
Community Detection for Large Graphs on GPUs
with Unified Memory

Emre Dinçer
Computer Engineering

Izmir Institute of Technology
Izmir, Turkey

Email: emredincer@iyte.edu.tr

Işıl Öz
Computer Engineering

Izmir Institute of Technology
Izmir, Turkey

Email: isiloz@iyte.edu.tr

Abstract—While GPUs accelerate applications from different
domains with different characteristics, processing large datasets
gets infeasible on target systems with limited device memory.
Unified memory support makes it possible to work with data
larger than available GPU memory. However, page migration
overhead for executions with irregular memory access patterns,
like graph processing workloads, induces severe performance
degradation. While memory hints help to deal with page move-
ments by keeping data in suitable memory spaces, coarse-grain
configurations can still not avoid migrations for executions having
diverse data structures. In this work, we target the state-of-the-
art CUDA implementation of the Louvain community detection
algorithm and evaluate the impacts of the fine-grained unified
memory hints on the performance. Our experimental evaluation
shows that memory hints configured for specific data structures
reveal significant performance improvements and enable us to
work efficiently with large graphs.

I. INTRODUCTION

Graphics Processing Units have been used successfully
to accelerate graph applications [1], [2], [3], [4]. Louvain
method proposes an efficient community detection technique
by optimizing the modularity metric for large networks to
identify highly connected subsets of nodes [5]. Real-world
graphs are in sizes of hundreds of gigabytes, while GPU
devices still have sizes of a few gigabytes. The existing work
on community detection for GPUs deals only with graphs
that fit in device memory [6], [7]. While there is some work
on distributed multi-GPU graph processing [8], the working
assumption is that the graph datasets fit in the collective
memory of the GPUs.

CUDA Unified Memory (UVM) presents a virtual union
view of memories to enable the developers to work with
large data based on a demand paging mechanism by dynami-
cally moving the data between CPU and GPU memories [9].
Memory oversubscription accommodates larger datasets than
GPU device memory in exchange for performance loss. While
memory oversubscription works better for applications with
regular memory access patterns, irregular programs like graph
processing suffer from frequent data movements [10]. UVM
hints help to optimize data locality by providing guidance to
the runtime and potentially eliminating data movements.

In this work, we target the state-of-the-art CUDA implemen-
tation of the Louvain community detection algorithm, namely

Rundemanen [7], [11], and evaluate the impacts of the fine-
grained unified memory hints on the performance. Our main
contributions are as follows:

• We extend the Rundemanen to support unified memory
execution by modifying the memory allocations and copy
operations.

• We build a memory access tracker tool to analyze the
access patterns and page fault behavior of the target
application and to perform a fine-grained evaluation by
considering individual data structures.

• We propose fine-grained memory hints for specific data
structures to keep data in suitable memory spaces to avoid
page migrations and performance degradation in case of
memory oversubscription.

• Our experimental evaluation demonstrates that memory
hints guiding unified memory page locations result in
performance improvements for oversubscription scenarios
when considering specific data structures in the target
implementation. We achieve significant performance im-
provements with artificial oversubscription scenarios and
datasets larger than available GPU global memory.

II. BACKGROUND AND MOTIVATION

A. Louvain Community Detection Algorithm

Community detection presents a graph analysis that groups
nodes within a graph based on their interactions with each
other or according to specific properties [17]. Those groups,
known as communities, help reveal the patterns of interactions.
While several community detection techniques have been
proposed, we focus on Louvain [5], which is an optimization-
based method that tries to maximize Modularity, a met-
ric quantifying how well-defined the communities are in a
network. Well-defined communities refer to the situation in
which the vertices in each community are more densely
connected with each other than the other vertices outside of
their community. Rundemanen [7], cuGraph [6], and cuVite
[8] are state-of-the-art CUDA implementations, which employ
certain optimization techniques for utilizing GPU resources.
Table I presents the execution times for three codes with
different graph datasets on different GPU devices. The results
indicate that Rundemanen performs the best and uses memory

TABLE I: The execution times of the Louvain implementations on different GPU devices.

Rundemanen[7] cuGraph[6] cuVite[8]
dataset |V | |E | P4000 V100 A100 P4000 V100 A100 P4000 V100 A100
soc-LiveJournal1[12], [13] 4.8M 69M 2.98 1.57 1.79 26.56 15.23 8.17 41.83 23.90 31.46
com-Orkut[12], [13] 3M 117M 7.64 4.06 4.39 - 62.77 38.13 - 44.04 45.31
it-2004[14], [15], [16], [13] 41M 1.1B - - 2.98 - - - - - -
twitter7[12], [13] 41M 1.4B - - 10.49 - - - - - -

more efficiently. While cuGraph and cuVite fail to work with
larger datasets (given as - in table), Rundemanen completes
its execution in the A100 device with 80GB global memory.
In this work, we focus on Rundemanen and extend the
implementation by supporting unified memory to enable the
execution of larger graph datasets.

B. CUDA Unified Memory

Unified memory (UVM) [9] is a memory abstraction intro-
duced by NVIDIA with CUDA compute capability 6.0, en-
abling the host and device to share a single address space and
making memory management simple for CUDA developers.
Moreover, its memory oversubscription support enables GPU
devices to use more memory. Additionally, we can control the
behavior of UVM page handling with UVM memory hints.
CUDA offers an API call cudaMemAdvise that we can apply
hints as follows:

• cudaMemAdviseSetReadMostly: A copy of the pages cor-
responding to the specified address range is created by
the processor where the operation is performed, and read
operations are carried out on this copy. When a write
operation is performed, copies on all other processors be-
come invalidated, excluding the one where the operation
was performed.

• cudaMemAdviseSetPreferredLocation: If the processor
seeking access has direct access to the preferred loca-
tion, the operation is executed without moving the page;
otherwise, the runtime migrates the page.

• cudaMemAdviseSetAccessedBy: It allows a specific pro-
cessor to access the data without transferring the page
containing it due to remote mapping. When the pages
are migrated to the memory of another processor, the
mapping is automatically reestablished.

In this work, we evaluate Rundemanen [7] for large graph
datasets and propose fine granularity memory hints for its
extended UVM version. We would like to answer the following
research questions:

• What are the spatial and temporal characteristics of the
specific data structures?

• What are the page fault rates for oversubscribed scenar-
ios?

• How can we improve the execution performance by
guiding the unified memory with fine-grained memory
hints?

III. DATA-ACCESS AWARE COMMUNITY DETECTION

We build an analysis and profiling execution flow target-
ing our community detection program. Firstly, we modify

Rundemanen to support unified memory, then identify all the
variables by considering their role in the implementation and
define object groups accordingly. Then, we develop a memory
access tracker tool built upon CUDA program compilation
and execution workflow. Additionally, we implement helper
scripts to organize page fault data of the execution. Based
on our object groups, fine-grained memory access, and page
fault characteristics, we propose fine-grained object group-
level memory hints to guide unified memory page migrations.

A. Data Structures

Since we focus on fine-granularity memory access analysis
targeting specific data variables, we classify each vector-typed
variable based on its functionality in the implementation and
group them into four categories as follows:

• Graph’s CSR: Represents the CSR representation of the
graph being processed.

• Hash Tables: Stores aggregated weight from vertices to
communities.

• Community Information: Includes several objects storing
community-related information, such as the weights and
sizes of the communities and the community IDs of the
vertices.

• Others: Includes temporary objects for buckets, new
graph information, and other bookkeeping data.

B. Memory Data Collection

We instrument our CUDA program to collect memory
access information at runtime. We gather a set of metrics that
specify the spatial and temporal characteristics of the object
groups. Additionally, we track page faults for oversubscribed
scenarios.

1) Memory Access Tracking: We build a memory access
tracking framework on top of CUDA compilation and exe-
cution workflow. We design data structures and implement
functionalities to handle memory accesses and modify PTX
source files. Figure 1 presents our complete compilation and
execution phases.

Within Memory Accesses Handler, we define variables hold-
ing essential data and implement a set of functions to perform
data collection during program execution. Specifically, we
define six variables: buffer holding the memory addresses,
buffer holding the access times, current time (Unix time in
nanoseconds), the number of elements the buffers hold (size),
the buffers’ capacity, and the number of operations recorded.
The buffers and the current time variable are allocated to the
host memory in zero-copy mode, and the others are allocated
to the device memory. The current time is updated every 0.1

seconds by a separate host thread. The variable holding the
number of operations is used to skip some buffer updates.

Since getting the information related to load and store
operations is more practical, we create a Python script, .ptx
processor, which modifies the target PTX code instead of
CUDA kernel code directly. It inserts the directives that
include the buffers and variables’ definitions into the target
code. Then, it reads the original PTX code and copies each
line to the target PTX code. If the line contains memory load
and store operation on GPU global memory, the processor
inserts our additional instructions that handle the memory
access tracking with the address and time information.

Our tool generates memory access information, with each
entry including the address and the time of the corresponding
memory operation, along with the execution logs. We deter-
mine which object’s address ranges at its respective time.

2) Page Faults: We utilize the NVIDIA CUDA Profiling
Tools Interface (CUPTI) library [18] to monitor the addresses
of pages experiencing faults. We develop a shared library
to initialize and deinitialize the CUPTI library before and
after the program’s execution. During execution, the library
logs activities related to unified memory counters to a file,
specifically focusing on the migrations from host to device
caused by data coherence.

The shared library is injected into the runtime using the
LD PRELOAD environment variable, ensuring it operates
alongside the main program with no source code modification.
After collecting the logs, a Python script parses the output
logs and the execution logs generated by our memory access
tracker. This script then associates each page fault with a
specific object group, thereby providing a detailed analysis
of fault occurrences.

C. Oversubscription Configurations

To evaluate the system performance under different oversub-
scription rates, we configure a set of oversubscription scenar-
ios, where we pre-allocated memory space on the GPU device
memory using cudaMalloc [19]. Specifically, we generate five
configurations, in which varying percentages of the required
space of the graph are pre-allocated on the global memory.
The configurations are 0%(No), 10%, 30%, 50%, and 70%
oversubscription. To calculate how much memory space we
need to pre-allocate, we use the following formula:

(Mem.Size)− (1− Oversubscription%

100
) ∗ (Mem.Req.)

where Mem.Size is the total GPU global memory size and
Mem.Req. is the maximum (peak) memory requirement of
the application.

To estimate the maximum memory requirement of a graph,
we first instrument the code by inserting print statements
following each memory allocation, resizing, swapping, and
freeing operation. This enables memory usage tracking during
program execution. Subsequently, a script is executed that cu-
mulatively calculates the memory usage while also recording
the peak usage.

Fig. 1: Our memory access tracking framework flow.

D. Data-Access Aware UVM Hints

Based on memory access and unified memory characteris-
tics of the execution, we choose UM migration policies in the
granularity of object groups defined in Section III-A. Specifi-
cally, for each object group, i.e., Graph’s CSR, Hash Tables,
Community Info, and Others, we apply a specific memory
hint using the cudaMemAdviseSet function, either preferred-
Location or accessedBy. After analyzing our profiling-based
data access characteristics given in Section IV-B, we define
different policies for each object group and construct a set of
configurations to evaluate in our performance analysis.

IV. EXPERIMENTAL STUDY

A. Experimental Setup

We conduct our experiments with various graph datasets on
two different systems with different NVIDIA GPU architec-
tures; PASCAL: two Intel Xeon Silver 4114 CPU, 32GB RAM,
and NVIDIA Quadro P4000, AMPERE: Xeon E5-2609 v4
CPU, 64 GB RAM, NVIDIA RTX 3060 Ti GPU. We compile
our target program versions with gcc 10.5.0 and CUDA 12.0
toolkit.

Firstly, we conduct a preliminary experimental study to
analyze the memory utilization behavior of the program for
target datasets. We run experiments to understand both GPU
memory and unified memory utilization. Then, we define
fine-grained memory hints for guiding data movement for
oversubscription cases. While we run our preliminary memory
utilization experiments in the PASCAL environment for the
six datasets fitting in global memory, our unified memory
evaluation includes larger graphs in the AMPERE system.

B. Preliminary Experiments

As part of our preliminary study, we conduct experiments to
determine the memory access behavior of the object groups in
our target program. We collect the number of dynamic memory
accesses and page faults for each object group. In this way, we
understand both temporal and spatial locality characteristics
of the data structures, classify the object groups according to
their memory utilization, and guide the unified memory for
page migration.

au
dik

w
1

so
c-L

ive
Jo

urn
al1

Lon
g

Cou
p

dt6

die
lFilte

rV
3re

al

ca
ge

15

rgg
n

2
24

s0

Graph’s CSR Hash Tables Community Info. Others

Fig. 2: Memory access ratios for each object group at PASCAL
system.

Using our memory access tracker tool, we execute our
program with the six datasets and gather memory access
counts for each data structure. Figure 2 presents the ratio of the
memory accesses for each object group across all datasets. For
all datasets, Hash Tables structure exhibits the lowest memory
accesses. On the other hand, Graph’s CSR and Community Info
data structures dominate the others with the highest memory
accesses. We can understand that memory hints for unified
memory page migration techniques need to be concentrated on
the data structures within the given object groups with larger
counts, mostly graph-related data.

In addition to memory access characteristics, to understand
the fine-grained unified memory behavior, we collect the page
fault rates. We artificially set the oversubscription rate to 30%
and gather the page fault rates for data structures. Figure 3
presents the page fault rates for each object group. Graph’s
CSR exhibits the highest page fault rate, and we observe that
this rate is higher for all datasets than its rate of memory
accesses for the same datasets. While the chart does not
exhibit a one-to-one correspondence with the data in Figure
2, we can clearly observe that Graph’s CSR is the primary
contributor to most page faults for all datasets. Moreover, we
analyze the detailed time-space characteristics in the case of
oversubscription, and we see similar effects caused by page
migration and memory thrashing. Due to space limitations, we
do not put those results in the current version of the paper.

au
dik

w
1

so
c-L

ive
Jo

urn
al1

Lon
g

Cou
p

dt6

die
lFilte

rV
3re

al

ca
ge

15

rgg
n

2
24

s0

Graph’s CSR Hash Tables Community Info. Others

Fig. 3: Page fault ratios for each object group with 30%
oversubscription at PASCAL system.

C. Memory Hint Experiments
Considering the memory access behavior and page fault

rates, we define UVM hints based on different data structures.
Table II presents our configurations, i.e., hints for the specific
target data structures.

We collect the execution times at PASCAL and AMPERE
systems for several datasets with memory hints at 0%, 10%,
30%, 50%, and 70% oversubscriptions. Figure 5 displays the
results along with Table III, presenting the average perfor-
mance gain of each memory hint over the base configuration
(no memory hints).

base, adv3, and adv4 interchangeably exhibit the worst
performance at 50% and 70%. Having memory hints only to

Fig. 4: The running times for non-fitting datasets at AMPERE.

TABLE II: Configurations for memory hints specific to object
groups.

Name preferredLocation CPU accessedBy GPU
base - -
adv1 All object groups All object groups
adv2 Graph’s CSR Graph’s CSR
adv3 Hash Tables Hash Tables
adv4 Community Info. Community Info.
adv5 Others Others

adv6 Graph’s CSR,
Community Info.

Graph’s CSR,
Community Info.

adv7 Graph’s CSR, Others Graph’s CSR, Others
adv8 Community Info., Others Community Info., Others

adv9
Graph’s CSR,

Community Info.,
Others

Graph’s CSR,
Community Info.,

Others

adv10
Hash Tables,

Community Info.,
Others

Hash Tables,
Community Info.,

Others

Hash Tables as in adv3 does not provide performance benefits
over base because it does not contribute significantly to the
page faults. As expected, when there is no oversubscription,
base shows the best performance, without any migration and
guidance.

We observe that adv7 has the most performance im-
provement over base at 70% oversubscription. At 10% and
30% oversubscriptions, adv7, if not the best, exhibits decent
performance. At 50% oversubscription, either adv2 or adv7
shows the largest improvement. Furthermore, at 10% and 30%
oversubscription, adv2, if the best is not base, outperforms the
performance of other memory hints. adv6, adv8, adv9, and
adv10 adversely affect performance at smaller oversubscrip-
tions for soc-Livejournal, Long Coup dt6, and kron g500-
logn21; at higher oversubscriptions, their performance gain
falls somewhere in the middle compared to other memory
hints. The performance of adv5 is insignificant for target
datasets.

Table III presents average normalized (to base) execution
times. As the oversubscription rate increases, all hints’ average
performance gains also increase (except for adv3 and adv4 at
30% oversubscription).

TABLE III: The normalized average performance improve-
ments for all hints.

Advise Oversubscription
No 10% 30% 50% 70%

adv1 0.098 1.642 1.742 4.194 18.934
adv2 0.470 7.201 8.583 9.274 17.004
adv3 0.278 1.351 0.783 1.069 1.333
adv4 0.171 1.323 0.754 1.319 1.629
adv5 0.312 5.687 6.266 6.854 3.260
adv6 0.149 1.833 2.518 4.790 16.512
adv7 0.284 3.778 5.702 13.020 62.516
adv8 0.131 2.129 2.387 4.478 5.429
adv9 0.117 2.047 2.290 5.272 27.527

adv10 0.094 1.808 1.749 3.715 6.255

The artificial oversubscription scenarios may not completely
represent reality. Therefore, to ensure that the results are
reliable, we also test some datasets that already do not
fit into the GPU global memory in the AMPERE system.
Figure 4 demonstrates the results for those datasets. As in
artificial oversubscription scenarios above, adv2 and adv7 have
the shortest running times. In contrast to the results of the
artificial oversubscription scenarios, adv2 overscores adv7 for
all datasets.

Our results demonstrate that fine-grained UVM memory
hints configured for specific object groups yield significant
performance improvements over other configurations. Specifi-
cally, adv2 (Graph’s CSR) and adv7 (Graph’s CSR + Others)
outperforms both the versions without memory hints or with
memory hints for other data structures.

V. CONCLUSION

We evaluate the memory access pattern of Rundemanen
code, the state-of-the-art Louvain community detection algo-
rithm implementation for GPU systems. Our analysis reveals
that the target code exhibits specific temporal and spatial
characteristics for different object groups. We observe a similar
page fault behavior for oversubscription scenarios. Based on
our observations, we define fine-grained memory hints to help
UVM runtime, potentially avoid page migrations, and perform
better. Our configurations targeting memory hints for graph-
related data result in significant performance improvements
over the executions with no hints or other configurations.

R
un

ni
ng

Ti
m

e(
s.

)

Oversubscription

No
10
%

30
%

50
%

70
%

101

102

audikw 1 in PASCAL

base adv1 adv2 adv3
adv4 adv5 adv6 adv7
adv8 adv9 adv10

No
10
%

30
%

50
%

70
%

100

101

102

audikw 1 in AMPERE

No
10
%

30
%

50
%

70
%

101

102

103
soc-LiveJournal1 in PASCAL

No
10
%

30
%

50
%

70
%

101

102

soc-LiveJournal1 in AMPERE

No
10
%

30
%

50
%

70
%

101

102

Long Coup dt6 in PASCAL

No
10
%

30
%

50
%

70
%

101

102

Long Coup dt6 in AMPERE

Fig. 5: Execution times for memory hint configurations at different oversubscription rates.

ACKNOWLEDGMENT

The authors gratefully acknowledge the HPC RIVR
consortium (www.hpc-rivr.si) and EuroHPC JU (eurohpc-
ju.europa.eu) for funding this research by providing computing
resources of the HPC system Vega at the Institute of Infor-
mation Science (www.izum.si). This work was supported by
the Scientific and Technological Research Council of Turkey
(TÜBİTAK), Grant No: 122E395.

REFERENCES

[1] P. Harish and P. J. Narayanan, “Accelerating large graph algorithms on
the gpu using cuda,” in High Performance Computing – HiPC 2007.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 197–208.

[2] C. Yang, A. Buluç, and J. D. Owens, “Graphblast: A high-performance
linear algebra-based graph framework on the gpu,” ACM Trans. Math.
Softw., vol. 48, no. 1, feb 2022.

[3] Y. Wang, Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang, M. Osama,
C. Yuan, W. Liu, A. T. Riffel, and J. D. Owens, “Gunrock: Gpu graph
analytics,” ACM Trans. Parallel Comput., vol. 4, no. 1, aug 2017.

[4] v. E. N. J. Traag V. A., Waltman L., “From louvain to leiden: guarantee-
ing well-connected communities,” Scientific Reports, vol. 9, no. 5233,
2019.

[5] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of Statistical
Mechanics: Theory and Experiment, vol. 2008, no. 10, p. P10008, oct
2008.

[6] “cugraph - rapids graph analytics library,” https://github.com/rapidsai/
cugraph, 2022.

[7] M. Naim, F. Manne, M. Halappanavar, and A. Tumeo, “Community de-
tection on the gpu,” in 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), 2017, pp. 625–634.

[8] N. Gawande, S. Ghosh, M. Halappanavar, A. Tumeo, and A. Kalya-
naraman, “Towards scaling community detection on distributed-memory
heterogeneous systems,” Parallel Computing, vol. 111, p. 102898, 2022.

[9] R. Landaverde, T. Zhang, A. K. Coskun, and M. Herbordt, “An inves-
tigation of unified memory access performance in cuda,” in 2014 IEEE
High Performance Extreme Computing Conference (HPEC), 2014, pp.
1–6.

[10] C.-H. Chang, A. Kumar, and A. Sivasubramaniam, “To move or not
to move? page migration for irregular applications in over-subscribed
gpu memory systems with dynamap,” in Proceedings of the 14th ACM
International Conference on Systems and Storage, ser. SYSTOR ’21.
New York, NY, USA: Association for Computing Machinery, 2021.
[Online]. Available: https://doi.org/10.1145/3456727.3463766

[11] A. K. Mahantesh Halappanavar, Howard (Hao) Lu and S. Ghosh,
“grappolo,” https://github.com/ECP-ExaGraph/grappolo, 2020.

[12] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[13] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, dec 2011.
[Online]. Available: https://doi.org/10.1145/2049662.2049663

[14] P. Boldi and S. Vigna, “The WebGraph framework I: Compression
techniques,” in Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004). Manhattan, USA: ACM Press, 2004, pp.
595–601.

[15] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propaga-
tion: A multiresolution coordinate-free ordering for compressing social
networks,” in Proceedings of the 20th international conference on World
Wide Web, S. Srinivasan, K. Ramamritham, A. Kumar, M. P. Ravindra,
E. Bertino, and R. Kumar, Eds. ACM Press, 2011, pp. 587–596.

[16] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “Ubicrawler: A scalable
fully distributed web crawler,” Software: Practice & Experience, vol. 34,
no. 8, pp. 711–726, 2004.

[17] X. Su, S. Xue, F. Liu, J. Wu, J. Yang, C. Zhou, W. Hu, C. Paris,
S. Nepal, D. Jin, Q. Z. Sheng, and P. S. Yu, “A comprehensive survey on
community detection with deep learning,” IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–21, 2022.

[18] “Nvidia cuda profiling tools interface (cupti) - cuda toolkit,” 2024.
[Online]. Available: https://developer.nvidia.com/cupti

[19] C. Shao, J. Guo, P. Wang, J. Wang, C. Li, and M. Guo,
“Oversubscribing gpu unified virtual memory: Implications and
suggestions,” in Proceedings of the 2022 ACM/SPEC on International
Conference on Performance Engineering, ser. ICPE ’22. New York,
NY, USA: Association for Computing Machinery, 2022, p. 67–75.
[Online]. Available: https://doi.org/10.1145/3489525.3511691

