Exploring sparse inference with
SuiteSparse:GraphBLAS

Deepak Suresh
Department of Computer Science
Texas A&M University
College Station, TX

Abstract—As Al models grow in size and complexity the re-
source demands are also growing. Sparse inference is an approach
to take advantage of sparsity in large AI models to make them
run faster thereby lowering the resource requirements. SuiteS-
parse:GraphBLAS, an open-source implementation of Graph-
BLAS, offers a robust framework tailored for leveraging sparsity
in matrix computations. This work explores the application of
SuiteSparse:GraphBLAS in performing inference tasks, partic-
ularly focusing on the language model BERT. By showcasing
the capabilities of SuiteSparse:GraphBLAS in handling sparse
computations and explaining its underlying formulation using
semirings, this explores its application in improving inference
efficiency. This work implements a complete inference pipeline
using SuiteSparse:GraphBLAS, compares its performance with
traditional frameworks like PyTorch, and identifies areas for im-
provement. Through this investigation, the study aims to highlight
the strengths and limitations of SuiteSparse:GraphBLAS in Al
computations.

Index Terms—Machine Learning, sparsity

I. INTRODUCTION

Over the past few years, Al models have significantly
increased in size, with some large language models now
containing trillions of parameters. This growth has led to
higher compute requirements and increased power consump-
tion, posing a significant challenge for Al infrastructure.
Sparse inference has emerged as a solution to address the
challenges posed by the increasing size of AI models. Sparsity
in deep learning refers to designing models that primarily
utilize a select few important features or neurons, while
ignoring the less important ones. This concept reflects how
the human brain functions, as it does not activate all neurons
simultaneously. Rather, it employs a sparse array of neurons
tailored to the task at hand. Sparsity helps prevent overfitting
and concentrates on essential features. Models that are sparse
tend to be simpler to interpret since they utilize fewer, but
more important, features. By using fewer resources, sparse
models are more memory and computation efficient, which
also makes them more eco-friendly. By leveraging sparsity,
sparse inference can outperform dense inference by skipping
unnecessary computations, leading to faster inference times.
Additionally, the lower power and resource requirements make
sparse inference particularly well- suited for edge inference

This work was supported by funding from JuliaHub and the National
Science Foundation. Corresponding author e-mail: deepaksuresh@tamu.edu

Tim Davis
Department of Computer Science
Texas A&M University
College Station, TX

scenarios. In addressing the need for efficient sparse inference,
the use of SuiteSparse:GraphBLAS, an open-source imple-
mentation of GraphBLAS, has been explored. This framework
is specifically designed to leverage sparsity in matrix compu-
tations. By demonstrating the inference of a language model
in suitesparse, we aim to showcase its capabilities and explain
the underlying formulation of inference in language models
using semirings. Furthermore, this work aims to shed light on
the specific features and capabilities that SuiteSparse should
possess in order to better support Al processes. By identifying
and addressing these requirements, SuiteSparse can become a
more effective and efficient tool for leveraging sparsity in Al
computations.

II. RELATED WORK

As transformer based language models have grown from
millions of parameters, e.g., BERT-Large [1], to billions of
parameters as in Megatron-Turing [2], there has been growing
interest in sparse inference to improve inference efficiency.
Consider deploying a LLaMA-2-70B model with 70 billion
parameters. If the weights are stored in FP16 it will take
140GB of VRAM requiring 2 NVIDIA A100s and it will take
about 100ms to generate a token. This necessitates optimizing
either the model or the inference engine for faster and efficient
inference. Broadly, the optimizations can be divided into opti-
mizing a)The model and b)The inference engine. Optimizing
the model involves techniques like sparsifying the activations,
and sparsifying the model through weight pruning and quan-
tization. Sparsity is generally divided into two categories:
unstructured and structured sparsity. Unstructured sparsity in
neural networks involves randomly pruning individual weights,
typically removing those with smaller magnitudes first. This
method offers flexibility and a significant reduction in the
number of model parameters, which can decrease storage
needs. However, the major drawback is that standard hardware
and software are not optimized for handling such randomly
sparse matrices, causing inefficient memory access and slower
computation speeds. Structured sparsity in neural networks
involves systematically pruning entire rows, columns, filters,
or layers, maintaining a regular structure that aligns well
with standard hardware for efficient processing. This method
predictably reduces the computational workload and memory
usage but can also result in a greater loss of network perfor-

mance due to the significant reduction of network capacity.
The systematic nature of structured sparsity makes it com-
patible with typical hardware architectures, facilitating easier
implementation and integration. Our work exploits unstruc-
tured sparsity that results from weight pruning. We consider
Mixture of Experts(MoE) [12] to be a case of dynamic sparsity
or sparsity in activations. MoEselects different parameters for
each incoming example, resulting in a sparsely activated model
with a large number of parameters. This approach allows
for more flexibility and specialization in handling different
inputs. However, MoE models have faced challenges related
to complexity, communication costs, and training instability.
Switch Transformers [8] were proposed as a solution to the
challenges faced by MoE models. They simplify the MoE
routing algorithm and design improved models with reduced
communication and computational costs. We consider these
as dynamic networks that introduce sparsity in activations.
Another popular approach is weight pruning. Weight pruning
drops weights that are not important while maintaining the
model’s accuracy. Pruning has been proven to be an effective
way of reducing model size while maintaining the similar
model quality. Techniques like movement pruning [9] adap-
tively prunes weight during the fine tuning process. Block-
wise pruning [10] extends movement pruning by considering
blocks of any size and allows the pruning of weights to a
predefined sparsity pattern. The second approach is to optimize
the inference engine. Our work falls in this realm. Intel®
Deep Learning Boost [3] is a software accelerator for sparse
matrix - dense matrix multiplication (commonly abbreviated
as SpMM) on CPUs. The SpMM kernel outperforms sparse
libraries like oneMKL, TVM, and LIBXSMM. It has also been
shown to have 1.5x speedup over NeuralMagic’s DeepSparse.
SparseDNN [11] is a sparse deep learning inference engine
that targets CPUs to accelerate pruned neural networks. Graph-
BLAS [4] is an open source general purpose package for
sparse computations. As opposed to other works, we are
not creating a software runtime catered to inference, rather
using an existing general purpose framework for inference.
This work has been done in python-graphblas [13] which
is a Pythonic interface to SuiteSparse:GraphBLAS [5], a
comprehensive implementation of the GraphBLAS standard.
This standard specifies a range of sparse matrix operations
across an extended algebra of semirings, accommodating a
vast array of operators and types. GraphBLAS is an OpenMP-
based implementation that is designed to offer users a set of
objects along with their methods and operations, enabling them
to represent graph algorithms through the use of linear alge-
braic operations on sparse adjacency matrices across various
semirings.

III. INFERENCE WITH SUITESPARSE:GRAPHBLAS

In this section we cover the formulation of layers in the
language of semirings. Before neural network layers can be
implemented using the SuiteSparse:GraphBLAS, the layers
have to be formulated in terms of semirings. This reformu-
lation is necessary since SuiteSparse relies on semirings for

expressiveness as well as to perform its optimized graph and
matrix operations efficiently.

Dense layer: When an input is fed into a dense layer, each
neuron in the layer performs a weighted sum of the inputs.
Mathematically, this can be described by the equation

y=Wz+10

, where x is the input vector W is the weight matrix, b is the
bias vector, and y is the output vector of the layer. This means
that the input vector is multiplied by W and a bias vector is
added to each row of the result. The matrix multiplication is
the standard plus_times semiring. The addition of bias utilizes
a clever insight derived from how matrix operations work
with diagonal matrices. Specifically, when an n-by-n matrix
A is multiplied on the left by a diagonal matrix diag(a;, ...,
an), each row i of matrix A is scaled by the corresponding
ai. Conversely, multiplying matrix A on the right by diag(a;,
..., Gy) scales each column i by ai. This manipulation alters
the scale and may also alter the shape of matrix A, whereas
uniform scaling of the matrix occurs only when it is multiplied
by a scalar matrix. The bias vector is transformed into a
diagonal matrix and addition is performed with the plus_plus
semiring.

Algorithm 1 Dense layer

// Layer initialization

1. load weight as GrB_Matrix

2. load bias as GrB_Vector

3. convert bias vector to diagonal matrix

// Forward pass

1. initialize output GrB_Matrix

2. multiply weight and input with plus_times semiring
3. add bias with plus_plus semiring

Layer norm: Layer normalization is a technique employed
in neural networks to normalize the activations of each neu-
ron across a layer. Its primary purpose is to stabilize the
distribution of values within each layer, thereby enhancing
training efficiency and generalization. The operation involves
computing the mean and standard deviation of the activations
across each training example and applying normalization inde-
pendently for each neuron, typically by subtracting the mean
and dividing by the standard deviation. By ensuring consistent
activation distributions across neurons, layer normalization
mitigates the problem of internal covariate shift and facilitates
smoother gradient flow during backpropagation. When per-
forming matrix-vector multiplication between a matrix X with
dimensions NxN and a dense vector with all entries initialized
to 1/N, the result yields the mean per row of matrix X. This
operation corresponds to the plus_times semiring on matrix-
vector operations. Computing the variance follows a similar
approach to calculating means.

Softmax: The softmax layer is utilized to transform a vector
of arbitrary real-valued scores into a probability distribution
over multiple classes or categories. It applies the softmax

Algorithm 2 Layer normalization

// input matrix is X

v < 1/N {N is the number of columns in input matrix}
w « X - v {where - is matrix vector multiplication}

// w is now a vector that holds mean of each row

p <+ diag(w) {w is converted to a diagonal matrix}

// next step subtracts mean from each row of input
X_+«+ X ®Op {0 is the plus_minus semiring}

// next 2 steps to calculate variance

B2 X_*X_

0_2 + p_2-v {where - is matrix vector multiplication}
o2 2-v

oo 2

X «X_ =<0

// at this point input is mean normalized

// X _ is then passed to dense layer with layer norm weight
and layer norm bias

function to each element of the input vector. Mathematically,
the softmax function is defined as: where represents the ith
element of the input vector, and N is the total number of
elements. The function exponentiates each score and divides
it by the sum of all exponentiated scores, ensuring that the
resulting values are between 0 and 1 and sum up to 1, forming
a probability distribution. For numerical stability the max
value is subtracted from all entries. reduce_rowwise method
can take the “max” keyword to find max value per row.
Similar to the diagonal trick in bias addition, we convert
the max values to a diagonal matrix and use plus_minus
semiring to subtract max values. Element wise exponentiation
is performed with unary.exp. For the denominator, we perform
unary exponentiation followed by reduce_rowwise with the
plus keyword.

Algorithm 3 Softmax
// input X is attention score
mazes < mazx_reduce_rowwise(X) {Reduce rowwise to
return max in each row}
max_mat < diag(mazes) {maxes to diagonal matrix}
X_ + maz_mat © X {® is the plus_minus semiring}
X _exp + exp(X_) {unary exponentiation}
sums <+ sum_reduce_rowwise(X_exp) {Reduce row-
wise to returns sum of each row}
sum_mat < diag(sums) {sum to diagonal matrix}
X _probs + X_exp + sum_mat {+ is the plus_divide
semiring }

Self-attention: Query, Key, and Values of tokens are the
result of passing the tokens through the corresponding weights.
This is performed using dense layers which were defined
earlier. For example, the tokens are passed through a dense
layer which has the Query weights and biases. The operation
for Key and Value follows the same approach. Attention
scores are the result of matrix multiplication between Key and
Query outputs, which is a plus_times semiring. This is then

passed through softmax to create attention weights. Another
plus_times semiring on Value output and attention weights
is the final output of the self attention layer. Frameworks
like PyTorch, TensorFlow etc works with tensors, however
SuiteSparse:GraphBLAS supports only matrices. This imposes
a limitation on what kind of operations can be performed and
how they are implemented. Processing a batch of inputs is not
considered in this work. Batch processing is inherently harder
because the input starts off as a tensor. To keep the complexity
in check we decided to stick with processing one query
at a time. Attention layer still has tensor operations in the
calculation of attention weights. This is circumvented using a
block diagonal trick. Tensor multiplication can be expressed as
block diagonal matrix multiplication under certain conditions.
Let A and B be tensors of shapes (ni, na,.. n,,) and (mq,
ma,.. my) respectively. They can be represented as block
diagonal matrices where A; and B; are matrices of size (n;,
ni+1) and (mj, m;y1). Let C' be the result of the tensor

Ay 0 o0
0 Ag - 0
A= . :
0 0 A(m}J
By 0 0
0 By 0
B=| . .
0 0 By,

Fig. 1. Tensors as block diagonal matrices

multiplication. Then C' = A x B can be expressed as block
diagonal matrix multiplication where the ith block of C' is the
matrix multiplication of A(¢) and B(¢). In the same vein if
L were the sequence length of the input the query and key
matrices can be represented in the block diagonal form as
given on the right. Then, can attention scores matrix S can be
computed as

S=Q-KT

Here, the block diagonal multiplication implicitly computes
the dot products between each query vector); and each key
vector K; resulting in the attention scores matrix S. This
formulation allows us to compute attention scores efficiently
leveraging matrix multiplication operations.

These are essentially the basic constructs required to build
an inference pipeline for BERT.

IV. EXPERIMENTAL SETUP

In this section we describe the experimental setup including
hardware settings, sparse model, and framework.

A. Hardware Settings

The experiments were conducted on CPU instance with
Intel(R) Xeon(R) CPU ES5-2698 v4 @ 2.20GHz. It has 40
cores and 250GB memory. Both SuiteSparse:GraphBLAS and
the reference implementation are tested on this device.

B. Sparse Model

To demonstrate the utilization of SuiteSparse:GraphBLAS
as a backend for inference, a sparse model was needed.
The Bert model from ”Prune Once for All” [6] was deemed
ideal. This approach introduces a novel method for training
sparse pre-trained Transformer language models by integrating
weight pruning and model distillation. These sparse pre-trained
models retain their sparsity pattern and can be effectively
applied for transfer learning across various tasks. Starting with
a BERT-base model that has 110 million parameters, it is
pruned to achieve 90% sparsity, rendering it an optimal choice
to showcase the capabilities of SuiteSparse:GraphBLAS.

C. Framework

We wanted to run the core inference in SuiteS-
parse:GraphBLAS and have a way to perform on-to-one
comparison with an established approach. Our solution was
to use Huggingface transformers library as the reference
implementation and swap out pytorch-based inference pipeline
with a SuiteSparse:GraphBLAS based one. This gave us an
easy way to compare both implementations quantitatively and
qualitatively. We start with the transformer implementation of
BERT inference and replicate that in SuiteSparse:GraphBLAS.
The input preprocessing and output postprocessing are left
untouched, focusing solely on the core inference process
without altering the surrounding setup.

D. Task

BERT was trained on two major text collections: Wikipedia,
which includes approximately 2.5 billion words, and Google’s
BooksCorpus, with around 800 million words. These extensive
datasets have enabled BERT to develop a deep understanding
of the English language. Additionally, they have provided
BERT with a broad knowledge of the world. Given this we
decided to choose masked language modelling as the particular
task our model would perform. In this task the model is
provided with a sequence of tokens with a masked token. The
model is expected to use its knowledge to fill in the masked to-
ken. In the input sequence Paris is the capital of [MASK]..
The model is expected to replace [MASK] token with
France in the output.

V. RESULTS
A. Inference pipeline

We replicate the transformers BERT inference pipeline
in SuiteSparse:GraphBLAS, and a standalone demo' of our
engine. The demo also links to the source code for the project.
The output of the demo proves that our engine produces the
same results as the reference engine.

VI. PERFORMANCE COMPARISON

SuiteSparse:GraphBLAS takes a total of 0.42s whereas Py-
Torch takes 0.02s to generate the output. This means PyTorch
is 20 times faster. This slowdown can be traced to the attention
layer. The operations in attention layer can be divided into
three. The first kind is matrix operations that happen when
tokens are passed through Query, Key, and Value layers.

Tensor operations | Matrix multiplication Softmax

PyTorch 345 196.6 30

SuiteSparse:GraphBLAS | 2559.6 8374.1 929.4

Fig. 2. Time spent in attention layer (in microseconds)

The second is softmax operation to calculate attention
weights. The third is tensor operations to get raw attention
scores. This categorization is based on the distribution of
time spent in the SuiteSparse:GraphBLAS. Figure 2 shows
a breakdown of inference time in both frameworks. The
matrices in this BERT model are of size (9,768) where 9
is the sequence length and 768 is the input dimension. As
described previously, the block diagonal formulation is used
for tensor operations. There is a significant overhead to setting
up the tensor as a block diagonal matrix. Furthermore, the
matrices aren’t large enough and overheads will dominate.
The calculation of attention weights with softmax is sim-
ilar to tensor operations. Given this BERT model has 12
attention heads the attention scores are of size (12,9,9). In
block diagonal form this becomes a (108, 108) matrix which
is not large enough to exploit sparsity. The calculation of
attention scores and softmax operations are not areas where
SuiteSparse:GraphBLAS excels due to the lack of tensor
support. There’s little that can be done to address slowdown
in tensor operations. An area where SuiteSparse:GraphBLAS
can outperform PyTorch is in matrix multiplications, which
are found in both the attention and dense layers. Therefore,
we shift our focus to matrix multiplication. The dense layer
multiplies the input by a weight matrix and adds a bias. We
isolate the matrix multiplication, which involves the input
(dense matrix) and the weight (sparse matrix), and conduct
experiments to highlight conditions where SuiteSparse can
perform this multiplication faster. The matrices we consider
and synthetic equivalents of the ones found in the sparse
BERT used in the demo. We create weight matrices with
similar sparsity patterns and evaluate input matrices under
both sparse and dense conditions. Various matrix sizes and
sparsities are taken into account to replicate the dense layer in
larger and/or sparser models. This series of experiments help
determine the scenarios in which SuiteSparse:GraphBLAS
outperforms PyTorch. We consider three cases and in each case
we perform matrix multiplication to compare the performance
of PyTorch(using torch.sparse) and SuiteSparse:GraphBLAS
on sparse-sparse and sparse-dense matrix multiplication.

Thttps://colab.research.google.com/drive/13YwIILu4FNA2aXbTF86T991XAZ YorsBq

https://colab.research.google.com/drive/13YwlILu4FNA2aXbTF86T991XAZYorsBq

A. Sparse-sparse matrix multiplication on synthetic matrices
with constant sparsity

We consider matrices of different sizes and perform square
matrix multiplication(sparse-sparse) for each size. The size
of the matrix is varied from 10 thousand to 10 million
while keeping sparsity constant. This is to mimic the matrix
multiplication in a dense layer of the neural network. At every
stage the matrix is 90% sparse i.e. only 10% of the entries are
non-zero. The operation that is timed is sparse-sparse matrix
multiplication. There is a trend that as matrix size increases
we gain more performance. One million seems to be that
threshold where the performance gains are much higher than
the overheads of launching multiple threads. This demonstrates
that the larger the matrix, the greater the benefit from using
SuiteSparse:GraphBLAS. The error bars show 95% confidence
interval.

Speed vs. Size with Sparsity set to 90%

10! 4 .
100] /
L)
10-1 4
L L)
£
= 19-2 S—
L
10-3 4 /
L
10-4 4 —e— PyTorch
—e— SuiteSparse
T T

T . .
1e4 1le5 1e6 1e7 1e8
Size

Fig. 3. Sparse-sparse matrix multiplication on synthetic matrices(constant
sparsity)

B. Sparse-sparse matrix multiplication on synthetic matrices
with constant size

In this experiment we vary sparsity percentage from 85%
to 99%. This is again a case of sparse-sparse multiplication.
We see a similar trend as in the previous section. In case of
a neural network this is the case where input to the network
and weights are sparse. Networks with dynamic sparsity and
activations like ReLU can result in cases where input matrix
is also sparse.

C. Dense-sparse matrix multiplication on synthetic matrices

In this case we look at sparse-dense matrix multiplication.
This is closest to the BERT model that we are using in this
study. The weight matrix is sparse and the input matrix is
dense. This is the common form of sparsity setting that is
found in neural networks. We treat the input matrix as a
function of the sequence length. Sequence length or context
window refers to number of tokens in the input. A token is

Speed vs. Sparsity for n = led Speed vs. Sparsity for n = 15

/ ol 7 /
- : _
F F
. /
—e= PyTorch —e= PyTorch
—e— Suitesparse —e Suitesparse
1075
E) B E) B E) E] E) B3
Sparsity % Sparsity %
Speed vs. Sparsity for n = 1e7 Speed vs. Sparsity for n = 1e8
10°
_— 10! —
P L
L L
100
1071

Time

ot /
- ./
3

E) B3 %) E
Sparsity %

—e= PyTorch

—e— SuiteSparse

107] /

—e— PyTorch

—e— SuiteSparse

5
Sparsity %

Fig. 4. Sparse-sparse matrix multiplication on synthetic matrices(constant
size)

usually 2 to 3 characters. Some of the largest models like mix-
tral [?] has a context window or sequence length 32000. In this
case the input matrix is dense and the weight matrix is sparse.
SuiteSparse:GraphBLAS demonstrates superior speed even
when one of the inputs is dense, particularly with sufficiently
large matrices, as indicated by the graphs. Our sequence length
in the demo is only 9 and this explains why even dense layers
in the SuiteSparse:GraphBLAS inference engine is slower than
PyTorch. It’s only around sequence length of 10 thousand that
we see performing better. Hence models with large context
window like Mixtral [7] that has a context window of 32,000
are better suited for SuiteSparse:GraphBLAS.

Speed vs. Matrix size for sequence length = 50
108 /

—
/

Time

10
—e- PyTorch
—e- Suitesparse

100 500 1000 10000
N

Speed vs. Matrix size for sequence length = 10000

Speed vs. Matrix size for sequence length = 100000

—e— PyTorch

—e— SuiteSparse —e SuiteSparse

100 500 1000 10000 1 00 1000 10000
N

Fig. 5. Dense-sparse matrix multiplication on synthetic matrices(constant
sequence length)

In light of these results we can conclude that SuiteS-
parse:GraphBLAS will shine if the model is large and sparse

enough. This is obvious in the scenario where model(or weight
matrix) and input are sparse. We have also demonstrated that
even when the input is dense, SuiteSparse:GraphBLAS will
be faster if the weight matrix is large and sparse.

D. Operator fusion

One of the most expressive features in SuiteS-
parse:GraphBLAS is the ability to fuse operators. In a
transformer the feedforward layer is where the non-linearity
is applied. We need non-linearity in a network so that it can
learn interesting patterns. The non-linearity in this context is
called is GeLU and uses the erf function. A straightforward
implementation of GeLU has 5 calls and with it comes the
cost of data movement [14]. In an attempt to speed up the
feedforward layer we defined a custom semiring with GeLU
baked into it as the multiplicative monoid.

Y =W« f(X)

where f is GeLU. The new multiplicative monoid is GeLU
followed by the conventional times operator. This fuses appli-
cation of GeLU with weight multiplication. A fused operator
on its own would be faster but in this case since GeLU is in the
semiring it gets coupled with the W matrix. The W matrix is
also accessed every time GeLU is performed and GeLU itself
is expensive due to the erf function in it. Moreover, W is not
large enough or sparse enough to pay off in terms of speed.
So we did not see a speed up from operator fusion. In general
terms if 7' = f(X) where f is a non-linearity the complexity
will be O(n) where n is the number of entries in X . But in this
case, Y = W x f(X) the complexity becomes O(|W|+ | X])
and W is not sparse enough in this BERT model for fusion
to pay off.

VII. SUMMARY AND FUTURE WORK

We have been able to demonstrate that SuiteS-
parse:GraphBLAS can be used to build inference engines
for AL It can be even more suited with support for tensor
operattions. PyTorch offers extensive tensor support and this
makes a lot of computations easier and faster. It also has all
layers and abstractions like dense layer, layer normalizartion,
dropout available and that means its easier to build inference
pipelines. There are plenty of reference implementations
available thanks to the large community of PyTorch users.
In terms of expressiveness SuiteSparse:GraphBLAS will let
you fuse operations to form custom kernels.These fused
unary operations can be used to form custom semirings. This
is useful because it can help you reduce memory traffic.
Operations like bias addition are performed using broadcasting
in PyTorch. This can be expressed as a plus_plus semiring
in SuiteSparse:GraphBLAS, that is it offers a mathematical
expressivity that closely aligns with formal mathematical
concepts. In terms of speed, Pytorch is 20 times faster
than SuiteSparse:GraphBLAS, the BERT model that was
used to test the inference engine uses small matrices and
the sequence length is not large enough. As demonstrated
in the results section this is not the ideal scenario for

SuiteSparse:GraphBLAS to shine. Another bottleneck was the
attention layer which has tensor multiplications. So BERT has
12 encoders and each encoder has an attention block. Each
attention block has 2 tensor multiplications which is a dense-
dense tensor multiplication In Pytorch the tensor multiplication
takes 625 microseconds, the same is performed as block
diagonal matrix multiplication in SuiteSparse:GraphBLAS
and it takes about 4000 microseconds. But setting up the
tensors as block diagonal matrices is expensive and the
total time for attention block in SuiteSparse:GraphBLAS is
140 milliseconds opposed to 7 milliseconds in Pytorch. So
that subsumes everything else. The dense layers and matrix
multiplication as we have seen should be faster on larger
models with long context window A complete solution to the
performance problem would be to add tensor support but that
is a tall order. Or better use both SuiteSparse:GraphBLAS
and a tensor library like Pytorch so that each can shine and
we get the best of both worlds.

REFERENCES

[1] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
Deep Bidirectional Transformers for Language Understanding,” arXiv,
2019.

[2] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari, J.
Casper, Z. Liu, S. Prabhumoye, G. Zerveas, V. Korthikanti, E. Zhang,
R. Child, R. Yazdani Aminabadi, J. Bernauer, X. Song, M. Shoeybi,
Y. He, M. Houston, S. Tiwary, and B. Catanzaro, “Using DeepSpeed
and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale
Generative Language Model,” arXiv, 2022.

[3] H. Shen, H. Meng, B. Dong, Z. Wang, O. Zafrir, Y. Ding, Y. Luo,
H. Chang, Q. Gao, Z. Wang, G. Boudoukh, and M. Wasserblat, “An
Efficient Sparse Inference Software Accelerator for Transformer-based
Language Models on CPUs,” arXiv, 2023.

[4] B. Brock, A. Bulug, T. Mattson, S. McMillan, and J. Moreira, “The
GraphBLAS C API Specification (v2.0),” Tech. Rep., 2021.

[5] T. A. Davis, “Algorithm 1037: SuiteSparse:GraphBLAS: Parallel Graph
Algorithms in the Language of Sparse Linear Algebra,” ACM Trans.
Math. Softw., vol. 49, no. 3, Art. no. 28, pp. 1-30, Sep. 2023.

[6] O. Zafrir, A. Larey, G. Boudoukh, H. Shen, and M. Wasserblat, “Prune
Once for All: Sparse Pre-Trained Language Models,” arXiv, 2021.

[7] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and
J. Dean, “Outrageously Large Neural Networks: The Sparsely-Gated
Mixture-of-Experts Layer,” arXiv, 2017.

[81 W. Fedus, B. Zoph, and N. Shazeer, “Switch Transformers: Scaling to
Trillion Parameter Models with Simple and Efficient Sparsity,” arXiv,
2022.

[9] V. Sanh, T. Wolf, and A. Rush, “Movement Pruning: Adaptive Sparsity

by Fine-Tuning,” in Advances in Neural Information Processing Sys-

tems, vol. 33, 2020, pp. 20378-20389.

F. Lagunas, E. Charlaix, V. Sanh, and A. M. Rush, “Block Pruning For

Faster Transformers,” arXiv, 2021.

Z. Wang, “SparseDNN: Fast Sparse Deep Learning Inference on CPUs,”

arXiv, 2021.

Mistral, “Mixtral of experts: A high quality Sparse Mixture-of-Experts.,”

2023.

E. Welch and J. Kitchen, “Python library for GraphBLAS:

high-performance sparse linear algebra for scalable graph an-

alytics.,” 2024. https://python- graphblas.readthedocs.io/en/stable/user_
guide/fundamentals.html

A. Ivanov, N. Dryden, T. Ben-Nun, S. Li, and T. Hoefler, “Data

Movement Is All You Need: A Case Study on Optimizing Transformers,”

arXiv, 2021.

(10]
(11]
[12]

[13]

[14]

https://python-graphblas.readthedocs.io/en/stable/user_guide/fundamentals.html
https://python-graphblas.readthedocs.io/en/stable/user_guide/fundamentals.html

	Introduction
	Related work
	Inference with SuiteSparse:GraphBLAS
	EXPERIMENTAL SETUP
	Hardware Settings
	Sparse Model
	Framework
	Task

	Results
	Inference pipeline

	Performance comparison
	Sparse-sparse matrix multiplication on synthetic matrices with constant sparsity
	Sparse-sparse matrix multiplication on synthetic matrices with constant size
	Dense-sparse matrix multiplication on synthetic matrices
	Operator fusion

	SUMMARY AND FUTURE WORK
	References

