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Abstract—With the ever-growing usage of the internet and
the larger loads being generated in recent years, the prediction
of network traffic has become critical for efficient network
management and optimization. In this work, we take an ini-
tial step toward a comprehensive study of the application of
machine learning models for network traffic prediction. Using
real-world traffic data collected at Sandia National Labs for
several scientific applications, we investigate the features of these
datasets and how different preprocessing methods affect the
behavior of different machine learning models. Specifically, we
evaluate the performance of several machine learning models,
including Linear Regression (LR), Support Vector Machine
(SVM), Random Forest (RF), and XGBoostRegressor (XGBR),
against the AutoRegressive Integrated Moving Average (ARIMA)
model. The models are trained and tested on both original and
normalized versions of the network traffic dataset to understand
the impact of data normalization on predictive accuracy and how
the performance of the machine learning models varies based on
the nature of the problem and the provided data.
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I. INTRODUCTION

In this paper, we are trying to highlight the importance of
applying machine learning algorithms for forecasting the load
on a network based on the nature of the usage of that specific
program from taking this information for several runs of the
same program. Another observation we highly recommend is
paying attention to the used machine learning models and
the evaluation metrics that would give misleading evaluation
numbers that don’t represent the performance of these models.
We have built several machine learning models from different
categories to have a diversity in the used models to make sure
that one of them would converge with our dataset after making
them more training-friendly for our machine learning models
using several preprocessing techniques such as normalization,
undersampling, and principle component analysis (PCA) to
come up with the best combination of features for our machine
learning models.

II. METHODOLOGY

This study conducts a comprehensive evaluation of various
machine learning models and compares their performance
against the ARIMA model and the impact of normalizing the
training and testing datasets using the StandardScaler (SC)
normalization technique. The machine learning models ap-
plied are Linear Regression (LR), Decision Linear Regression

(DLR), Random Forest (RF), XGBoostRegressor (XGBR),
Support Vector Machine (SVM), and Long Short-Term Mem-
ory (LSTM) model which is the AutoRegressive Integrated
Moving Average (ARIMA) model.

Using real-world traffic data collected at Sandia National
Labs for several scientific applications, Our datasets consist of
six runs for each of nine scientific applications collected from
real-life traffic data at Sandia National Labs. The data is big
enough from a vertical perspective, with a number of instances
in each run, but the challenge comes in two perspectives;
the first one is the horizontal perspective of the datasets, the
number of features. The second challenge is the shape of the
trend that comes out from the visualization of some of the
applications as shown in Figure 1.

We have considered the AutoRegressive Integrated Moving
Average (ARIMA) model before any other types of machine
learning models especially since we don’t have the sufficient
number of features that most other machine learning models
would require to converge with our datasets. We still consid-
ered classic models such as Classic Linear Regression (CLR)
-to be our base model-, Support Vector Machine (SVM), and
decision tree-based models such as RandomForest (RF) and
XGBoostRegressor (XGBR) which have proven to be able to
handle the lack of training features and would rely on the
trend on the target column -network traffic load in our case-.
We have tried several approaches to splitting the datasets into
training and testing sub-datasets. First, we tried to train the
models on five runs and test them against the sixth one which

Fig. 1: Visualization for our HPCG program with different
ranks showing how the trend changes from one rank to another
and the non-normal behavior of the trend visualizations



(a) The visualization for the actual testing values sorted on
the Y-Axis and their corresponding predicted values produced
using XGBoost Regression model plotted on the X-Axis with
the evaluation metrics MSE, RMSE, and R2-Score values

(b) The visualization for the actual testing values sorted on
the Y-Axis and their corresponding predicted values produced
using RandomForest Regression model plotted on the X-Axis
with the evaluation metrics MSE, RMSE, and R2-Score values

Fig. 2: These graphs represent another validation approach
we took to make sure our XGBR and RF models are giving
good results, and we can compare these results with the
evaluation metrics values to see which metric was evaluating
the performance of the models in a more accurately way based
on the actual results we are getting from producing values
using them and comparing these values to the actual testing
values

is the closest to the 80-20 stereotype training-testing split and
we tried to combine all the runs for each program into one big
dataset and split it afterward into 80% training and 20% testing
datasets which gave the same results disclosed in the results
section, however, with way more training time and required
computational power due to the size of the datasets. Based on
that we decided to check how minimizing the training dataset
would affect the results of the models based on the evaluation
metrics and that was our third and final approach that gave the
results shared in the results sections. For building CLR, SVM,
RF, and XGBR models, we used GirdSearchCV() to find the
best combination of values for their hyperparameters and make
sure our models are not overfitting the training dataset. For
evaluation of the performance of all of our machine learning
models, classic ones and the ARIMA, we have used four
evaluation metrics; Mean Absolute Error (MAE), Mean Square
Error (MSE), Root Mean Squared Error (RMSE), and R2-
Score (R2) to have diversity in our evaluation metrics.

III. RESULTS

the ARIMA model showed some indications that it would
overcome the rank feature effect on the trend of the programs’
datasets from the specs we came up with, however, the MAE
and MSE values were too high and the R2-Score were way
too low indicating that the model didn’t coverage well with
the training dataset causing the ARIMA model to overfit
the training dataset and giving very bad results when tested
against our testing sub-dataset. Including more runs -More
instances- in the training dataset, but still, the ARIMA model’s
performance didn’t improve emphasizing that the amount of
data provided in the training stage, after a specific point,
does not add any new information for the model. The RF
and XGBR models showed similar very high MAE and MSE
values, however, they showed at the same time a 99% R2-
Score value which required an additional step of validation
for our models’ performance to see which evaluation metric
is more reliable in such case as ours. We have excluded the
CLR, and SVM models’ results as they didn’t converge with
the training datasets. Visualization has shown a solid linear re-
lation between the actual testing values and the predicted ones
by the RF and XGBR models. The comparison visualization
illustrated in Figure 2b and Figure 2a emphasizes that the R2-
Score is more reliable in a research case as our forecasting
issue with this format of data as the MAE and MSE evaluation
metrics’ equations require the predicted values to be identical
to actual ones which can be tolerated in our case as long as
the models did converge and give very acceptable forecasted
values.

IV. CONCLUSION

We conclude that machine learning models are to be con-
sidered for network traffic load forecasting and how they can
converge and be reliable even with lacking enough features
taking into consideration the size of the data being provided
and the preprocessing techniques that should be considered
before passing the data into its original format to the models



for making any decisions further on. The ARIMA model was
over-performed by decision tree-based models such as RF
and XGBR models that showed high flexibility even with the
lacking features and were able to handle the effect of the rank
feature on the trend of our target column, and network traffic
load, even when we minimized the training data.

Normalization is not always going to provide additional in-
formation for the models or guarantee any better performance
from them, we would like to emphasize the same hypothesize
as we saw that using StandardScaler() as our normalization
function did not improve the performance of our machine
learning models based on the nature of our datasets that
already following a normal trend. More data does not always
mean that the models will perform better as it sometimes
does not provide any new information for the models and at
the same time costs the machine learning engineering more
computational power and Time. Evaluation metrics are to be
overlooked carefully based on the results of the model and
the nature of the problem we are trying to solve as some
of the evaluation metrics such as MAE and MSE do not
have enough tolerance to see that the performance of the
models is providing the results we are looking for, therefore,
we recommend always to check and compare the forecasting
result of the models and manually compare them against the
actual testing values.
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