6]

[7]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

S. Mahdavifar and A. A. Ghorbani, “Application of deep learning
to cybersecurity: A survey,” Neurocomputing, vol. 347, pp. 149-
176, 2019. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0925231219302954

G. Menghani, “Efficient deep learning: A survey on making deep
learning models smaller, faster, and better,” CoRR, vol. abs/2106.08962,
2021. [Online]. Available: https://arxiv.org/abs/2106.08962

M. Oquab, T. Darcet, T. Moutakanni, H. Vo, M. Szafraniec,
V. Khalidov, P. Fernandez, D. Haziza, F. Massa, A. El-Nouby,
M. Assran, N. Ballas, W. Galuba, R. Howes, P.-Y. Huang, S.-W. Li,
I. Misra, M. Rabbat, V. Sharma, G. Synnaeve, H. Xu, H. Jegou,
J. Mairal, P. Labatut, A. Joulin, and P. Bojanowski, “Dinov2: Learning
robust visual features without supervision,” 2024. [Online]. Available:
https://arxiv.org/abs/2304.07193

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal,
A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M.
Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei, “Language models are few-shot learners,”
2020. [Online]. Available: https://arxiv.org/abs/2005.14165

D. Hernandez and T. B. Brown, “Measuring the algorithmic
efficiency of neural networks,” 2020. [Online]. Available: https:
/farxiv.org/abs/2005.04305

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278-2324, 1998.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” 2016. [Online]. Available:
https://arxiv.org/abs/1409.0473

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and 1. Polosukhin, “Attention is all you need,” 2023.
[Online]. Available: https://arxiv.org/abs/1706.03762

B. Stroustrup, The C++ Programming Language, 2nd ed. Reading,
Massachusetts: Addison-Wesley, 1991. [Online]. Available: http:
/Iwww.worldcat.org/isbn/9780201539929

Python Software Foundation, Python Language Reference, n.d. [Online].
Available: https://docs.python.org/reference/

A. Vasudevan, A. Anderson, and D. Gregg, “Parallel multi channel
convolution using general matrix multiplication,” 2017. [Online].
Available: https://arxiv.org/abs/1704.04428

J. Zhang, F. Franchetti, and T. M. Low, “High performance zero-
memory overhead direct convolutions,” in Proceedings of the 35th
International Conference on Machine Learning, ser. Proceedings
of Machine Learning Research, J. Dy and A. Krause, Eds.,
vol. 80. PMLR, 10-15 Jul 2018, pp. 5776-5785. [Online]. Available:
https://proceedings.mlr.press/v80/zhang 18d.html

S. Wang, B. Z. Li, M. Khabsa, H. Fang, and H. Ma, “Linformer:
Self-attention with linear complexity,” 2020. [Online]. Available:
https://arxiv.org/abs/2006.04768

A. V. Trusov, E. E. Limonova, D. P. Nikolaev, and V. V. Arlazarov,
“On fast computing of neural networks using central processing
units,” Pattern Recognition and Image Analysis, vol. 33, no. 4,
pp. 756-768, Dec 2023. [Online]. Available: https://doi.org/10.1134/
S105466182304048X

A. Ofir and G. Ben-Artzi, “Smm-conv: Scalar matrix multiplication
with zero packing for accelerated convolution,” in 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), 2022, pp. 3066-3074.

S. Wang, G. Ananthanarayanan, Y. Zeng, N. Goel, A. Pathania, and
T. Mitra, “High-throughput cnn inference on embedded arm big little
multicore processors,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 10, pp. 2254-2267, 2020.
Y. Meng, S. Kuppannagari, R. Kannan, and V. Prasanna, “Dynamap:
Dynamic algorithm mapping framework for low latency cnn inference,”
in The 2021 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, ser. FPGA ’21. ACM, Feb. 2021.
[Online]. Available: http://dx.doi.org/10.1145/3431920.3439286

J. Zhang, S. Jiang, J. Feng, L. Zheng, and L. Kong, “Cab:
Comprehensive attention benchmarking on long sequence modeling,”
2023. [Online]. Available: https://arxiv.org/abs/2210.07661

S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,
B. Catanzaro, and E. Shelhamer, “cudnn: Efficient primitives for deep
learning,” 2014. [Online]. Available: https://arxiv.org/abs/1410.0759

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

B. W. Kernighan and D. M. Ritchie, The C Programming Language.
Englewood Cliffs, N.J.: Prentice Hall, 1988. [Online]. Available:
http://www.worldcat.org/search?qt=worldcat_org_all&q=0131103628
“Intel extension for PyTorch: A Python package for extending the official
PyTorch that can easily obtain performance on Intel platform,” 2024.
[Online]. Available: https://github.com/intel/intel-extension-for-pytorch
JGraph Ltd and draw.io AG, “draw.io,” 2024,
https://github.com/jgraph/drawio.

M. Krainiuk, M. Goli, and V. R. Pascuzzi, “oneapi open-source math
library interface,” in 2021 International Workshop on Performance,
Portability and Productivity in HPC (P3HPC), 2021, pp. 22-32.

W. Jakob, J. Rhinelander, and D. Moldovan, “pybindll
— seamless operability between c++11 and python,” 2017,
https://github.com/pybind/pybind11.

H. Schreiner, J. Rickerby, R. Grosse-Kunstleve, W. Jakob, M. Darbois,
A. Gokaslan, J.-C. Fillion-Robin, and M. McCormick, “Building Binary
Extensions with pybind11, scikit- build, and cibuildwheel,” Aug. 2022.
[Online]. Available: https://doi.org/10.25080/majora-212e¢5952-033
kitware, “Cmake: A powerful software build system.” [Online].
Available: https://cmake.org/

T. maintainers and contributors, “Torchvision: Pytorch’s computer vision
library,” https://github.com/pytorch/vision, 2016.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60,
no. 6, p. 84-90, may 2017. [Online]. Available: https://doi.org/10.1145/
3065386

G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” 2018. [Online]. Available:
https://arxiv.org/abs/1608.06993

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with
convolutions,” 2014. [Online]. Available: https://arxiv.org/abs/1409.4842
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” 2015.
[Online]. Available: https://arxiv.org/abs/1512.00567

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1512.03385
Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo,
“Swin transformer: Hierarchical vision transformer using shifted
windows,” 2021. [Online]. Available: https://arxiv.org/abs/2103.14030
A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” 2021. [Online]. Available:
https://arxiv.org/abs/2010.11929

F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x
fewer parameters and ;0.5mb model size,” 2016. [Online]. Available:
https://arxiv.org/abs/1602.07360

K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” 2015. [Online]. Available: https:
/larxiv.org/abs/1409.1556

A. Lavin and S. Gray, “Fast algorithms for convolutional neural
networks,” 2015. [Online]. Available: https://arxiv.org/abs/1509.09308
0. Developers, “Onnx: Open standard for machine learning interoper-
ability,” https://github.com/onnx/onnx, 2024.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

