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Abstract—Quantum approximate optimization is one of
the promising candidates for useful quantum computation,
particularly in the context of finding approximate solutions
to Quadratic Unconstrained Binary Optimization (QUBO)
problems. However, the existing quantum processing units
(QPUs) are of relatively small size, and canonical mappings
of QUBO via the Ising model require one qubit per vari-
able, rendering direct large-scale optimization infeasible.
In classical optimization, a general strategy for addressing
many large-scale problems is via multilevel/multigrid meth-
ods, where the large target problem is iteratively coarsened
and the global solution is constructed from multiple small-
scale optimization runs. In this work, we experimentally
test how existing QPUs perform when used as a sub-solver
within such a multilevel strategy. To this aim, we com-
bine and extend (via additional classical processing steps)
the recently proposed Noise-Directed Adaptive Remapping
(NDAR) and Quantum Relax & Round (QRR) algorithms.
We first demonstrate the effectiveness of our heuristic
extensions on Rigetti’s superconducting transmon device
Ankaa-2. We find approximate solutions to 10 instances of
fully connected 82-qubit Sherrington-Kirkpatrick graphs
with random integer-valued coefficients obtaining normal-
ized approximation ratios (ARs) in the range ∼ 0.98−1.0,
and the same class with real-valued coefficients (ARs
∼ 0.94−1.0). Then, we implement the extended NDAR and
QRR algorithms as subsolvers in the multilevel algorithm
for 6 large-scale graphs with at most ∼ 27, 000 variables.
In practice, the QPU (with classical post-processing steps)
is used to find approximate solutions to dozens of at most
82-qubit problems, which are iteratively used to construct
the global solution. We observe that quantum optimization
results are competitive in terms of the quality of solutions
when compared to classical heuristics used as subsolvers
within the multilevel approach.
Reproducibility: source code and data will be available at
[1].

I. INTRODUCTION

Quadratic Unconstrained Binary Optimization
(QUBO) problems are a powerful framework to
formulate numerous industrially relevant computational
challenges in various fields such as logistics [2],
finance [3], aerospace applications [4]. As such,
much recent effort has been focused on empirically
assessing whether quantum heuristics can provide
any speedup over well-established classical heuristics
[5]–[17]. One of the approaches to optimizing QUBO
problems with quantum processing units (QPUs) is
quantum approximate optimization – an umbrella
term encompassing various heuristic techniques to
find approximate solutions to (usually) combinatorial
optimization problems. This includes the original, well-
known Quantum Approximate Optimization Algorithm
(QAOA) [18], but also a multitude of its variations, see,
e.g., recent review [11].

To solve a QUBO problem on a quantum device,
one typically maps it to an instance of an Ising model
that describes a two-body Hamiltonian constructed from
Pauli σZ operators. However, in the standard mapping, a
single QUBO variable corresponds to a single qubit, re-
stricting the usage of current quantum devices to solving
only relatively small problems – limited by the size of
the quantum device, which typically falls into range of
dozens and hundreds. Indeed, to the best of our knowl-
edge, the biggest-scale experimental demonstrations of
quantum approximate optimization for QUBO have been
limited to at most few-hundred-variables sparse graphs
in Refs. [5]–[7], or few-dozen-variables dense graphs in
Refs. [8]–[10], see also [11] for review.

In this work, we numerically and experimentally in-
vestigate the possibility of circumventing those scale



limitations by employing a multilevel (MLVL) approach
to solve QUBO problems using quantum approximate
optimization. We note that this is not the only known
decomposition method that breaks down the global prob-
lem into smaller instances [12], [19]. Another related
approach is to use dense encodings of the target vari-
ables [20]–[22].

We summarize here our main novel contributions.
• We improve upon the recently proposed Noise-

Directed Adaptive Remapping (NDAR) [23] and Quan-
tum Relax & Round (QRR) [9] algorithms. NDAR is a
noise-tailored meta-algorithm involving an external loop,
where each step requires running quantum optimization
on a suitably gauge-transformed Hamiltonian. QRR is
a classical post-processing scheme that uses results of
quantum approximate optimization to propose better
solutions. We combine and modify both algorithms by
implementing a hardware-efficient ansatz (Time-Block
QAOA from Ref. [10]), by improving parameter opti-
mization, and by augmenting with additional classical
processing steps. Our improvements lead to at least ∼
3x speedup and increased solution quality compared to
prior work.
• We improve and apply the methods introduced in re-

cent works [24]–[26], where a novel multilevel solver for
the Max-Cut (graph partitioning) problem was designed
and numerically tested in small-scale QAOA simula-
tions (IBM superconducting and DWave architectures).
We find approximate solutions to 6 large-scale QUBO
problems (up to ≈ 27, 600 variables), including the first
time the method was applied to problem instances with
negative/positive weighted coefficients, using Rigetti’s
superconducting QPU Ankaa-2. We use the extended
NDAR+QRR algorithm to solve the subsidiary QUBOs.
In practical terms, the QPU is used to find approxi-
mate solutions to multiple subsidiary instances of up
to 82-qubit problems, demonstrating a performance that
is competitive with state-of-the-art classical heuristics
within the multilevel setting.

By improving and combining these two best-of-class
approaches, our results are placed among the most com-
plex experimental demonstrations of applied quantum
optimization to date1.

II. PRELIMINARIES

A. Problem formulations

In this work, we define an n-variable QUBO prob-
lem as maximization over vector of binary variables
x = (x0, x1, . . . , xn−1)

T ∈ Bn (with xi ∈ B = {0, 1})
specified by real-valued, upper-triangular matrix Q via
maxx x

TQx = maxx
∑n−1

i=0

∑n−1
j=i Qi,jxixj .

1Reproducibility: source code and data will be available at [1].

An n-variable (or n-node) simple undirected
graph Max-Cut problem is specified by upper-
triangular adjacency positive/negative edge
weighted matrix W with zeros on the diagonal
and involves maximization of the cost function
maxx

∑n−1
i=0

∑n−1
j=i Wi,j (xi + xj − 2xixj). An n-

variable QUBO problem can be reformulated as
(n+ 1)-variable Max-Cut problem. Up to multiplicative
factor and a constant (irrelevant to optimization), this
is done via mapping Wi,j = −Qi,j for i ̸= j, and
Wi,n = Qi,i +

∑n−1
j=i Qi,j for i < n (edges between

an additional node and rest of the graph), see, e.g.,
Refs. [27], [28]. If y is the corresponding Max-Cut
solution, the solution to the original QUBO problem is
recovered via xi = yi⊕2 yn, where ⊕2 denotes addition
modulo 2.

An n-qubit Ising model is specified by Hamilto-
nian H =

∑n−1
i=0 hiσ

(i)
Z +

∑n−1
i=0

∑n−1
j=i Ji,jσ

(i)
Z σ

(j)
Z ,

where σ(k)
Z is a Pauli σZ operator acting on kth qubit,

hk and Jk,l are real-valued coefficients called local
fields and couplings, respectively. The corresponding
Ising optimization problem is the minimization of the
Hamiltonian over classical states |x⟩ = ⊗n−1

i=0 |xi⟩
(with |xi⟩ denoting standard computational basis states),
as in min|x⟩ ⟨x|H |x⟩ = minx

∑n−1
i=0 hi (1− 2xi) +∑n−1

i=0

∑n−1
j=i Ji,j (1− 2xi) (1− 2xj). Note that since

(1− 2xi) (1− 2xj) = 1 − 2xi − 2xj + 4xixj = 1 −
2 (xi + xj − 2xixj), in this convention the Max-Cut
optimization (maximization) corresponds to Ising opti-
mization (minimization) by identifying Ji,j =Wi,j , and
setting local fields to 0. Mapping of QUBO to Ising can
be thus done, for example, by first mapping n-variable
QUBO to (n+ 1)-variable Max-Cut and identifying it
with corresponding (n+ 1)-qubit Ising Hamiltonian, and
this is the approach we take in this paper.

B. Figures of merit

To assess the quality of the solution, we compare
the obtained cost Ci to the size of the spectrum via
renormalized approximation ratio (AR) (see, e.g., [11])
ARi = Ci−Cmin

Cmax−Cmin
, where Cmin and Cmax are the

smallest and the highest known values of the cost
function. Note that for maximization problems, this AR
is equal to 1 for the optimal solution and to 0 for the
worst (minimal) solution. Note that in the familiar case
of unweighted Max-Cut, we have Cmin = 0, and the
above is reduced to the standard approximation ratio.
For minimization, the convention for AR is reversed to
preserve the above properties w.r.t. the lowest cost state.

C. Multilevel solvers

A general strategy for addressing many large-scale
computational problems on different hardware archi-
tectures, including various optimization problems on



graphs, is using multilevel algorithms (also known
as multiscale, multiresolution, and multigrid-inspired
methods) [29]–[33]. Specifically, in the quantum con-
text, this multilevel framework has been explored for
graph partitioning, clustering, and the Max-Cut problem,
with the Quantum Approximate Optimization Algorithm
(QAOA) serving as the main local processing component
[24]–[26]. The motivation for combining the multilevel
method with quantum optimization arises from the cur-
rent state of quantum computers, which are constrained
by a limited number of qubits. The multilevel framework
addresses this limitation by coarsening the original graph
into a hierarchy of reduced-size next coarser graphs,
enabling the problem to be solved within the constraints
imposed by quantum hardware. Each next coarser graph
approximates the previous finer one with respect to the
optimization problem but requires less resources to solve
it.

In essence, the multilevel approach begins by coarsen-
ing the original problem to create a series (also known as
a hierarchy) of progressively simpler, related problems
at coarser levels. At each coarse level i, the best-found
solution serves as an initialization for the next finer solu-
tion at level i−1. This initialization is enhanced through
what is commonly referred to as “local processing” (also
known as a refinement), a cost-effective series of fast
steps that involve only a few variables at a time but
collectively revisit all variables of that level multiple
times. We refer the Reader to Ref. [29] for a pedagogical
introduction to the subject.

Various coarsening-uncoarsening schedules exist in
the multilevel algorithms to achieve a better optimization
quality (e.g., W-cycle, and FMG [29]), but in this work,
we explore the most basic single V-cycle to minimize
the effect of classical processing. This setting involves
sequentially generating a hierarchy of the next coarser
graphs {Gl = (Vl, El, wl)}Ll=0, where l is the index
of level, G0 is the original large-scale graph, and GL

is the coarsest graph. The coarsening process consists
of (1) relaxation-based grouping pairs of nodes based
on the recently introduced maximization version of the
algebraic distance [34] for graphs and (2) edge weight
accumulation in each coarse level. Initially, every node
is first placed in a random position on the surface
of d-dimensional sphere. Following the initialization,
several node-wise correction iterations are applied to
maximize the total weighted distance between each node
and its neighbors within the sphere, which maximizes
the contribution of each node to the total energy of the
system [24].

After the hierarchy is created, the Max-Cut instance at
the coarsest level is solved, and the solution is gradually
interpolated level-by-level all the way up to the finest
level. At each level of the uncoarsening process, the

lth level solution is initialized from level l + 1 and
further refined via sub-solvers (quantum or classical).
During this refinement stage, sub-problems are itera-
tively generated and solved. Importantly, the maximal
size of sub-problems (MSS) can be controlled to allow
for implementation on limited-size QPU. If the solution
of a generated sub-problem instance contributes to im-
proving the final solution, a new sub-problem instance is
produced and solved. The refinement stage ends when a
specified maximal number of unsuccessful consecutive
refinements (MUR) is reached. Note that the MUR
parameter allows to control total runtime of the algorithm
to achieve excellent quality/time trade-off, one of the
main benefits of the multilevel algorithms.

D. Quantum Approximate Optimization

1) Quantum Approximation Optimization Algorithm:
While there are multiple approaches to quantum ap-
proximate optimization [11], here we focus mainly
on the canonical Quantum Approximate Optimization
Algorithm (QAOA) introduced in [18] and its exten-
sions (described later in this section). In this setting,
the input state is |+⟩⊗n that is a tensor product of
+1 eigenstates of Pauli σX operator. The quantum
circuit applied to the input state is constructed from
parametrized mixer operator exp (−iβiHM ) with Hamil-
tonian HM =

∑n−1
i=0 σ

(i)
X and phase separation operator

exp (−iγiH), with H being the Ising cost Hamiltonian
(recall Section II-A). In the above, γi and βi are ele-
ments of p-dimensional real-valued parameters vectors
γ and β. The effective quantum state is obtained via
application of the unitaries of the form |ψ (γ, β)⟩ =
(
∏p

i=1 exp (−iβiHM ) exp (−iγiH)) |+⟩⊗n. The aim of
p-depth QAOA is to find p-dimensional γ and
β that minimize the expected value of variational
state evaluated on the cost Hamiltonian ⟨H⟩γ,β =
⟨ψ (γ, β)|H |ψ (γ, β)⟩. This can be achieved by using
various parameter setting strategies, as used for classical
black-box optimization.

2) Noise-Directed Adaptive Remapping: In this work,
we implement an improved version of an extension
of QAOA called Noise-Directed Adaptive Remapping
(NDAR). To the best of our knowledge, it is among
the most performant quantum approximate optimization
protocols to date, far outperforming standard QAOA in
recent experimental demonstrations. The method was
introduced in Ref. [23] for improved quantum optimiza-
tion in the presence of certain types of hardware noise.
NDAR is a meta-algorithm applied on top of standard
QAOA (or other quantum approximate optimization).
The main assumption of NDAR is that the noisy device
has a special classical “attractor” state, towards which
the dissipative processes push the overall system dy-
namics. This attractor state is described by a bitstring



|xatt⟩. We note that this assumption was demonstrated
experimentally to be a good approximation for super-
conducting devices, where the noise attractor is typically
|xatt⟩ = |0 . . . 0⟩ due to amplitude damping/dissipation
[23]. Each step of the NDAR loop involves performing
quantum approximate optimization, identifying the best-
cost bitstring, and re-mapping the cost Hamiltonian H
in a way that aligns |xatt⟩ with that best-found solution.
This is done via bitflip transformations (also known as
spin-reversal transforms [35], [36]) that exchange the
definition of |0⟩ and |1⟩ from the point of view of
the Hamiltonian. Specifically, in each NDAR step, the
gauge transformation specified by high-quality bitstring
y is applied to the cost Hamiltonian H → Hy (this
is done in pre- and post-processing) in a way that
⟨y|H |y⟩ = ⟨xatt|Hy |xatt⟩. This effectively causes the
solutions’ distribution in the current optimization to be
centered around high-quality solutions from the previous
step. The iterative re-mapping of the Hamiltonian is
done until the convergence criterion is met. In Ref. [23],
NDAR was experimentally demonstrated to highly out-
perform original QAOA in 82-qubit experiments on
fully-connected random graphs (so-called Sherrington-
Kirkpatrick model).

3) Time-Block QAOA Ansatz: Another modification
of the original QAOA we use is a Time-Block ansatz in-
troduced in Ref. [10] for hardware-efficient optimization.
The Time-Block (TB) QAOA uses the SWAP network
structure of typical QAOA circuits, which is necessary
to implement phase separator operators of dense Hamil-
tonians on limited connectivity hardware. Specifically,
a TB k-QAOA is a circuit ansatz constructed from a
standard QAOA circuit by dividing it into batches of
physical depth k that are parametrized jointly and adding
additional mixer operators between such new layers. This
effectively parametrizes a subset of interactions of the
original Hamiltonian as a single-phase separator, like
in standard QAOA. The Time-Block QAOA with small
values of k offers shallow-depth variational circuits that
can perform similarly to the original QAOA, with a gain
of easier experimental implementation (see results in
Ref. [10]). Indeed, a depth p Time-Block k-QAOA cor-
responds to a circuit of physical depth ∼ pk, compared
to ∼ nk for standard QAOA.

4) Quantum Relax & Round: Finally, the bit strings
sampled from the quantum computers are used to esti-
mate a two-point correlation matrix Z with entries Zij =

(δij − 1)⟨σ(i)
z σ

(j)
z ⟩, where δij is the Kronecker delta.

Then, an eigendecomposition of Z is performed and its
eigenvectors are sign-rounded, entrywise. Considering
each of the sign-rounded eigenvectors as a candidate
solution to the original problem, we compute their cost
C and keep the best one as the final solution. This al-
gorithm, known as the quantum relax-and-round (QRR)

algorithm, was developed in Ref. [9]. It was shown [9],
[12] that when sampling bit strings from the standard
QAOA with p layers, QRR converges asymptotically to
the optimal solution with p. At p = 1, the performance
of QRR matches that of a classical relax-and-round
algorithm performed on the adjacency matrix of a graph
problem with entries Wij , as defined in Sec. II-A. This
was proven analytically in the large n limit for several
problem classes such as Sherrington-Kirkpatrick spin
glasses, unit-weight random 3-regular graphs, as well
as circulant graphs, and supported numerically on other
problems. We note that the resulting average perfor-
mance at p = 1 is much higher than that of the standard
QAOA algorithm, for the same quantum resources.

III. IMPROVED NOISE-DIRECTED ADAPTIVE
REMAPPING

In this section, we discuss our modifications to the
original NDAR proposal and demonstrate their effective-
ness in experiments on 82 qubits on Rigetti’s supercon-
ducting transmon device Ankaa-2.

A. Modifications

Recall that the original NDAR proposal consists of an
external loop, where each iteration involves adaptively
solving gauge-transformed cost function Hamiltonian via
QAOA or another quantum approximate optimization
method. We modify the original NDAR algorithm by
implementing the following changes:
1) (Pre-processing at iteration 0) NDAR at step 0
implements quantum approximate optimization for the
original Hamiltonian H . Its representation is always
provided with some implicit, “default” bitflip gauge
choice. Here, we generate 104 random solutions, evaluate
them on the cost Hamiltonian, and choose the best-cost
solution y to specify the initial bitflip gauge. For the
gauge-transformed Hamiltonian Hy, the noise attractor
state |0 . . . 0⟩ becomes a higher-quality solution, in a
sense that ⟨y|H |y⟩ = ⟨0 . . . 0|Hy |0 . . . 0⟩ (see II-D).
2) (Shallow-depth circuit ansatz) Instead of using
original QAOA, here we implement a Time-Block k-
QAOA from [10], see discussion in Section II-D. We
choose k = n

5 to reduce physical depth approximately
five-fold compared to standard QAOA. We set algorith-
mic depth (the number of parametrized layers) to p = 1.
3) (Optimization over multiple gauges) We allow the
optimizer to choose one of 4 best-cost bitstrings from the
previous step to specify allowed gauge transformations
in the next step, as opposed to the single best bitstrings
in the original NDAR.
4) (Quantum Relax & Round and extension) At
each iteration step, we take the results of quantum
optimization and evaluate the QRR algorithm on them to
find a better approximate solution (recall Section II-D).



Moreover, we implement an alternative version of
QRR that constructs weighted correlators of the form
Ji,j

〈
σ
(i)
z σ

(j)
z

〉
, and otherwise works the same as QRR

(see Section II-D. The algorithm, which we call w-QRR
(weighted-QRR) aims to resemble the classical relax and
round strategies. At each optimization, we implement
both QRR and w-QRR on the results from QPU and
choose a better solution.
5) (Hamming Distance Quadratic Local Search) At
the end of each step, we additionally explore the neigh-
borhood of the best-cost bitstring by generating and
evaluating all solutions within Hamming distance 2. We
refer to this step as HDQLS.

B. Experimental results on 82-qubit dense SK problems

We now present the results of benchmarks of modified
Noise-Directed Adaptive Remapping and compare it
with the original version for the same 10 instances
of the Ising model as in Ref. [23]. Those Hamiltoni-
ans correspond to fully connected graphs, with integer-
valued interactions taken randomly as ±1, so-called
Sherrington-Kirkpatrick (SK) model [40] on 82 qubits.

We implement NDAR experiments with the adaptive
optimizer known as Tree-Structured Parzen Estimators
(TPE) [41], as implemented in package Optuna [42].
Each iteration step involves implementing Time-Block 8-
QAOA with TPE using t = 150 cost function evaluations
and gathering s = 1000 samples at each evaluation, same
as in Ref. [23]. Following Refs. [23], [43], we also allow
the TPE to optimize over categorical variable controlling
the gates’ ordering of the ansatz.

In the top plot of Fig. 1, we present the joint result
from Ref. [23] and our implementation. We observe
that the introduced modifications of the protocol lead to
both better performance and much faster convergence of
Noise-Directed Adaptive Remapping (at least ∼ 3x - al-
though a rigorous parameter setting cost analysis should
be conducted to determine the comparison [44]). In the
middle plot, we investigate in more detail how much
each step of the extended NDAR (recall Section III)
contributes to the final solution quality. We observe that
the pre-processing allows to start already from approxi-
mation ratios around 0.7, and then, in the first iteration,
the results obtained directly from QPU (via Time-Block
QAOA) improve it to around 0.8. Further improvement
by 0.1 is provided by weighted QRR that turns out to
perform better than standard QRR (that does not improve
upon w-QRR). Finally, additional small improvements
are gained by local search in the Hamming distance.
Further iterations of NDAR refine the solution quality,
until we obtain ∼ 0.98− 1.0 AR for all tested instances
with at most 4 NDAR iterations.

The bottom plot of Fig. 1 shows analogous investi-
gation for 10 random SK model instances with real-

valued interactions taken from range [0, 1]. We obtain
approximation ratios in the range of ∼ 0.941− 1.0 after
at most 10 iterations. As such, the above results are
placed among the most complex and most-performant
applied quantum optimization experiments to date (see,
e.g., Table IV in Ref. [11]).

IV. MULTILEVEL APPROACH TO SOLVING QUBO

A. Benchmark graphs

In this work, we consider a set of 6 benchmark graphs
summarized in Table I. The biggest considered graph
has 26588 nodes with an average degree of ∼ 4, while
the densest graph is a 1750-node problem with ∼ 875
average degree. We chose graphs that are fairly small
compared to typical problems of industrial relevance, so
we can benchmark the multilevel method on the real
QPU with limited resources. The large-scale graphs are
first solved using non-multilevel (non-MLVL) heuristics
chosen from the Mqlib library [28], where the optimiza-
tion is performed on the whole graph, as opposed to
coarsened sub-problems generated by MLVL approach.
For each graph, we implemented around 25 solvers (with
a timeout of at most 15 minutes) that use various heuris-
tics including simulated annealing [45], tabu-search [46],
[47], genetic algorithms [48], and greedy local-search
[49]. We note that the best or second-best solver for all
graphs proved to be the Burer-Monteiro algorithm from
Ref. [50], which is a rank-2 relaxation of the famous
Goemans-Williamson algorithm [51].

In Table I, we show absolute values of the best cost
function (cut) values found across all classical solvers.
Those values will be the reference when assessing the
performance of the multilevel approach (via approx-
imation ratio w.r.t. the non-MLVL optimizer) in the
following sections.

B. Classical heuristics sub-solver: MLVL algorithm

We start by investigating the performance of the mul-
tilevel approach with classical subsolvers. Recall from
Section II-C that the MLVL algorithm from Ref. [24] is
specified by, among others, the following hyperameters –
Maximal Subproblem Size (MSS) and Maximal consec-
utive Unsuccessful Refinements (MUR). MSS controls
the biggest subproblems the solver is allowed to generate
and thus can be set to the size of a given quantum
device, allowing hybrid quantum-classical approximate
optimization of large graphs using small-scale hardware.
MUR affects the run-time, it can thus be adjusted to
the QPU availability. In short, increasing MSS/MUR
increases the space/time requirements of the multilevel
approach.

We now numerically investigate how those parame-
ters affect the optimization of our benchmark graphs
when the sub-solver is classical heuristics. As sub-solver



Graph name (U/W) Id Nodes Edges (av. degree) Best cut (non-MLVL) Ref.
soc-epinions (U) s-e (U) 26588 100120 (3.77) 70112 [37]
soc-epinions (W) s-e (W) 11398 here

Karloff 16-7-1 (U) Krl (U) 11440 3363360 (294) 2522520 [38]
Karloff 16-7-1 (W) Krl (W) 59685 here

Rolling Stock Assignment 3 (W) RLS3 1750 1530375 (874.5) 6829 [39]
Queens 16 (W) Q16 1035 535095 (517) 14428 [39]

TABLE I: Large-scale graphs considered in this work, with reference solutions obtained via classical global
heuristics not employing our multilevel approach. ”U” (”W”) stands for ”unweighted” (”weighted”), meaning equal
(non-equal) weights at each edge. For the soc-epinions and the Karloff graph, the original graphs are unweighted
and to obtain a weighted (general QUBO) version, we add random weights from [−1, 1] range. The two graphs
from Ref. [39] are already general QUBO – here we map them to the Max-Cut problem (see Section II-A). The
”Best cut” column denotes the best-found cut using classical heuristics solvers from the MQLib library [28]. For
each graph, multiple heuristics are tested (see text description), and the shown results are the best cut found across
at most 100 random initialization of the solver (with allowed running time of at most 15 minutes each).

heuristics, we used 2-3 solvers that performed the best
in solving the original, large graphs. This included the
Burer-Monteiro algorithm [50] for all graphs, and other
solvers [45]–[49] varied between graphs (see discussion
in the previous Section); all sub-solvers were allowed
to run for at most 10 seconds per sub-problem. The
best-found results are presented in Table II (we note that
the Burer-Monteiro algorithm proved to be usually the
most performant also in the multilevel setting). The mean
approximation ratio is estimated empirically by running
the solver for 10 − 100 independent random initializa-
tion (10 for all cases except for the pair MSS = 82
and MUR = 3 with 100 runs, where we increased
statistics to have a better comparison with QPU imple-
mentation in the next section). We observe a monotonic
increase in solution quality for both hyperparameters.
We observe that for 5000-variable subproblems, the
multilevel solver starts to outperform global heuristics
for the biggest considered graphs (soc-epinions), which
corresponds to a five-fold size reduction compared to
the original problem. For other graphs, it becomes com-
petitive around 500-variable subproblems, except for the
weighted Karloff graph where 2000 variables are needed
to obtain approximation ratios around 0.99. In the case
of smaller QUBOs (RLS3 and Q16 from Ref. [39]), the
multilevel solver finds very good solutions already for
82-node subproblems. However, in that case, it is worth
noting that the initial coarsening phase of the algorithm
already finds high-quality solutions, and the subproblem
refinements improve them only slightly, indicating that
the solutions of subproblems (either from classical or
quantum sub-solver) do not contribute much to the final
solution.

C. 82-qubit QPU NDAR sub-solver: MLVL algorithm

For subproblems of size 82 (the size of our experi-
ments on Rigetti’s QPU), the multilevel approach with
classical sub-solver always finds worse solutions than

non-MLVL heuristics, thus for those system sizes we do
not expect to observe any advantage over those state-
of-the-art heuristics. Yet, it is worthwhile to benchmark
how current QPUs perform compared to classical sub-
solvers within the multilevel setting, and possibly ex-
trapolate the classical results from Table II to estimate
what we can expect from future generations of QPUs.
The objectives are to gain insights on the following
questions in order to guide further R&D: (i) how does the
MLVL decomposition scores against the best classical
non-MLVL methods? (ii) are the solutions obtained by
the quantum solvers similar to the ones obtained by
the best classical method (multiscale or not) (iii) how
does the performance when using the quantum method
compare against a competitive non-quantum subsolver?
We implement the extended NDAR (recall Section III)
as a multilevel sub-solver with at most 82-qubit sub-
problems. The results are presented in Fig. 2, together
with corresponding results from Table II with classical
subsolvers.

The top plot shows the Jaccard similarity coefficient
(i.e. the size of the intersection divided by the size of
the union) between the set of edges participating in a
given cut (obtained via the multilevel approach) and the
optimal cut (from non-MLVL solvers, see Table I). We
observe that the structural difference (measured by this
coefficient) between solutions obtained from QPU and
classical are minor, suggesting that QPU finds similar
solutions to classical MLVL solvers. We note that their
coefficients are significantly different than 1.0 which
suggests that all solutions have different structure than
the best-found solution to the global problem.

The middle plot shows the approximation ratio (com-
pared to global solver solutions in Table. I), while the
bottom plot shows the total sub-solver calls, which gives
an estimated runtime measured in the number of imple-
mented local optimizations on 82-variable subproblems.
We notice that for both unweighted and weighted soc-



Fig. 1: The top plot shows the experimental perfor-
mance of extended NDAR (green), compared to original
NDAR (orange), original QAOA (blue), and random
bitstrings sampling (grey). The data points other than
green are taken from Ref. [23]. Those experiments were
performed on 10 random instances of 82-qubit integer-
valued Sherrington-Kirkpatrick Hamiltonians. The dot-
ted lines within each colored region correspond to in-
dividual instances. The middle plot shows a zoomed-
in region of the top plot that corresponds to extended
NDAR, with more refined information. Here, the end of
each colored region corresponds to AR resulting from
applying the corresponding algorithm step (“cl” stands
for classical processing). For example, the improvement
gained directly from the QPU run (Time-Block QAOA)
is indicated by the change in the AR value indicated
by the pink line. Different lines are different Hamil-
tonian instances. The bottom plot shows the extended
NDAR performance applied to real-valued Sherrington-
Kirkpatrick models with the same convention. Note that
y-axis scales do not start at 0.0 for improved clarity.

Fig. 2: Results of Noise-Directed Adaptive Remapping
implemented on Rigetti’s QPU Ankaa-2 applied as sub-
solver for the multilevel (ML) approach, compared to
using classical subsolvers. The hyperparameters are set
to MSS = 82 and MUR = 3. The top plot presents
the Jaccard similarity coefficient between the edges
participating in the cut for the optimal solution and
the one from the multilevel approach. The middle plot
shows the approximation ratio (AR, note that y scale
starts at 0.9 for improved visibility), while the bottom
plot shows the total number of sub-solver calls in the
multilevel approach. For the classical approach, the error
bars correspond to the range of obtained values (of
best-found solutions) when running a multilevel algo-
rithm with 100 independent random initializations. QPU
results correspond to the best solution from a single
experimental implementation. We did not implement
the MLVL method multiple times due to limited QPU
availability.



epinions, the QPU seems to converge faster than the
classical sub-solver, while offering solutions of similar
quality. For both Karloff graphs, QPU finds solutions
with slightly worse ARs than the classical subsolvers,
while converging faster for the weighted variant. For
RLS3 and Q16 graphs, the QPU is similar in both quality
and convergence speed.

Id MSS MUR MEAN MAX

s-e (U)

82 3 0.972± 0.008 0.978
10 0.980± 0.007 0.983

500 3 0.982± 0.009 0.986
10 0.991± 0.003 0.993

5000 3 1.00± 0.01 1.001
10 1.001± 0.001 1.002

s-e (W)

82 3 0.96± 0.01 0.968
10 0.969± 0.007 0.973

500 3 0.98± 0.03 0.990
10 0.992± 0.008 0.996

5000 3 0.99± 0.02 1.001
10 1.001± 0.001 1.002

Krl (U)

82 3 0.98± 0.02 0.992
10 0.987± 0.006 0.990

500 3 0.995± 0.003 0.997
10 0.995± 0.004 0.997

2000 3 0.999± 0.002 0.9994
10 0.9996± 0.0005 0.9998

Krl (W)

82 3 0.94± 0.01 0.948
10 0.950± 0.007 0.955

500 3 0.96± 0.01 0.963
10 0.976± 0.003 0.978

2000 3 0.98± 0.02 0.984
10 0.989± 0.003 0.991

RLS3
82 3 0.999990± 0.000005 0.999995

10 0.999991± 0.000006 0.999995

500 3 0.999996± 0.000007 0.999998
10 0.999998± 0.000005 0.9999999

Q16
82 3 0.9989± 0.0009 0.99946

10 0.9993± 0.0007 0.99970

500 3 0.99997± 0.00007 0.999997
10 0.99998± 0.00004 0.999997

TABLE II: Results of classical heuristics applied as
subsolvers for the multilevel approach. ”MSS” stands
for Max Subproblem Size, i.e., the maximal number
of variables for each solved refinement subproblem.
”MUR” stands for ”Max Unsuccesfull Consecutive Re-
finements”, specifying how many non-improving refine-
ments are performed before going to the next hierarchy
level. See Section II-C for details. For each set of MSS
and MUR, each graph is solved using the multilevel
approach with 10 − 100 independent initialization for
the refinements (the embedding is fixed). The MEAN
and MAX values refer to approximation ratios obtained
in those independent runs. Error bars indicate 3 standard
deviations estimated empirically. Approximation ratio
(AR) is computed w.r.t. the results obtained with global
solver, presented in Table I.

V. CONCLUSIONS

An ability to solve large-scale optimization problems
on real quantum devices is crucial to demonstration
of practical quantum advantage in this area. Here we
present a complex hybrid quantum-classical algorithmic
pipeline that is a candidate to achieve this goal. We
introduced advanced modifications to our best-known ap-
proach for practical quantum optimization, by hybridiz-
ing the Noise-Directed Adaptive Remapping (NDAR)
[23] and Quantum Relax & Round (QRR) [9] algorithms.
We experimentally demonstrated that augmenting NDAR
hardware-efficient Time-Block QAOA ansatz [10] runs
with additional classical processing steps allows to find
high-quality solutions to fully-connected random graphs
on 82 qubits, improving upon previous experimental
demonstrations. Equipped with the new quantum heuris-
tics, we investigated how they perform when used as
a sub-solver in a multilevel approach to solving large-
scale QUBO problems up to ∼ 27, 000 variables. Our
results indicate that the real noisy QPU quantum solver
is competitive w.r.t. state-of-the-art heuristics used as
sub-solvers in the multilevel approach. Note that we re-
stricted this initial work to analyze approximation ratios
and solution similarity for a fixed meta-parameter setting
strategy without estimating time-to-solution. Future work
will further optimize NDAR and the MLVL scheme and
will quantify additional metrics such as time-to-solution
and energy-to-solution. We believe that our results con-
stitute a promising step towards employing limited-scale,
noisy quantum hardware for tackling industrially relevant
large-scale problems.
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