
Towards a RISC-V Instruction Set Extension for
Multi-word Arithmetic

Youngjin Eum, Naifeng Zhang, Larry Tang, Franz Franchetti
Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA

{yeum, naifengz, lawrenct, franzf}@andrew.cmu.edu

I. INTRODUCTION

Multi-word arithmetic is a method of doing calculations
with data which are bigger than what the machine registers
can hold. For example, we could do 128-bit arithmetic with
a 64-bit machine by using this technique. One application of
multi-word arithmetic is in cryptography, since working with
large numbers is a critical security feature [1]. Currently, many
CPUs and GPUs support multi-word arithmetic by providing a
single carry flag. This is useful for implementing simple 128-
bit operations such as addition and subtraction, but is limited
with more complicated operations such as multiplication or
modulo.

Contributions. Our key contributions are:
• An extension to the RISC-V ISA to accelerate multi-word

arithmetic incorporating multiple carry bits to enable
modulo and multiplication.

• An implementation of the ISA using the Chipyard frame-
work [2] and the RoCC interface, seeing 1.5× speedup
in clock cycles.

II. BACKGROUND

Since multi-word operations will use multiple instructions
to compute a single result because the source and destination
operands do not fit in a single register, we need to keep track
of state, usually a carry flag, through multiple instructions.

An instruction can have a carry in, a carry out, or both.
Since an addition of two N -bit numbers will produce a result
which is N + 1 bits wide, an instruction with a carry out
can set a carry bit based on if the (N + 1)-th bit was set. A
subsequent instruction can use the carry bit as a carry-in to
the addition, in effect computing a 2N -bit addition.

Many ISAs such as x86 or ARM have a carry flag which
gets set every time an operation produces one. RISC-V does
not support an explicit carry flag, so programmers must
add another instruction detecting if the result overflowed to
implement multi-word arithmetic.

Fan et al. [3] uses multi-word arithmetic in GPUs in a
cryptographic context, opting to use NVIDIA GPUs. The
GPUs support only 32-bit integer operations, so they needed
to use carries to implement 64-bit integer operations. Similar
to other ISAs, the CUDA architecture uses a carry flag to
implement multi-word arithmetic. Another approach to multi-
word arithmetic is to have a coprocessor take the input over
multiple cycles. Since every clock cycle we can read from two
source registers and write to one, by having a coprocessor with
an input mode, compute mode, and output mode, we can work
with batches of data wider than machine registers [4].

III. APPROACH

We implemented the custom ISA using Chipyard v1.12, an
open-source SoC platform. Specifically, we have used RoCC
(Rocket Chip Coprocessor) interface with the Rocket core to
quickly prototype the accelerator.

As opposed to the carry flag in commonly used ISAs,
there are four distinct carry flags in our extension. This
allows not only for strings of additions and subtractions,
but more complex operations which need to keep track of
multiple carry bits. For example, we can multiply two 128-bit
numbers with carry-in and carry-out using multiple distinct
carry bits. We could also use Barrett reduction [5] to compute
the modulo of two 128-bit numbers using only addition and
multiplication operations, keeping track of carry bits in the
operations separately.

Figure 1 illustrates the encoding of an add with carry
instruction, and an example implementation in Chisel HDL
is shown in Listing 1.

The encoding is identical to the standard R-type instruction
in RISC-V. The A, CI, CO bits within the funct7 field en-
code whether the instruction is an addition or a subtraction,
consumes a carry in, and produces a carry out respectively.
The cout_idx and cin_idx fields address into the four
carry bits to specify which bit is used in the instruction. We

Fig. 1: Encoding of addition/subtraction with carry instruction.



1 class RoCCCarryModule(outer: RoCCCarry) extends
LazyRoCCModuleImp(outer) {

2 val opcode = io.cmd.bits.inst.opcode
3 val funct7 = io.cmd.bits.inst.funct
4 val cout_index = funct7(3, 2)
5 val cin_index = funct7(1, 0)
6 val sum = Wire(UInt(65.W))
7

8 when (funct7(6) === 0.U) {
9 when (funct7(5) === 1.U) {

10 // carry in
11 sum := io.cmd.bits.rs1 +& io.cmd.bits.rs2 +&

regs(cin_index)
12 } .otherwise {
13 // no carry in
14 sum := io.cmd.bits.rs1 +& io.cmd.bits.rs2
15 }
16

17 when (funct7(4) === 1.U && io.cmd.fire) {
18 // carry out
19 regs(cout_index) := sum(64)
20 }
21 }
22 // ... omitted
23 io.resp.bits.data := sum(63, 0)

Listing 1: Implementation of addition with carry instruction.

instantiate a small register file in order to implement the four
carry flags. We index into it to access the carry in bits as in
line 11, and write to it if we see a carry out as in line 19. Note
the use of the +& operator in Chisel to preserve the carry.

To allow for even more flexibility in the software, there are
also instructions to load and store from the carry bit registers to
the regular integer registers. This enables computation directly
with the carry bits if the software deems it necessary.

IV. RESULTS

The number theoretic transform (NTT) is a generalization
of the discrete Fourier transform on finite fields and serves as a
core kernel in many encryption schemes such as homomorphic
encryption. We benchmarked the RoCC accelerator on NTT
code generated by the SPIRAL NTTX package [6], [7] which
uses 128-bit arithmetic. We chose the NTT as a benchmark
since it is one of the driving applications of multi-word
arithmetic. We implemented the core operations in the NTT
such as modular addition/subtraction and multiply using the
new instructions for preliminary results and used 8-point
and 1024-point NTT to study performance across input size.
This includes code which only uses the uint64_t type
and computes the carries manually, and code which uses the
__int128 type, which uses compiler-optimized arithmetic.
We measure clock cycle counts by reading the cycle CSR
immediately before and after the NTT function call. We also
ran the NTT kernel 20 times, discarded the first 10 to mitigate
the effect of cold caches and averaged the rest of the trials to
obtain results.

As illustrated in Figure 2, we see about a 1.5× speedup
in comparison to the __int128 implementation, and a 3×
speedup in comparison to the uint64_t implementation in
the 8-point NTT case. The results are similar in the 1,024-point
NTT case as well, with the RoCC code having approximately

Fig. 2: Clock cycle counts for 8-point and 1024-point NTT.

1.3× speedup over the best baseline. One reason for the
speedup is that the processor executes fewer instructions with
the ISA extension, which reduces fetch-decode overhead.

V. CONCLUSION AND FUTURE WORK

In this work, we present an ISA extension which makes
use of multiple carry registers to enable efficient multi-word
arithmetic. We present an implementation of the ISA extension
and benchmarked it against the conventional implementations
of multi-word arithmetic, showing performance improvements.

We look to implement a standalone functional unit which
can interface with an out-of-order BOOM core in the future.
This will allow for us to take advantage of out-of-order issue
which will lead to additional performance.

REFERENCES

[1] N. Zhang and F. Franchetti, “Generating number theoretic transforms for
multi-word integer data types,” in IEEE/ACM International Symposium
on Code Generation and Optimization (CGO), 2023.

[2] K. Asanovic, R. Avizienis, J. Bachrach, S. Beamer, D. Biancolin, C. Celio,
H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz et al., “The rocket chip
generator,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2016-17, vol. 4, pp. 2–6, 2016.

[3] G. Fan, F. Zheng, L. Wan, L. Gao, Y. Zhao, J. Dong, Y. Song, Y. Wang,
and J. Lin, “Towards faster fully homomorphic encryption implementation
with integer and floating-point computing power of gpus,” in 2023 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
2023, pp. 798–808.

[4] T. Fritzmann, G. Sigl, and J. Sepúlveda, “Extending the risc-v instruction
set for hardware acceleration of the post-quantum scheme lac,” in 2020
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2020, pp. 1420–1425.

[5] P. Barrett, “Implementing the rivest shamir and adleman public key en-
cryption algorithm on a standard digital signal processor,” in Proceedings
on Advances in Cryptology—CRYPTO ’86. Berlin, Heidelberg: Springer-
Verlag, 1987, p. 311–323.

[6] F. Franchetti, T. M. Low, D. T. Popovici, R. M. Veras, D. G. Spampinato,
J. R. Johnson, M. Püschel, J. C. Hoe, and J. M. F. Moura, “Spiral: Extreme
performance portability,” Proceedings of the IEEE, vol. 106, no. 11, pp.
1935–1968, 2018.

[7] N. Zhang, A. Ebel, N. Neda, P. Brinich, B. Reynwar, A. G. Schmidt,
M. Franusich, J. Johnson, B. Reagen, and F. Franchetti, “Generating
high-performance number theoretic transform implementations for vector
architectures,” in 2023 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, 2023, pp. 1–7.


