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Abstract—This paper employs Geometric Multi-Resolution
Analysis (GMRA) as a technique for dimensionality reduction
and explores its impact on high-dimensional graphical learning
tasks. The burgeoning surge in data collection practices, driven
by technological advancements across diverse domains, has re-
sulted in an influx of datasets wherein the number of features
significantly exceeds the number of observations—a paradigm
characteristic of high-dimensional datasets. Analyzing such high-
dimensional datasets presents immediate challenges owing to
the intricacies of dataset complexity as well as the wealth of
information encapsulated within each data point. GMRA exploits
redundant representations in such high-dimensional datasets,
embedding the high-dimensional data into an intrinsic, under-
lying lower-dimensional structure. This process aims to preserve
essential features while reducing dimensionality and facilitate
analysis by mitigating the computational complexities associated
with analyzing high-dimensional datasets. This paper proposes
a novel application of Geometric Multi-Resolution Analysis to
dimensionality reduction in graph embeddings. Empirically, its
efficacy is validated by its performance in computing the intrinsic,
underlying lower-dimensional structure for a comprehensive set
of graph learning tasks, including node classification, edge classi-
fication, link prediction, anomaly detection, and graph clustering.

Index Terms—graph embedding, dimensionality reduction,
machine learning

I. INTRODUCTION

In the rapidly evolving fields of finance, marketing,
medicine, and more, technological advancements have sig-
nificantly altered the landscape of data collection, leading
to the emergence of high-dimensional datasets where the
number of features often surpasses the number of observations.
This shift challenges traditional statistical methods designed
predominantly for low-dimensional spaces, where the number
of observations exceeds the number of features. In high-
dimensional settings, classical techniques such as least squares
regression struggle with issues including the bias-variance
trade-off and the risk of over-fitting, as they cannot efficiently
manage the complexity introduced by the vast number of
features.

Further complicating the analysis of high-dimensional data
is the issue of multicollinearity, where variables can often
be expressed as linear combinations of others, leading to
uncertainty in determining which features genuinely impact
the outcome. This uncertainty makes it difficult to ascertain
optimal regression coefficients and necessitates a cautious
approach in model evaluation, emphasizing the importance of
using independent test sets or cross-validation over traditional
metrics like p-values or R statistics, which can be misleading
in such contexts.

Addressing these challenges, dimensionality reduction
emerges as a crucial technique. It simplifies high-dimensional
data into a more manageable, lower-dimensional represen-
tation, allowing for easier analysis without the direct con-
sideration of associated labels. This paper focuses on the
application of Geometric Multi-Resolution Analysis (GMRA),
a sophisticated tool for dimensionality reduction that ex-
ploits redundant representations in data. By embedding high-
dimensional datasets into their intrinsic lower-dimensional
structures, this technique not only preserves essential features
but also reduces computational complexities, facilitating a
more efficient analysis of complex datasets. Empirically, we
employ GMRA and effectively compute the intrinsic, underly-
ing lower-dimensional structure of a selection of datasets and
evaluate its consequential impact on a comprehensive gamut
of graph learning tasks, including but not limited to node
classification, edge classification, link prediction, anomaly
detection, and graph clustering.

II. BACKGROUND

A. Intrinsic Dimensions and Manifold Projection

The development of computational methods that capture
data’s intrinsic geometry has revolutionized the analysis of
high-dimensional data. Manifold-learning algorithms typically
assume a finite set of data points drawn randomly from
a smooth t-dimensional manifold with a metric defined by



geodesic distance. These points are then embedded into a high-
dimensional input space with Euclidean metric, resulting in the
input data points. Linear manifold learning, a subset of man-
ifold learning, focuses on linear dimensionality reduction. It
views data observed in a high-dimensional space as potentially
close to a lower-dimensional linear manifold, with the intrinsic
dimensionality of the manifold assumed to be much smaller
than the data dimensionality. Identifying such linear manifolds
is akin to the classical statistics problem of linear dimen-
sionality reduction, often achieved through projection methods
like principal component analysis (PCA) [1], a widely used
technique in this domain. When the manifold is linear, data can
be projected onto a linear combination of dictionary columns
in low-dimensional space using techniques like singular value
decomposition (SVD) [2]. However, many datasets exist on
nonlinear manifolds, requiring more sophisticated techniques
for dimensionality reduction and feature extraction.

B. Geometric Multi-Resolution Analysis

Geometric Multi-Resolution Analysis (GMRA) provides a
powerful framework for estimating and representing these
nonlinear manifolds within high-dimensional spaces. This an-
alytical method excels with complex datasets, such as point
clouds or graph-structured data, which are not adequately
addressed by linear methods. The hierarchical dissection pro-
duced by GMRA’s tree decomposition results in finer groups
of points with shared local topology at deeper layers of the
tree. Affine approximations are formed for each subset, with
basis functions computed via singular value decomposition
(SVD) of subset covariance, capturing the local area’s tangent
planes. Difference operators, representing changing scales, are
expressed as wavelet bases orthogonal to the current scale’s
basis function. This method effectively maps points to their ap-
proximate locations while managing error specific to scaling.
This study aims to apply GMRA in the analysis of graphs
and networks, leveraging its ability to uncover hierarchical
structures within the data, as seen advantageous in previous
work [3] [4] [5].

Neural Networks are known for their ability to identify
patterns in data that adhere to low-dimensional manifolds,
a feature prominently displayed in digital image processing
tasks like the MNIST dataset. Expanding upon these insights,
we apply GMRA to graph and network data to explore both
supervised and unsupervised learning paradigms.

The GMRA construction involves a multi-scale nested de-
composition of the dataset into partitions arranged in a dyadic
tree structure, as detailed in 2012 by Allard et al. [3]. Each
node of the tree represents a subset of the data at a certain
scale, and the subsets at each scale collectively partition the
dataset. The GMRA algorithm can be summarized as follows:

1. Insert data points into a cover tree where each node is
a point and an edge is drawn if they are within euclidean
distance of 2s of each other, where s is the scale at each
level.

2. Create a dyadic tree structure using the cover tree as input
by greedily clustering points within a radius, with the radius

shrinking at lower levels of the tree to generate levels of local
geometry.

3. For each cluster in the tree, compute a d-dimensional
affine approximation of the data points, creating a wavelet
tree with local linear approximations to the manifold.

4. Construct low-dimensional affine difference operators
that encode the differences between approximations at con-
secutive scales [3].

Fig. 1. An illustration of the geometric wavelet decomposition, step 3 in
the GMRA algorithmic process. The d-dimensional linear approximations are
given by the red tangent planes to the manifold (M). [3]

The basis functions for these approximations, known as
geometric scaling functions and wavelets, are determined by
SVD on the covariance of the data points within each subset,
capturing local tangent spaces [6]. These functions allow
for the hierarchical representation of data, with successive
refinements at each scale that provide a more accurate ap-
proximation of the underlying manifold.

III. APPLICATIONS OF GMRA

A. Signal Processing

The application of GMRA in signal processing, particu-
larly with the MusicNet dataset, presents a novel approach
to representing and analyzing complex musical recordings.
Since MusicNet consists of classical music recordings with
over one million note-tracking labels, the dataset poses a
significant challenge due to its high dimensionality. However,
by leveraging GMRA, it becomes possible to compute low-
dimensional representations of these recordings, facilitating
more efficient processing and analysis.

In the MusicNet experiments, GMRA was applied to six
recordings, each sampled at 11 kHz, reducing data from
1-10 million dimensions to a 50-dimensional space. This
reduction enabled the efficient representation of the recordings
while preserving essential musical features. The compressed
data was then trained on a shallow, two-hidden-layer neural
network. As a result, GMRA shows competitive performance
with significantly fewer learnable parameters in comparison to
state-of-the-art models [3].

The application of GMRA in signal processing aligns with
the broader context of harmonic analysis and efficient signal
representations. Traditionally, linear representations in terms



of dictionaries of atoms have been studied extensively in har-
monic analysis, with a focus on achieving sparsity or concen-
tration of coefficients. Various dictionaries, including Fourier-
like bases, wavelets, ridgelets, and curvelets, have been devel-
oped to provide optimal representations for different classes
of signals or operators. The trend towards over-complete
dictionaries, such as frames and libraries of dictionaries, allows
for non-unique representations and enables fast transforms
through multi-scale organization. GMRA contributes to this
landscape by offering a geometrically motivated approach to
signal representation, complementing existing techniques and
advancing the field of signal processing.

B. Digital Image Processing

The application of GMRA in the context of the MNIST
dataset showcased its potential in image processing and pat-
tern recognition tasks. By generating low-dimensional rep-
resentations for MNIST images, GMRA effectively reduced
the dimensionality of the dataset while preserving essential
geometric structures. In particular, the use of GMRA produces
embeddings as compact as 11 dimensions, allowing for a more
efficient representation of the handwritten digits as opposed to
the original 784 dimensions.

Through experiments conducted with GMRA embeddings
on the MNIST dataset, notable insights have been uncovered
[7]. One significant finding is the ability to train neural
networks with significantly fewer parameters while maintain-
ing competitive performance. By embedding MNIST images
into an 11-dimensional space and utilizing shallow neural
network architectures, the study achieved impressive results,
demonstrating the effectiveness of GMRA in reducing model
complexity without sacrificing accuracy.

Furthermore, the exploration of GMRA’s application in
image reconstruction provides valuable insights into its ca-
pabilities. By reconstructing MNIST images from their low-
dimensional embeddings, GMRA showcases its ability to
capture essential features of the handwritten digits while
achieving efficient representations. This opens up avenues for
further research in refining GMRA-based methods for image
reconstruction and representation learning, with potential ap-
plications across various domains beyond MNIST. The ability
to capture essential features of handwritten digits through low-
dimensional embeddings showcases the potential of GMRA in
broader applications in pattern recognition and data analysis
within the field of machine learning [3] [4] [8].

C. Remote Sensing Image Fusion

Beyond these examples, GMRA is integral to the fusion
of remote sensing images. It is a key component among the
multi-resolution analysis (MRA) and multi-geometric analysis
(MGA) tools used to combine information from different
sources into a coherent image [9]. GMRA’s effectiveness in
this domain is crucial for enhancing the detail and quality
of information obtained from earth observation technologies,
reflecting its significant impact on the field of remote sensing.

The versatility of GMRA across these applications
demonstrates its robustness in extracting and preserving
valuable data characteristics. Whether applied to music,
images, graphs, or satellite imagery, GMRA enhances our
ability to analyze complex datasets, offering a pathway to
more insightful and efficient data processing.

IV. METHOD

In this section we describe our experimental method to
demonstrate the impact of GMRA embeddings on the per-
formance of various graph tasks compared to the original,
unreduced embeddings.

The experimental procedure involved several key steps.
First, to make the problem compatible with GMRA, we com-
puted embeddings from the induced graphs of datasets. Then
we conducted baseline experiments on these embeddings using
off-the-shelf models without employing any dimensionality
reduction techniques, allowing us to establish a control for
comparison. Subsequently, we applied the GMRA algorithm
to the embeddings and extracted the reduced embeddings from
the wavelet tree. Finally, we ran the same baseline experiments
on these dimensionally reduced embeddings.

Our evaluation extended beyond traditional classification
tasks to encompass a broader spectrum of graph-based anal-
yses. We delved into tasks such as link prediction, anomaly
detection, graph clustering, and visualization, seeking a com-
prehensive understanding of the efficacy of GMRA in enhanc-
ing graph learning across different domains and tasks. We aim
to gain insights into the strengths and limitations of GMRA as
a dimensionality reduction technique for graph-based machine
learning.

A. Initial Graph Embedding

For the initial graph embedding step, we experimented with
GraphSage [10] and node2vec [11] embeddings to generate
the point clouds representing our input graphs. Node2vec is
an embedding technique based on random walks. GraphSage
is a more modern embedding technique based on a graph
neural network (GNN); it aggregates neighbor features into an
embedding. We used event counts as the node feature vectors
for preliminary experiments. Under the application of GMRA,
the GraphSage embeddings displayed a significant dimension
reduction compared to node2vec due to the large amount
of redundancy in the embeddings. There were also many
duplicate embeddings, which indicates that some network
structure was lost during dimensionality reduction. For that
reason, the majority of the experimental results are done with
the node2vec embeddings as seeds.

B. Iterative Batch Processing

In order to mitigate the expense of inserting many nodes into
a cover tree at once, we implemented an option for batch pro-
cessing, which was not in the original GMRA workflow. Each
point in the dataset is processed and inserted into the cover
tree data structure sequentially, maintaining the tree’s integrity
throughout the insertion process. We begin by initializing the



cover tree with parameters such as maximum scale and base
value. The insert method handles point insertion by iterating
through each point in the dataset, either initializing the tree
with the first dataset or appending subsequent dataset to the
existing structure. When inserting a point, we first determine
whether the new point becomes the root node or is inserted as a
child of an existing node. It is important to note that the point’s
position in the tree is determined by calculating its distance
from nodes at different scales and selecting an appropriate
parent based on distance criteria. After each insertion, the
tree’s structure is updated to maintain correctness. The results
we experimentally found showed exact replication between
points inserted in batches and points inserted all at once,
but the batch processing allows for generating results at
intermediate steps or adding in new points later in an online
process without having to recompute the entire cover tree.

C. Embedding Extraction

The process of extracting embeddings from a wavelet tree-
based data structure is systematic. Initially, GMRA calculates
difference operators across tree levels to enable query ini-
tiation from the root, embedding retrieval, and subsequent
traversal with updates using linear difference operators. We
then navigate the tree to pinpoint nodes at a consistent
depth where all nodes share the same dimensionality. This
step ensures coherence in the extracted embeddings. Finally,
the information from these identified nodes, encompassing
basis vectors, indices, and scaling factors is aggregated to
construct the embeddings matrix representing the intrinsic,
lower-dimensional features associated with each dataset point
at the chosen scale.

D. Inverse Wavelet Reconstruction

We implemented the reconstruction of lower-dimensional
vector embeddings to higher-dimensional vector embeddings
using first generation wavelet transforms (FGWT) focusing
specifically on images from the MNIST dataset for visual-
ization and verification purposes (see Fig. 2). The algorithm
computes wavelet coefficients for each data point in the lower-
dimensional input, which involves traversing the wavelet tree
structure and determining the coefficients at different scales.
Before applying the FGWT, the wavelet tree structure must be
constructed, defining the hierarchical arrangement of wavelet
coefficients and bases. This step is essential as it facilitates
the efficient calculation of wavelet coefficients based on input
data coefficients, scaling bases, and wavelet bases. The core
of the reconstruction process involves inversely traversing the
wavelet tree from leaf nodes to the root. At each scale, pro-
jections are accumulated to reconstruct the original data. This
process ensures that the lower-dimensional vector embeddings
are accurately reconstructed.

V. DATASETS

The LANL 2015 Comprehensive Multi-Source Cyber Secu-
rity Events dataset spans 57 days of log files from five different
sources within the Los Alamos National Laboratory’s internal

Fig. 2. This figure demonstrates the bidirectional verification method applied
to MNIST digits [0-9]. By computing the inverse of the GMRA reduced
embeddings in higher-dimensional spaces, we ensure precise representations
of data in both datasets, affirming the accuracy of calculations.

corporate network [12]. It encompasses both normal activity
and a redteam malicious campaign.

Two datasets from StellarGraph were employed. The Cora
dataset consists of 2708 scientific publications categorized into
seven distinct classes. Its citation network is comprised of
5429 links, and each publication is represented by a binary
word vector indicating the presence or absence of words from
a 1433-word dictionary.

The CiteSeer dataset consists of 3312 scientific publications
across six classes. Its citation network has 4732 links, though
only 4715 are used as 17 of them involve publications absent
from the dataset. Similar to Cora, each publication in CiteSeer
is described by a binary word vector reflecting word presence
or absence from a dictionary comprising 3703 unique words.



VI. EXPERIMENTS

This research investigates the application of GMRA in graph
and network processing, particularly with the StellarGraph and
LANL datasets, presenting a novel approach to representing
and analyzing complex graphs and networks. These datasets
pose a significant challenge due to their high dimensional-
ity. However, by leveraging GMRA, it becomes possible to
compute low-dimensional representations of these graphs and
networks, facilitating more efficient processing and analysis.

We undertook an exploration into the utilization of GMRA
within graph and network processing, encompassing both
supervised and unsupervised learning tasks.

A. Classification

1) Node Classification: Node classification is a prevalent
machine learning task in graph data analysis. While node clas-
sification may seem akin to standard supervised classification,
it differs significantly due to the interdependent nature of graph
nodes. Unlike independent and identically distributed (i.i.d.)
data points assumed in standard supervised learning, nodes in
a graph are interconnected, necessitating modeling of these
interdependencies. Successful node classification approaches
capitalize on these connections, leveraging concepts like ho-
mophily (nodes sharing attributes with neighbors) and struc-
tural equivalence (nodes with similar local structures having
similar labels). These concepts, along with heterophily (nodes
connecting preferentially to those with different labels), guide
the construction of node classification models that capture
node relationships rather than treating them as independent
data points.

Fig. 3. Comparative Iterative Analysis of Classification Methods on the LANL
Dataset Using Original and GMRA-Reduced Embedding Vectors. The graph
depicts a comparative study of classification methods applied iteratively to
the LANL dataset, utilizing both the original feature vectors and the reduced
embedding vectors obtained through GMRA. The nodes range from 64 in
the initial graph to 8908 in the final graph, showcasing the scalability and
performance impact of dimensionality reduction techniques.

TABLE I
NODE CLASSIFICATION ON STELLARGRAPH DATASETS

Dataset Original
Dimension

Original
Accuracy

Reduced
Dimension

Reduced
Accuracy

Cora 128 0.7045 16 0.7068
CiteSeer 128 0.7553 13 0.7547

Interpretation of Results: Results for LANL are shown
in Fig. 3 and results for Stellargraph are in Table I. The
accuracy score was computed using scikit-learn metrics ac-
curacy score. The comparable accuracy scores between the
original and GMRA reduced datasets indicate consistent model
performance across both sets of datasets. We reduced the
LANL dataset embedding vectors from 256 dimensions to
their intrinsic 31 dimensions. A similar reduction was applied
to the stellargraph learned vector embeddings from the Cora
and CiteSeer datasets, both initially having 128 dimensions.
However, our analysis indicates that Cora’s intrinsic dimen-
sions are 16, while CiteSeer’s are 13. The high accuracy scores
indicate accurate predictions for the majority of samples in
both datasets, signifying a strong generalization of the model
to both the original and GMRA reduced datasets. See Fig. 4
for a visual comparison of node embeddings with and without
GMRA.

2) Edge Classification: Edge classification involves pre-
dicting attributes or labels associated with the edges of a
graph. Unlike node classification, which focuses on predict-
ing attributes of individual nodes, edge classification aims
to understand the relationships between nodes by predicting
properties specific to the connections between them. This task
is essential in various domains such as social network analy-
sis, where edges represent relationships between individuals,
and predicting attributes on these edges can provide insights
into the nature of connections, such as friendship strength
or interaction frequency. Edge classification models can be
utilized for tasks like link prediction, where the goal is to
predict whether a connection will form between two nodes in
the future based on existing graph topology and attributes.
Additionally, edge regression models can be employed to
predict continuous attributes on edges, enabling applications
like predicting the strength of interactions or the likelihood of
transactions between entities in a network.

TABLE II
EDGE CLASSIFICATION ON STELLARGRAPH DATASETS

Dataset Original
Dimension

Original
Accuracy

Reduced
Dimension

Reduced
Accuracy

Cora 128 0.93 13 0.90

Interpretation of Results: Results are shown in Table II.
The accuracy score was computed using scikit-learn metrics
accuracy score. The comparable accuracy scores between the
original and GMRA reduced datasets indicate consistent model
performance across both datasets. For this experiment, we



Fig. 4. Comparison of GraphSAGE Classification Results on the PubMedDi-
abetes Dataset Using Original and GMRA-Reduced Embedding Vectors. This
figure presents a comparative analysis of the PubMedDiabetes dataset before
and after GMRA dimensionality reduction. Node embeddings were learned
and classified using the GraphSAGE algorithm. The visual representation
utilizes t-SNE [13] from the scikit-learn manifold library, further reducing
both sets of embeddings for effective plotting.

reduced embedding vectors from 128 dimensions to its lower
intrinsic dimensions. The high accuracy scores reflect accurate
predictions for the majority of samples in both datasets,
indicating a robust model generalization to both the original
and GMRA reduced datasets.

3) Link Prediction: Link prediction, also known as graph
completion or relational inference, is a fundamental task in
machine learning applied to graph data. It addresses sce-
narios where information about relationships between nodes
is incomplete or missing entirely. The primary goal of link
prediction is to infer information about a node based on its
relationship with other nodes in the graph. The complexity
of link prediction varies depending on the graph’s nature;
while simple graphs like social networks may rely on ba-
sic heuristics, more complex multi-relational graphs such as
biomedical knowledge graphs require sophisticated reasoning
and inference strategies. Link prediction blurs traditional ma-

chine learning boundaries, being both supervised and unsu-
pervised, and necessitates domain-specific inductive biases. It
encompasses various variants, including predictions within a
single graph and predictions across multiple disjoint graphs.

TABLE III
LINK PREDICTION ON STELLARGRAPH DATASETS

Dataset Original
Dimension

Original
ROC AUC

Reduced
Dimension

Reduced
ROC AUC

Cora 128 0.9667 13 0.9792

Interpretation of Results: Results are shown in Table III.
The ROC AUC score was calculated to assess the performance
of the logistic regression classifier (LogisticRegressionCV)
from scikit-learn for the binary classification. The comparable
scores between the original and GMRA reduced datasets
indicate consistent model performance across both sets of
datasets. For this experiment, we were able to reduce the
Cora dataset embedding vectors from 128 dimensions to an
intrinsic 13 dimensions, as demonstrated above. The high
accuracy scores indicate accurate predictions for the majority
of samples in both datasets, reflecting effective learning,
improved generalization, and model stability across both the
original and GMRA reduced datasets.

B. Anomaly Detection

Anomaly detection in graphs involves identifying irreg-
ularities or deviations from expected patterns within graph
structures. These anomalies can manifest in various forms,
such as the presence or absence of vertices or edges, the
existence of anomalous subgraphs like near-stars (vertices with
sparse connections among neighbors) or near-cliques (densely
connected subgraphs), heavy vicinity (where most edge weight
is concentrated on a few edges), and dominant heavy links
(edges with exceptionally large weights compared to others).
In applications like fraud detection, anomaly detection plays
a crucial role in uncovering suspicious activities camouflaged
as legitimate transactions to evade detection. Algorithms for
graph-based anomaly detection often employ breadth-first
search and minimum description length (MDL) principles
to extract normative graph patterns that best compress the
graph in MDL terms. These algorithms analyze changes in
normative patterns, approximate the probability of anomalous
additions, and investigate sub-patterns to detect anomalous
absences, providing a comprehensive approach to identifying
graph anomalies across various contexts.

Interpretation of Results: Results are shown in Table IV.
The accuracy score was computed using scikit-learn metrics
accuracy score. The comparable accuracy scores between the
original and GMRA reduced datasets indicate consistent model
performance across both sets of datasets. For this experiment,
we were able to reduce the LANL dataset embedding vectors
from 256 dimensions to an intrinsic 31 dimensions. The high
accuracy scores indicate accurate predictions for the majority
of samples in both datasets, signifying a strong generalization
of the model to both the original and GMRA reduced datasets.



TABLE IV
ANOMALY DETECTION ON LANL DATASET

Method Original
Dimension

Original
Accuracy

Reduced
Dimension

Reduced
Accuracy

Robust
Covariance

256 0.9511 31 0.9481

One-Class
SVM

256 0.9490 31 0.9463

Isolation
Forest

256 0.9479 31 0.9461

Local
Outlier
Factor

256 0.9517 31 0.9468

C. Graph Clustering

Graph clustering aims to group vertices in a graph into
clusters where vertices within each cluster exhibit strong con-
nections while having sparse connections with vertices outside
the cluster. It generally refers to a subset of vertices that are
densely interconnected. Cluster density can be measured by
the density of the induced subgraph within the cluster, while
connectivity outside the cluster is assessed by the size of the
graph cut that removes the cluster from the graph. Unlike node
classification and relation prediction, which involve inferring
missing information in graph data akin to supervised learning,
community detection is the graph analogue of unsupervised
clustering. For example, in a collaboration graph where re-
searchers are connected if they co-authored a paper, commu-
nity detection seeks to identify clusters representing research
areas, institutions, or other demographic factors. Real-world
applications of community detection include identifying func-
tional modules in genetic networks and uncovering fraudulent
user groups in financial transaction networks.

TABLE V
GRAPH CLUSTERING ON STELLARGRAPH DATASETS

Dataset Original
Dimension

Original
Accuracy

Reduced
Dimension

Reduced
Accuracy

CiteSeer 128 0.7891 14 0.7701

Interpretation of Results: Results are shown in Table V.
The accuracy score was calculated using scikit-learn metrics
accuracy score. The similar accuracy scores between the
original and GMRA reduced datasets suggest stable model
performance across both datasets. In this experiment, we suc-
cessfully reduced the CiteSeer dataset embedding vectors from
128 dimensions to an intrinsic 14 dimensions, as demonstrated
above. The high accuracy scores indicate accurate predictions
for the majority of samples in both datasets, indicating robust
model generalization to both the original and GMRA reduced
datasets.

VII. CONCLUSION

In this paper we have proposed a novel technique of
applying GMRA for dimensionality reduction in graph em-
beddings. By demonstrating comparable performance to its
higher-dimensional counterparts for various classical graph
tasks including node classification, edge classification, link
prediction, anomaly detection, and graph clustering, it vali-
dates the efficacy of GMRA and underscores its efficiency in
reducing computational complexity without sacrificing predic-
tive power for downstream processes.

This study proves the potential of leveraging dimensionality
reduction techniques like GMRA to address the challenges
posed by high-dimensional data in graph based tasks. Addi-
tionally, it sheds light on several avenues for future exploration
and enhancement:

1) Fine-tuning GMRA Parameters: Investigation into op-
timal parameter settings of GMRA, such as the choice
of clustering function and hyperparameters based on the
specific graph task, may further improve the algorithm’s
accuracy.

2) Exploring Additional Graph Tasks: Such examples
potentially include graph classification and cross network
alignment to provide evidence for broader applicability.

3) Improving Scalability: Currently, the GMRA algorithm
is inefficient on graphs with a very large number of nodes
due to the cover tree algorithm. There is an opportunity
here for improving scalability of the graph via optimiza-
tion or investigating alternative clustering techniques.

4) Interpretability and Visualization: Developing tech-
niques to interpret and visualize the transformed embed-
dings obtained through GMRA could provide insights
into the underlying structures and relationships present
within complex network data.
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