
Binary Bleed: Fast Distributed and Parallel Method
for Automatic Model Selection

Ryan Barron†‡, Maksim E. Eren∗‡, Manish Bhattarai†,
Ismael Boureima†, Cynthia Matuszek∗‡, and Boian S. Alexandrov†
†Theoretical Division, Los Alamos National Laboratory. Los Alamos, USA.

∗Advanced Research in Cyber Systems, Los Alamos National Laboratory. Los Alamos, USA.
‡Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County. Maryland, USA.

Abstract—In several Machine Learning (ML) clustering and
dimensionality reduction approaches, such as non-negative ma-
trix factorization (NMF), RESCAL, and K-Means clustering,
users must select a hyper-parameter k to define the number of
clusters or components that yield an ideal separation of samples
or clean clusters. This selection, while difficult, is crucial to avoid
overfitting or underfitting the data. Several ML applications use
scoring methods (e.g., Silhouette and Davies Boulding scores) to
evaluate the cluster pattern stability for a specific k. The score is
calculated for different trials over a range of k, and the ideal k is
heuristically selected as the value before the model starts overfit-
ting, indicated by a drop or increase in the score resembling an
elbow curve plot. While the grid-search method can be used to
accurately find a good k value, visiting a range of k can become
time-consuming and computationally resource-intensive. In this
paper, we introduce the Binary Bleed method based on binary
search, which significantly reduces the k search space for these
grid-search ML algorithms by truncating the target k values
from the search space using a heuristic with thresholding over
the scores. Binary Bleed is designed to work with single-node
serial, single-node multi-processing, and distributed computing
resources. In our experiments, we demonstrate the reduced
search space gain over a naive sequential search of the ideal k and
the accuracy of the Binary Bleed in identifying the correct k for
NMFk, K-Means pyDNMFk, and pyDRESCALk with Silhouette
and Davies Boulding scores. We make our implementation of
Binary Bleed for the NMF algorithm available on GitHub.

Index Terms—K search, Optimization, Binary Search, Log
Search, Binary Chop, Parameter Search

I. INTRODUCTION

In the machine learning (ML) landscape, clustering, and
dimensionality reduction are critical for revealing underlying
data patterns, simplifying complex data, and improving pre-
dictive models’ performance. Methods such as non-negative
matrix factorization (NMF), K-means, pyDNMFk, and py-
DRESCALk clustering are popular because they effectively
handle large data. However, these techniques depend heavily
on an appropriate number of clusters or components, denoted
by the hyper-parameter k. This parameter setting is essential
as it influences the ability of the model to capture the intrinsic
data structure without overfitting or underfitting accurately.

One approach to determine the NMF’s optimal k is au-
tomatic model determination (NMFk), a heuristic algorithm

U.S. Government work not protected by U.S. copyright.

based on silhouette scores to identify a k to yield stable pat-
terns in W and clusters in H [1]–[3]. Here, k is the highest W
and H silhouette scores above the given thresholds tW and tH .
In NMFk, this selection of k is done by a grid search over a k
search space k ∈ K = {1, 2, ...,K} defined by the user, where
a sudden drop in the silhouette scores after the ideal k value
indicates over-fitting. Such selection of the k hyper-parameter
is common in other ML approaches, such as K-means Clus-
tering or RESCAL clustering [4]. Various distributed versions
of unsupervised techniques have been specifically developed
to manage large-scale datasets effectively, as detailed in the
literature [4]–[8]. While these advancements represent signif-
icant progress, the implementations’ time complexity remains
a critical issue. This complexity is primarily influenced by
the parameter k due to the requirement to evaluate cluster
stability across a range of k values. Consequently, there is a
pressing need to develop an improved selection algorithm that
can effectively narrow down the search space for k, thereby
optimizing the computational efficiency of these techniques.

This work introduces a method based on binary search,
Binary Bleed, which heuristically prunes the search space for
the hyper-parameter k. Instead of visiting each k sequentially,
Binary Bleed performs a binary search over the given k search
space. It operates under the assumption that the clustering
method is used with a scoring metric that increases with k for
all sub-optimal k values while remaining low for k > koptimal

due to over/under-fitting. This assumption has been valid
for most clustering and dimensionality reduction algorithms,
including NMFk and RESCALk when paired with silhouette
scoring and K-means when paired with Davies Boulding
scoring. Practically, in NMFk, this translates into silhouette
scores approximating the shape of a square wave curve. While
the working assumption has been tested and validated against
various datasets, including text data for topic modeling, cyber-
security data for malware analysis and anomaly detection [2],
[9]–[11], the authors acknowledge the potential it may not
apply to other datasets.

Based on the assumptions discussed above, Binary Bleed
performs binary search over the k search space K, given user-
provided threshold t, and prunes the lower k from K on iden-
tifying a score s >= t for maximization tasks and s <= t for
minimization tasks. In the best-case scenarios, Binary Bleed

drastically reduces the k search space, allowing for faster
hyper-parameter tuning for k selection. We demonstrate k visit
reductions with Binary Bleed when finding the true k com-
pared to a naive linear search of k while preserving the correct
identification of k. The method is analyzed with NMFk, K-
means, pyDNMFk, and pyDRESCALk algorithms using sil-
houette scoring for the maximization task and Davies Boulding
scoring for the minimization task. We further develop Binary
Bleed to work with multi-processing and High-Performance
Computing (HPC) systems and make the algorithm available
on GitHub1. To the best of our knowledge, integrating binary
search with a pruning heuristic for k selection with scoring
tending towards square-wave distributions is novel.

II. RELEVANT WORK

This section briefly reviews several machine learning di-
mensionality reduction and clustering algorithms that require
hyper-parameter selection for k. Binary Bleed uses binary
search to optimize k, so we review related binary search
studies. Finally, Binary Bleed optimizes the hyper-parameter
k over a search range, making an automatic model determi-
nation, or k selection, another foundation. Other works opti-
mized their respective algorithms over parallel and distributed
contexts for binary search and automatic model determination.

Applications of k Search: Optimizing for k has utility in
several domains, particularly clustering, where optimal cluster
count search computations can be expensive. Typically, k
is a user-provided parameter that must be refined through
trial and error. Algorithms that require user-specified or trial-
discovered k include K-means Clustering [12], K-medoids
Clustering [13], K-medians Clustering [14], Fuzzy C-means
Clustering [15], Mini-Batch K-means [16], Spherical K-means
[17], Elkan K-means [18], NMF Clustering [19], Symmetric
NMF Clustering [20], and RESCAL Clustering [21].

Each algorithm can use the silhouette score to determine
the ideal k heuristically. In our experiments, detailed in the
results section, we analyze Binary Bleed’s performance when
operating with the silhouette score and Davies Boulding to test
NMFk, RESCAL, and K-means algorithms.

Binary Search: Several aspects of binary search are relevant
to this work, including optimizing search, modifying binary
search, and parallelizing binary search. Noisy Binary Search
[22] minimizes the number of comparisons to find an optimal
coin in a sequence of coin flips by using biased coin flips to
compare elements in a sorted sequence indirectly. It identifies
the position where the probability of observing heads changes
from below to above a given target threshold. Flip positions
are determined from previous outcomes, focusing the flips on
areas with the highest uncertainty about crossing the target
probability. This approach is similar to Binary Bleed, which
narrows searches in the search space using a thresholding
mechanism combined with an observed score. Differently,
while Noisy Binary Search selects the next target based on the
score of the current item, Binary Bleed is designed for methods

1NMFk with Binary Bleed is available in https://github.com/lanl/T-ELF.

like NMF, where silhouette scores obtained from different k
selections are independent of each other. Consequently, the
silhouette score cannot decide the next k to visit. Instead, for
the k search space pruning heuristic, Binary Bleed follows the
hypothesis that the silhouette score will remain low after the
ideal k due to the overfitting phenomenon. Once a stable k
is found, all the lower k are ignored, and higher or lower k
values require visitation until overfitting is observed.

Another work, [23], sought to optimize the binary search
algorithm by modifying it to check the bounds of a stack
and adjust these bounds, thereby increasing or narrowing
the current search space to make the search process more
efficient. This was required to measure the resting position
of human eyes, which changes. Similar to [23], a modified
binary search was described by [24], which checks at both
ends of a sub-array and the middle to reduce the number of
iterations through many sub-arrays to find the search value.
Both [23] and [24] reduce needed checks in binary search,
similar to this work. However, this work precomputes the
search space and iteratively prunes values. Binary Bleed does
not terminate upon finding an optimal candidate. Instead, it
adjusts the search space and continues exploring the parameter
direction to optimize the results further.

Some works have achieved parallelization of the binary
search with specific constraints. One work, [25], partitions
the search array into smaller sub-arrays, searching each in
parallel, which is similar to [24] but operates all arrays
concurrently, and so the similarities to this work are the same
with the addition of parallelizing the problem. Binary Bleed
may operate parallel jobs across single or multiple compute
nodes, each handling a portion of the k search space. Another
work, Parallel Binary Search in [26] defines two arrays, A and
B, where |A| < |B|. Parallelization distributes A’s elements
across resources to find the smallest element in B greater
than or equal to each element in A. While this approach to
parallelization is similar to parallelizing the k range in our
work, the objectives differ. Binary Bleed aims to find the
largest or smallest optimal value in the k space rather than
minimizing array indices.

Importantly, distributed and parallel binary searches are
often used interchangeably but address different challenges.
In a parallel search, data is small enough to fit in memory, so
evaluations of different k values are concurrent on different
processors or nodes. In contrast, distributed search requires
multiple processors or nodes to handle single k evaluations
for data too large for memory. In our context, comparing the
search term to the current term n in binary search is analogous
to model computation at k = n. This computation at k = n
may exceed memory capacity for large datasets, necessitating
a distributed solution where the data for a single calculation
is divided among multiple resources. We demonstrate this
using Binary Bleed to minimize the k search space with
distributed NMF from our prior work [4], [27]. This approach
allows parallel evaluations to concurrently minimize k, while
distributed evaluations manage the computation for each k in
large datasets, ensuring efficient utilization of resources.

K Search: Several algorithms have optimized parameters
or k, including parallelization and distributed contexts. For
textures, [28] uses distributed calculations from constraints and
backtracking error correction, allowing bulk calculation with
minor corrections. While our work can distribute an NMF k
operation larger than memory, there is no need to backtrack
in the k optimization. Either an optimal k is found or not and
can be done in parallel and/or distributed calculations.

In an alternative method to approximate the number of k
in a dataset, [29] uses hash functions with prototypes. This
approach adaptively chooses a set of prototypes and binary
codes to represent the data sample distribution, approximating
neighbor relationships. The distribution in this algorithm is
derived from learning the weights of the hash codes rather
than selecting k. Therefore, while distribution is utilized in
their method, our present work directly employs distribution
and parallelization to determine the optimal k value.

Another optimization can be seen in the context of K
Nearest Neighbors (KNN) [30], where training examples are
sorted into a binary search tree based on the two furthest
points in the dataset. The furthest data points are identified
at each node to construct the next partition. This method
attempts to optimize the k selection for KNN. However, it is
highly specific to KNN rather than a general parameter search
optimization method, as our work with Binary Bleed proposed.

Similar to [30], the parallel k search in [31] utilizes GPU-
accelerated parallel processing and specific sorting algorithms,
such as bitonic sort, that are efficient under synchronous
operation conditions. While this approach reduces the number
of operations needed in a distributed environment, it is tailored
to algorithms that benefit from GPU operations and truncated
sorting methods. In contrast, our work aims to optimize the
k parameter more generally and does not rely on a specific
model, sorting method, or primitive operation.

III. ALGORITHM

Estimating the optimal number of clusters k is crucial for
effective unsupervised machine learning methods for latent
feature extraction and clustering. Traditional methods use an
exhaustive linear search, resulting in high computational costs,
scaling with Θ(n), where n is |K|. Binary search offers a
more efficient alternative with a worst-case time complexity of
O(log(n)), but it usually finds only exact matches. The Binary
Bleed algorithm adapts binary search to optimize clustering
performance metrics, like silhouette scores. The new methods
introduced are Binary Bleed Vanilla (Vanilla) and Binary
Bleed Early Stop (Early Stop), while models not using these
methods are referred to as Standard.

A. Binary Bleed

Our method is named Binary Bleed due to its method
of pruning less optimal k values, extends traditional binary
search techniques by continuing to search even after a potential
optimal k is found, ensuring the maximization or minimization
of the scoring function f : K × D → R, where K is the
set of candidate parameters and D represents the dataset.

Binary Bleed operates recursively to identify the optimal k
that maximizes or minimizes an evaluation score function
f(k,D). Unlike a conventional binary search that terminates
upon finding a target value, Binary Bleed dynamically adjusts
the search space based on an evaluation threshold. From an
initial range [kmin, kmax], it computes the mid-point

kmid =

⌊
kmin + kmax

2

⌋
and evaluates the score

fmid = f(kmid,D).

If fmid meets the threshold, the search continues in the
direction of optimization. For maximization,

the lower bound is updated to kmin = kmid + 1 when
f(kmid + 1,D) > fmid, and conversely, the upper bound is
updated to kmax = kmid − 1 when f(kmid − 1,D) < fmid. For
minimization, the process is reversed. This recursive update
continues until convergence or until a predefined stopping
criterion is met, allowing the algorithm to “bleed” into higher
or lower k. This ensures thorough exploration and optimization
of the parameter k, adapting the search space dynamically to
achieve the best possible evaluation score within the specified
constraints.

This search does not cease upon finding a k above the
threshold; instead, it continues exploring to ensure that no
better solutions exist, particularly focusing on larger k values
that may yield higher scores. The runtime complexity of
Binary Bleed is bounded by Θ(nlog2 (p+1))×(Tmodel+Tscore) in
both the best and worst cases, as shown later in III-A, where p
is the probability of recursing twice. We apply binary search
on the ordered set K, the search space, to find its optimal
value. Mathematically, this optimization can be expressed as:

koptimal = max {k ∈ {1, 2, . . . ,K} : S(f(k)) > T}

where T is the selection threshold, f(k) represents the model
computation, and S(f(k)) is the model’s scoring function.

The algorithm is presented in Algorithm 1, showcasing its
operational structure. To determine the optimal k, a list of
k (K) is provided with the dataset, model, scorer, and score
threshold. Initially, the set of visited k, the maximum (kmax),
and minimum (kmin) bounds are initialized (lines 1-2). The
algorithm checks the base case for recursion: if the left index
ileft is greater than or equal to the right index iright, the
function returns, terminating the recursive search when no
more k values are left to explore (lines 3-4). The optimal
k is sought by computing the middle index of K and its k
(lines 5-6). This value is validated to ensure it is within kmin
and kmax (line 7). The model is evaluated at this middle k
on the dataset, and the score is added to the set of visited k
values (lines 8-9). If the score at kmiddle meets or exceeds the
threshold, kmin updates to kmiddle, focusing on larger values
(lines 10-12). If the score is below the stop threshold, kmax
updates to kmiddle, focusing on lower values (lines 13-15).
The BinaryBleedKSearch function is recursively called on the
narrowed k range (lines 17-19). This dynamically recursive

Algorithm 1 Binary Bleed k Search, Single Rank & Thread
Require: K (list of k), data (dataset), model (model for calculation), scorer

(function to quantify output), Tselect k (minimum score for optimal k)
Ensure: Optimal k value and its prediction score

1: ranksseen ← ∅, kmax ←∞, kmin ← −∞
2: function BINARYBLEEDKSEARCH(

K, ileft, iright, scorer, data,model, Tselect k)
3: if ileft ≥ iright then return
4: end if
5: middle← ileft +

⌊
iright−ileft

2

⌋
6: kmiddle ← Ks[middle]
7: if kmiddle > kmin and kmiddle < kmax then
8: score← scorer(model(data, kmiddle))
9: Append (kmiddle, score) to ranksseen

10: if score ≥ kselect threshold then kmin ← kmiddle
11: end if
12: if score ≤ kstop threshold then kmax ← kmiddle
13: end if
14: end if
15: if middle + 1 ≤ kmax then
16: BINARYBLEEDKSEARCH(Ks, kmax, kmin,middle + 1, iright

ranksseen, scorer, data,model, Tselect k)
17: end if
18: if middle− 1 ≥ kmin then
19: BINARYBLEEDKSEARCH(Ks, kmax, kmin, ileft,middle− 1

ranksseen, scorer, data,model, Tselect k)
20: end if
21: end function

search space adjustment allows thorough exploration of k,
ensuring the optimal is found based on the evaluation criteria.

Recursive Behavior Analysis: Let T (n) denote the runtime
of the algorithm for K of size n, and TM and TS are the
runtimes of the model and scorer operating on data, D. Table I
asymptotically itemizes the algorithm. Truncation of the search
space occurs with a probability p of two recursions and 1− p
of one recursion. Therefore, the recurrence relation is:

T (n) = p · 2T
(n
2

)
+ (1− p) · T

(n
2

)
+O(TM + TS)

The model and scorer operate on D, so their runtimes do not
scale with n and thus can be represented as O(1) for each
subproblem. This simplifies the equation to:

T (n) = (p+ 1)T
(
n
2

)
+O(1)

Applying the Master Theorem [32] with a = p + 1 (number
of recursive calls), b = 2 (factor by which the problem size
is divided) and f(n) = O(1): logb a = log2 (p+ 1) For
log2 (p+ 1) < 0 to hold, p would need to be less than 0, prob-
abilistically impossible. Therefore, we have c < log2 (p+ 1),
and case 1 of the Master Theorem applies:

T (n) = Θ(nlog2 (p+1))

Thus, Binary Bleed’s asymptotic runtime is Θ(nlog2 (p+1)).

Step Line Complexity
Initialization 1-2 O(1)

Base Case 3-4 O(1)

Middle/Check 5-7 O(1)

Model/Score 8 TM + TS
Update Min/Max 10-16 O(1)

Bound Check 17,20 O(1)

Recursion 18-23 -

TABLE I: Primitive opera-
tions for asymptotic analysis.

6

3

2

1

5

4

9

8

7

11

10

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

Fig. 1: Traversal sorts:
pre=red, in=green, post=blue.

B. Binary Bleed Multi-threaded, Multi-rank

A parallel implementation of Binary Bleed can be ob-
tained by extending the serial implementation depicted in Al-

TABLE II: Chunks Pre/Post Traversal Sorts on two resources

Order Operation 1 Operation 2

T1 Traversal Order Sort Chunk Ks by Resource Count

In 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 [1, 2, 3, 4, 5, 6] [7, 8, 9, 10, 11]
Pre 6, 3, 2, 1, 5, 4, 9, 8, 7, 11, 10 [6, 3, 2, 1, 5, 4] [9, 8, 7, 11, 10]
Post 1, 2, 4, 5, 3, 7, 8, 10, 11, 9, 6 [1, 2, 4, 5, 3, 7] [8, 10, 11, 9, 6]

T2 Traversal Order Sort Chunk Ks by Alg. 2

In 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 [1, 3, 5, 7, 9, 11] [2, 4, 6, 8, 10]
Pre 6, 3, 2, 1, 5, 4, 9, 8, 7, 11, 10 [3, 1, 5, 9, 7, 11] [6, 2, 4, 8, 10]
Post 1, 2, 4, 5, 3, 7, 8, 10, 11, 9, 6 [1, 5, 3, 7, 11, 9] [2, 4, 8, 10, 6]

T3 Chunk Ks by Resource Count Traversal Order Sort

In [1, 2, 3, 4, 5, 6] [7, 8, 9, 10, 11] [1, 2, 3, 4, 5, 6] [7, 8, 9, 10, 11]
Pre [1, 2, 3, 4, 5, 6] [7, 8, 9, 10, 11] [4, 2, 1, 3, 6, 5] [9, 8, 7, 11, 10]
Post [1, 2, 3, 4, 5, 6] [7, 8, 9, 10, 11] [1, 3, 2, 5, 6, 4] [7, 8, 10, 11, 9]

T4 Chunk Ks by Alg. 2 Traversal Order Sort

In [1, 3, 5, 7, 9, 11] [2, 4, 6, 8, 10] [1, 3, 5, 7, 9, 11] [2, 4, 6, 8, 10]
Pre [1, 3, 5, 7, 9, 11] [2, 4, 6, 8, 10] [7, 3, 1, 5, 11, 9] [6, 4, 2, 10, 8]
Post [1, 3, 5, 7, 9, 11] [2, 4, 6, 8, 10] [1, 5, 3, 9, 11, 7] [2, 4, 9, 10, 6]

Algorithm 2 Chunk k values by Skip Mod Resource Count
Require: K (list of k), num resources (resource count to split k)
Ensure: List of chunks where each chunk contains integers assigned to a resource

1: function CHUNKKS(K,num resources)
2: K chunks← []
3: for i = 0 to num resources− 1 do
4: K chunks[i]← empty list
5: end for
6: for k = 0 to Ks− 1 do
7: resource id← k mod num resources
8: Append k to K chunks[resource id]
9: end for

10: return K chunks
11: end function

gorithm 1 with the following changes: Make kmin, kmax and
the list of visited k rankseen global using a distributed cache
such as reddis, and ileft and iright are now computed by each
MPI rank or thread as ileft = kmin+idx×(kmax−kmin)/size
and irigth = min(ileft + size, kmax) where idx is the thread
index or MPI rank, and size is the total number of threads or
MPI ranks. The resulting parallel implementation will work
well, but will not be effective when the list of k is sparse.

A more robust algorithm can be obtained by replacing
recursions in Algorithm 1 by a k-sort, illustrated in Figure
1, where k values are sorted using in-order, pre-order, or post-
order binary tree traversal, indicated by the color on three sides
of each rank’s k value.

Further, K must be chunked into available resources using
Algorithm 2. By appropriately sorting and chunking the k
values, the Binary Bleed algorithm can efficiently operate in
a multi-threaded and multi-rank environment, enhancing its
scalability and performance.

Logistics of Chunking K and Traversal Sort : To
illustrate the optimal function sequence, assume k = [1− 10],
with two operating resources. The four splits of the data are:

1) Sort, then data chunk by resources (Table II’s T1)
2) Sort, then data chunk by Algorithm 2 (Table II’s T2)
3) Data chunk by resources, then sort (Table II’s T3)
4) Data chunk by Algorithm 2, then sort (Table II’s T4)
Table II distributes k on two resources, showing in-order

traversal monotonically increases, leading to inadequate order-
ing for early termination of k. Truncation removes unvisited

smaller values, which is impossible for in-order traversal.
Furthermore, T1 demonstrates the insufficient distribution of
k values across resources. For example, the second resource
may find an optimal result in truncation for all k in the first
resource, leading to one resource being idle while the other
operates. The remaining splits present T3 as the least optimal,
as the values are similarly partitioned to T1, resulting in
idle higher optimal resources. T2 and T4 are distinguished
by order, so operation logistics are a lower priority than the
use of Algorithm 2 as a load-balanced partition. Table II
shows traversal selections are ambiguous. However, Section
IV indicates pre-order traversals visit fewer k values overall.
Algorithm 3 coordinates with Algorithm 2 to distribute and
process k values across multiple resources efficiently.

Algorithm 3 Multiple Ranks and Threads Binary Bleed
Require: Ks (sorted k values), N (ranks in network), t (threads per rank)

1: Initialize all ranks with unique identifiers and communication between ranks
2: procedure INITIALIZERANKKS(Ks,N, t, data)
3: Kchunks ← CHUNKKS(Ks,N)
4: for each rank n in the network do
5: Initialize Ksbst ← []
6: TRAVERSALSORT(Kchunks[n], length(Ks),&Ksbst)
7: STARTTHREADS(data,Ksbst, t)
8: end for
9: end procedure

10: procedure STARTTHREADS(data,Ks, numthreads)
11: Ks size← |Ks|, mutex← CreateMutex()
12: for i← 0 to Ks size do
13: start thread BINARYBLEEDMULTI(

Ksbst[i%numthreads], data,&koptimal,mutex)
14: end for
15: wait for all threads to finish, then process koptimal
16: end procedure
17: procedure BROADCASTK(koptimal, sender)
18: for each rank n in the network do
19: if n ̸= sender then Send koptimal to rank n
20: end if
21: end for
22: end procedure
23: procedure RECEIVEKCHECK(kreceiver, receiver)
24: if message from network then Receive ksender, sender
25: else return kreceiver
26: end if
27: if kreceiver < ksender then kreceiver ← ksender
28: else Send kreceiver to rank sender
29: end if
30: end procedure

First, in Algorithm 3, the k list, number of ranks, and
threads per rank are needed. Ranks are initialized with IDs and
communication setup (lines 1-2). Algorithm 2 chunks the k
(line 3). Each rank initializes a binary search tree (BST) (lines
4-5) of sorted k and starts threads on the data (lines 7-9). The
thread initializes variables for |K| and a mutex (lines 10-11). It
iterates over the threads to start Binary Bleed on each k value,
waits for completion, and processes the optimal value (lines
12-16). The broadcast function iterates the ranks, sending the
optimal k to others (lines 17-22). The function for receiving
communication is defined (line 23). On receiving a message,
the rank checks if the received k exceeds the current optimal,
updating or returning the higher optimal as needed (lines 24-
30). The second change needed for parallel Binary Bleed is
the communication of pruned k values to other resources.
Algorithm 3, in conjunction with Algorithm 4, contains the set
of calls to complete the communication of pruning in parallel
and distributed Binary Bleed.

Algorithm 4 Binary Bleed k Search, Multi-rank & Thread
Require: k (value to compute), data (dataset), model (calculator), scorer (quanti-

fies output), Tselect k (minimum k score), rank id (id of rank)
Ensure: Optimal k value and its prediction score

1: koptimal ← null
2: function BINARYBLEEDMULTI(k, koptimal, data,mutex, Tselect k)
3: Initialize model, scorer, report← 0
4: Lock(mutex) and kreceived ← koptimal then Unlock(mutex)
5: kreceived ← RECEIVEKCHECK(kreceiver, rank id)
6: Lock(mutex)
7: if kreceived ̸= koptimal then
8: if ¬koptimal or kreceived > koptimal then koptimal ← kreceived
9: else report← 1

10: end if
11: end if
12: Unlock(mutex)
13: if report then BROADCASTK(koptimal, rank id) and report← 0
14: else
15: if koptimal >k then return
16: end if
17: end if
18: score← scorer(model(data, k))
19: if score ≥ kselect threshold then Lock(mutex)
20: if ¬koptimal or k > koptimal then koptimal ← k and report← 1
21: end if
22: Unlock(mutex)
23: if report then BROADCASTK(koptimal, rank id)
24: end if
25: end if
26: end function

Algorithm 4 requires the k range, data, model, scorer, selec-
tion threshold, and rank ID. Lines (1-3) initialize the optimal
k, define the Binary Bleed multi-function, and initialize the
model, scorer, and report flag. Line (4) locks the mutex, sets
the received k as optimal, and unlocks the mutex. Line (5)
checks network messages and sets the received k. Lines (6-
12) lock the mutex, compare optimal and received k, update
the optimal if different, and possibly set the report flag before
unlocking the mutex. Lines (13-17) check if a report is needed
for other resources and reset the report flag if necessary. Line
(18) operates the model, data, and scorer on k. Lines (19-26)
lock the mutex if the score exceeds the threshold, update the
optimal k if larger, and broadcast if the optimal was updated.
In multi-threading, the rank propagates the optimal k from the
finding thread to others, pruning smaller k values. In multi-
rank, any rank propagates the optimal k to other ranks. In
both cases, threads report to ranks, which then report to other
ranks and threads. In an HPC system, resources are processes
or compute ranks. In multi-threading, the optimal k a thread
finds is propagated by the controlling rank to all threads, which
prune smaller k values. In multi-rank, any rank finding the
optimal k shares it with all ranks. Threads report to ranks,
then communicate the optimal k to other ranks and threads.

6

3

2

1

5

4

9

8

7

11

10
012 3

012 3

0

1 2

Fig. 2: Vanilla: Part 1

6

3

2

1

5

4

9

8

7

11

10
3

3

2

Fig. 3: Vanilla: Part 2

Operation Dynamics: Figure 2 Pre-order sorts k =
{1, 2, · · · , 11} on three resources after Algorithm 2 (T4 II). ∀k
are the possible optimal. Resource allocation (r,g,b) is by visit
order. In part 2, Figure 3, the score of k = 7 is greater than

the threshold, so it is optimal, and the scores of k = {6, 8}
are less than the threshold. k = {1, 2, · · · , 5} are pruned for
being less than the optimal. The upper k range, k = {9, 10, 11}
continues. Figure 4 schedules k values are chunked by four
resources, then pre-order sorted. The graph shows the optimal

Fig. 4: Binary Bleed Vanilla example graph.

selection threshold as a dashed gold line. Yellow vertical bars
indicate truncation is reported to other resources, where a
k score passed the threshold. The gold threshold is crossed
at four values: k = {7, 8, 10, 24}. When the first k = 8
passes the threshold, all k < 8 are pruned. However, the
implementation shown does not prune k values after the model
begins execution; therefore, k = 7 is complete. The k values
[7, 10] have no remaining k values to prune. Due to pre-order
sorting, K = 24 is run before k = {18, 19, · · · , 22}. Since
k = 24 is above the selection threshold, those lower priority
k values are pruned. The upper k range continues without
crossing the selection threshold, so K = 24 remains optimal.

C. Binary Bleed Early Stop

Specific domains allow for an additional heuristic. Rather
than pruning the lower k values, setting a bound on the other
extreme of the data will allow for truncation of the upper
values. This heuristic is based on domain knowledge, where
if any scores cross the stop threshold, they will never rise to
cross the selection threshold, and subsequent k values can be
ignored. Mathematically, it can be represented as:

koptimal = max {k ∈ {1, 2, . . . ,K} : ∀i ≤ k, S(ki) > U}

where S(ki) is the score of the ith k, and U is the stop bound.

6

3

2

1

5

4

9

8

7

11

10
0

1

2

0

1

20

1

20

1

Fig. 5: Early Stop: Part 1

6

3

2

1

5

4

9

8

7

11

10

Fig. 6: Early Stop: Part 2.

Figure 5 Pre-order sorts k = [1 − 11] after Algorithm 2
(T4 II), on four resources. In part 2, Figure 6, k = 5 exceeds
the selection threshold, so the optimal is set and k = [1 − 4]
(dark nodes) are pruned. k = 8 crosses the stop threshold, so
k = [9− 11] are pruned. Therefore, the optimal remains 5.

D. Additional Considerations

In multi-resource computing, an optimal k may be larger
than an executing k. For long computations, checks can be
pushed into the model to terminate such k early. Consider

the scoring distribution, like silhouettes, which can speed up
the process. True optimal values are found faster when scores
above the threshold resemble a square wave. Mathematically:

S(ki) =
sgn(k0 − ki) + 1

2

where S(ki) is the evaluation score at the ith index of k
values, k0 is the optimal k, and sgn is the signum function,
which evaluates to +1 for ki < k0 and −1 for ki ≥ k0.
In the worst case, a Laplacian score distribution will peak
at the optimal k while other k scores will be below the score
selection threshold. Lower k values may be pruned if the peak
is visited before lower values. Otherwise, all values will be
visited in the order of the sort. Despite the score distribution,
Binary Bleed will not visit more k values than a linear search.

IV. EXPERIMENTAL RESULTS

We gauge the efficacy of unsupervised learning methods in
single-node and distributed settings. We evaluate NMF and
K-means in the former, then NMF and RESCAL in the latter.

Fig. 7: NMFk (top row) and K-means (bottom row), Vanilla
(Left) and Early stopping (Right). ∀koptimal = ktrue.

A. Single-node Setting

NMFk: Data was generated using a synthetic data generator
with random Gaussian features for a predetermined k, where
ktrue = {2, 3, · · · , 30}. The shape of 30 matrices was sized
1000 by 1100, resulting in 1.1 million non-negative entries.
The ktrue predetermined the number of clusters in the data,
typically showing a drastic drop-off in the scoring metric
for subsequent k values. The evaluation criterion was the
silhouette scores of the proposed clusters for the visited k.
For the NMFk Binary Bleed trials, three separate instances
were operated over the same data: Standard NMFk, Binary
Bleed Vanilla, and Binary Bleed Early Stopping. Each instance
was evaluated on all 30 matrices with k search space K =
{2, 3, · · · , 30}. The results corresponding to NMFk Vanilla
and NMFk Early Stopping for k = 15 and k = 8, respectively,
are Figure 7’s top row. It can be seen that Binary Bleed pruned
multiple k values, whereas the standard method must visit

all K. In the overview, Figure 8, orange and blue lines show
the Binary Bleed Vanilla algorithm and the downward trend
of k visits relative to the standard, where Pre-order finds the
optimal k in fewer overall visits. Similarly, Early Stop in pink
and green have lower overall visits than Vanilla, with Pre-
order benefiting more despite a slightly increasing trend for
both Early Stop lines over ktrue. Interestingly, the post-order
Early Stop between being as fast as the Pre-order and visiting
more k than the Binary Bleed Vanilla, which can be attributed
to the number of compute resources paired with which values
are ktrue and the ordering of K. Overall, the algorithms visit
the following percentages of K: Pre-order Vanilla: 56%, Post-
order Vanilla: 76%, Pre-order Early Stop: 27%, Post-order
Early Stop: 44%, while Standard NMFk visits 100% of K.
This shows Pre-ordering K with Early Stop executes fastest.

2 6 10 14 18 22 26 30
True K

0.2

0.4

0.6

0.8

1.0

K
 V

is
it

%

2 6 10 14 18 22 26 30
True K

0.2

0.4

0.6

0.8

1.0

K
 V

is
it

%

Standard
Pre-Order Vanilla

Post-Order Vanilla
Pre-Order Early Stop

Post-Order Early Stop

Fig. 8: Standard NMFk (left) and K-means (right), Vanilla, and
Early Stop over Pre-order, and Post-order traversal sorting.

K-means: The data was generated by simulating Gaussian-
distributed clusters with a standard deviation of .5 and the true
k cluster count. Overlaid random noise introduces variability
and ensures robustness. ktrue = {2, 3, · · · , 30} and K =
{2, 3, · · · , 30}. Given the stochastic scoring, we cluster fifty
times for each ktrue on every method-ordering pair (Vanilla,
K-means Standard, Early Stop) in Pre-order and Post-order
configurations. Davies-Bouldin scoring is used to evaluate the
cluster quality and to determine the correct k. The Root Mean
Square Error (RMSE) scores of correct k were as follows:
Post-Order Early Stop: 1.08, Pre-order Early Stop: 2.11, Post-
Order Vanilla: 1.08, Pre-order Vanilla: 1.72, and baseline
Standard k-means: 1.32. These results indicate the accuracy
in identifying ktrue, with all Binary Bleed iterations having
RMSEs of 0.79 or less, close to the standard RMSE of 1.32.

K-means Vanilla and K-means Early Stopping results for
k = 18 and k = 9, respectively, are shown in Figure 7. In
the overview, Figure 8, Early Stop, pink and green, dominate
the speed-up in lower k, but the dominating factor transitions
to Pre-order sorting after k = 15. Average k visit percentages
are– Pre-order Vanilla: 77%, Post-order Vanilla: 92%, Pre-
order Early Stop: 50%, Post-order Early Stop: 71%. As
reported, the percent k visited shows the reduced amounts k
visits needed to complete the optimization process.

B. Multi-node Setting

We demonstrate a reduction in k visits for topic modeling of
over 2 million scientific abstracts from arXiv with NMFk from
[33]. We used the LANL Chicoma super-computer cluster on
the GPU partition and allocated ten nodes, with four NVIDIA
A100s per node. NMFk with Binary Bleed Early Stop and
standard ran on K = {2, 3, · · · , 100}. Early stop visited 60%
of the total compared to Standard NMFk. Both agreed the
koptimal = 71 for the vocabulary size 10,280.

C. Distributed Setting

To showcase the efficacy of our approach on the largest
dataset, we utilized the distributed NMF framework pyDNMFk
results and the distributed RESCAL framework pyDRESCAL,
as referenced in [27] and [8], respectively. Large datasets need
substantial computational resources to factorize. For instance,
without Binary Bleed, pyDNMFk required 2 hours with 52,000
cores to estimate k using standard NMF for a 50TB dataset, av-
eraging 17.14 minutes per k for K = {2, 3, · · · , 8}. Similarly,
pyDRESCALk required 3 hours with 4,096 cores to factorize
11.5TB of synthetic data using standard RESCAL, averaging
18 minutes per k for K = {2, 3, · · · , 11}. Binary Bleed Vanilla
and Early Stop results on this distributed data were identical,
so only the former’s results were considered, given that the
stop thresholds were crossed on the last k. For both RESCAL
and NMFk, the selected k matched the standard.

RESCAL: Binary Bleed was applied to the silhouette and
relative error metrics with Pre-order and Post-order traversal.

Fig. 9: Binary Bleed reduction
on distributed Rescal (Purple),
and distributed NMF (Green).

For Pre-order traversal, 30%
of the total k values were
visited, resulting in an aver-
age runtime of 54 minutes,
compared to the 180 min-
utes required for the stan-
dard RESCAL. In contrast,
Post-Order traversal visited
80% of the total k values,
with an average runtime of
144 minutes, as in Figure 9.

NMF: Similarly, the re-
sults from [27] were analyzed for K = {2, 3, · · · , 8}. Using
Pre-order and post-order traversal, we evaluated the Binary
Bleed Vanilla algorithm for the silhouette score. For Pre-Order
traversal, 43% of the total k values were visited, resulting in
an average runtime of 51.43 minutes, compared to the 120
minutes required for the standard NMF. Post-order traversal
visited 86% of the total k values, with an average runtime of
102.86 minutes, as shown in Figure 9. These results further
emphasize the efficiency of the proposed approach in reducing
computational time while ensuring effective factorization.

V. CONCLUSION

This work addresses the computationally expensive task
of k search over potentially large datasets, reducing a O(n)
search time to approach O(log(n)). Introduced is the ability
to optimize the k search from calculation outputs in an

upward or lower direction based on a threshold. The algorithm
can operate on a single thread, multiple threads, multiple
nodes, and distributed systems. Additionally, early stopping is
introduced to reduce directional k bleed on sufficient domains.
We tested our method with NMFk, K-means, and RESCAL
with Silhouette and Davies Boulding scoring techniques both
on synthetic and real-world data. Our experiments showed the
k search space can be drastically reduced with Binary Bleed.

ACKNOWLEDGMENT

This research used resources provided by the LANL Institu-
tional Computing Program supported by the U.S. Department
of Energy National Nuclear Security Administration under
Contract No. 89233218CNA000001.

REFERENCES

[1] B. Alexandrov, L. Alexandrov, and V. S. et al., “Source identification
by non-negative matrix factorization combined with semi-supervised
clustering,” US Patent S10,776,718, 2020.

[2] B. Alexandrov, V. Vesselinov, and K. O. Rasmussen, “Smarttensors
unsupervised ai platform for big-data analytics,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2021, lA-
UR-21-25064. [Online]. Available: https://www.lanl.gov/collaboration/
smart-tensors/

[3] M. Eren, N. Solovyev, R. Barron, M. Bhattarai, D. Truong, I. Boureima,
E. Skau, K. Rasmussen, and B. Alexandrov, “Tensor Extraction of
Latent Features (T-ELF),” Los Alamos National Laboratories, Tech.
Rep., Oct. 2023. [Online]. Available: https://github.com/lanl/T-ELF

[4] M. Bhattarai, I. Boureima, E. Skau, B. Nebgen, H. Djidjev, S. Rajopad-
hye, J. P. Smith, B. Alexandrov et al., “Distributed non-negative rescal
with automatic model selection for exascale data,” Journal of Parallel
and Distributed Computing, vol. 179, p. 104709, 2023.

[5] I. Boureima, M. Bhattarai, M. E. Eren, N. Solovyev, H. Djidjev,
and B. S. Alexandrov, “Distributed out-of-memory svd on cpu/gpu
architectures,” in 2022 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, 2022, pp. 1–8.

[6] I. Boureima, M. Bhattarai, M. Eren, E. Skau, P. Romero, S. Eidenbenz,
and B. Alexandrov, “Distributed out-of-memory nmf on cpu/gpu archi-
tectures,” The Journal of Supercomputing, vol. 80, no. 3, pp. 3970–3999,
2024.

[7] M. Bhattarai, G. Chennupati, E. Skau, R. Vangara, H. Djidjev, and B. S.
Alexandrov, “Distributed non-negative tensor train decomposition,” in
2020 IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 2020, pp. 1–10.

[8] M. Bhattarai, N. kharat, I. Boureima, E. Skau, B. Nebgen, H. Djidjev,
S. Rajopadhye, J. P. Smith, and B. Alexandrov, “Distributed
non-negative rescal with automatic model selection for exascale
data,” Journal of Parallel and Distributed Computing, vol. 179,
p. 104709, 2023. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0743731523000710

[9] M. E. Eren, N. Solovyev, M. Bhattarai, K. O. Rasmussen,
C. Nicholas, and B. S. Alexandrov, “Senmfk-split: Large corpora topic
modeling by semantic non-negative matrix factorization with automatic
model selection,” in Proceedings of the 22nd ACM Symposium on
Document Engineering, ser. DocEng ’22. New York, NY, USA:
Association for Computing Machinery, 2022. [Online]. Available:
https://doi.org/10.1145/3558100.3563844

[10] M. E. Eren, R. Barron, M. Bhattarai, S. Wanna, N. Solovyev, K. Ras-
mussen, B. S. Alcxandrov, and C. Nicholas, “Catch’em all: Classification
of rare, prominent, and novel malware families,” in 2024 12th Interna-
tional Symposium on Digital Forensics and Security (ISDFS), 2024, pp.
1–6.

[11] M. E. Eren, M. Bhattarai, R. J. Joyce, E. Raff, C. Nicholas,
and B. S. Alexandrov, “Semi-supervised classification of malware
families under extreme class imbalance via hierarchical non-negative
matrix factorization with automatic model selection,” ACM Trans.
Priv. Secur., sep 2023, just Accepted. [Online]. Available: https:
//doi.org/10.1145/3624567

[12] J. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Proceedings of the Fifth Berkeley
Symposium on Mathematical Statistics and Probability, Volume 1:
Statistics, 1967. [Online]. Available: https://api.semanticscholar.org/
CorpusID:6278891

[13] L. Kaufman and P. J. Rousseeuw, Partitioning Around Medoids
(Program PAM). John Wiley and Sons, Ltd, 1990, ch. 2, pp.
68–125. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/9780470316801.ch2

[14] A. K. Jain and R. C. Dubes, Algorithms for clustering data. Prentice-
Hall, Inc., 1988.

[15] J. C. Bezdek, R. Ehrlich, and W. Full, “Fcm: The fuzzy c-means
clustering algorithm,” Computers & Geosciences, vol. 10, no. 2,
pp. 191–203, 1984. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/0098300484900207

[16] D. Sculley, “Web-scale k-means clustering,” in Proceedings of the
19th International Conference on World Wide Web, ser. WWW ’10.
New York, NY, USA: Association for Computing Machinery, 2010,
p. 1177–1178. [Online]. Available: https://doi.org/10.1145/1772690.
1772862

[17] K. Hornik, I. Feinerer, M. Kober, and C. Buchta, “Spherical k-means
clustering,” Journal of Statistical Software, vol. 50, pp. 1–22, 09 2012.

[18] C. Elkan, “Using the triangle inequality to accelerate k-means,” in
Proceedings of the 20th international conference on Machine Learning
(ICML-03), 2003, pp. 147–153.

[19] W. Xu, X. Liu, and Y. Gong, “Document clustering based on non-
negative matrix factorization,” in Proceedings of the 26th annual in-
ternational ACM SIGIR conference on Research and development in
informaion retrieval, 2003, pp. 267–273.

[20] R. Vangara, K. Rasmussen, G. Chennupati, and B. Alexandrov, “Deter-
mination of the number of clusters by symmetric non-negative matrix
factorization,” in SPIE, 04 2021, p. 15.

[21] M. Nickel, V. Tresp, H.-P. Kriegel et al., “A three-way model for col-
lective learning on multi-relational data.” in Icml, vol. 11, no. 10.5555,
2011, pp. 3 104 482–3 104 584.

[22] R. M. Karp and R. D. Kleinberg, “Noisy binary search and its
applications,” in ACM-SIAM Symposium on Discrete Algorithms, 2007.
[Online]. Available: https://api.semanticscholar.org/CorpusID:774118

[23] R. A. Tyrrell and D. A. Owens, “A rapid technique to assess the
resting states of the eyes and other threshold phenomena: The modified
binary search (mobs),” Behavior Research Methods, Instruments, &
Computers, vol. 20, no. 2, pp. 137–141, 1988. [Online]. Available:
https://doi.org/10.3758/BF03203817

[24] A. R. Chadha, R. Misal, and T. Mokashi, “Modified binary search
algorithm,” CoRR, vol. abs/1406.1677, 2014. [Online]. Available:
http://arxiv.org/abs/1406.1677

[25] D. Chen, “Efficient parallel binary search on sorted arrays, with appli-
cations,” IEEE Transactions on Parallel and Distributed Systems, vol. 6,
no. 4, pp. 440–445, 1995.

[26] S. Akl and H. Meijer, “Parallel binary search,” IEEE Transactions on
Parallel Distributed Systems, vol. 1, no. 02, pp. 247–250, apr 1990.

[27] M. Bhattarai, B. Nebgen, E. Skau, M. Eren, G. Chennupati, R. Vangara,
H. Djidjev, J. Patchett, J. Ahrens, and B. ALexandrov, “pydnmfk: Python
distributed non negative matrix factorization,” https://github.com/lanl/
pyDNMFk, 2021.

[28] K. Sycara, S. Roth, N. Sadeh, and M. Fox, “Distributed constrained
heuristic search,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 21, no. 6, pp. 1446–1461, 1991.

[29] X. Liu, Z. Li, C. Deng, and D. Tao, “Distributed adaptive binary
quantization for fast nearest neighbor search,” IEEE Transactions on
Image Processing, vol. 26, no. 11, pp. 5324–5336, 2017.

[30] A. B. Hassanat, “Furthest-pair-based binary search tree for speeding
big data classification using k-nearest neighbors,” Big Data, vol. 6,
no. 3, pp. 225–235, 2018. [Online]. Available: https://doi.org/10.1089/
big.2018.0064

[31] N. Sismanis, N. Pitsianis, and X. Sun, “Parallel search of k-nearest
neighbors with synchronous operations,” in 2012 IEEE Conference on
High Performance Extreme Computing. IEEE, 2012, pp. 1–6.

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 4th ed. MIT Press, 2022.

[33] R. Barron, M. E. Eren, M. Bhattarai, S. Wanna, N. Solovyev, K. Ras-
mussen, B. S. Alexandrov, C. Nicholas, and C. Matuszek, “Cyber-
security knowledge graph generation by hierarchical nonnegative matrix
factorization,” 2024.

